Leif C Groop

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2484461/publications.pdf

Version: 2024-02-01

248 papers

73,522 citations

4388 86 h-index 246 g-index

266 all docs

266 docs citations

266 times ranked 81454 citing authors

#	Article	IF	CITATIONS
1	PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genetics, 2003, 34, 267-273.	21.4	8,185
2	The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 2020, 581, 434-443.	27.8	6,140
3	Genetic studies of body mass index yield new insights for obesity biology. Nature, 2015, 518, 197-206.	27.8	3,823
4	Biological, clinical and population relevance of 95 loci for blood lipids. Nature, 2010, 466, 707-713.	27.8	3,249
5	Discovery and refinement of loci associated with lipid levels. Nature Genetics, 2013, 45, 1274-1283.	21.4	2,641
6	Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature Genetics, 2010, 42, 937-948.	21.4	2,634
7	Genome-Wide Association Analysis Identifies Loci for Type 2 Diabetes and Triglyceride Levels. Science, 2007, 316, 1331-1336.	12.6	2,623
8	A reference panel of 64,976 haplotypes for genotype imputation. Nature Genetics, 2016, 48, 1279-1283.	21.4	2,421
9	Defining the role of common variation in the genomic and biological architecture of adult human height. Nature Genetics, 2014, 46, 1173-1186.	21.4	1,818
10	Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nature Genetics, 2012, 44, 981-990.	21.4	1,748
11	Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nature Genetics, 2008, 40, 638-645.	21.4	1,683
12	The common PPAR \hat{i}^3 Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nature Genetics, 2000, 26, 76-80.	21.4	1,672
13	Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nature Genetics, 2010, 42, 579-589.	21.4	1,631
14	Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes and Endocrinology, the, 2018, 6, 361-369.	11.4	1,430
15	Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nature Genetics, 2000, 26, 163-175.	21.4	1,403
16	Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nature Genetics, 2018, 50, 1505-1513.	21.4	1,331
17	New genetic loci link adipose and insulin biology to body fat distribution. Nature, 2015, 518, 187-196.	27.8	1,328
18	Type 2 diabetes mellitus. Nature Reviews Disease Primers, 2015, 1, 15019.	30.5	1,308

#	Article	IF	CITATIONS
19	Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nature Genetics, 2014, 46, 234-244.	21.4	959
20	The genetic architecture of type 2 diabetes. Nature, 2016, 536, 41-47.	27.8	952
21	Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nature Genetics, 2010, 42, 949-960.	21.4	836
22	Clinical Risk Factors, DNA Variants, and the Development of Type 2 Diabetes. New England Journal of Medicine, 2008, 359, 2220-2232.	27.0	812
23	A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nature Genetics, 2012, 44, 659-669.	21.4	762
24	Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. Journal of Clinical Investigation, 2007, 117, 2155-2163.	8.2	683
25	Variants in MTNR1B influence fasting glucose levels. Nature Genetics, 2009, 41, 77-81.	21.4	662
26	An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans. Diabetes, 2017, 66, 2888-2902.	0.6	615
27	Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nature Genetics, 2010, 42, 142-148.	21.4	591
28	The many faces of diabetes: a disease with increasing heterogeneity. Lancet, The, 2014, 383, 1084-1094.	13.7	497
29	Exome-wide association study of plasma lipids in >300,000 individuals. Nature Genetics, 2017, 49, 1758-1766.	21.4	470
30	Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis. Diabetes, 2017, 66, 241-255.	0.6	454
31	Physical Activity Attenuates the Influence of FTO Variants on Obesity Risk: A Meta-Analysis of 218,166 Adults and 19,268 Children. PLoS Medicine, 2011, 8, e1001116.	8.4	446
32	Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nature Genetics, 2014, 46, 357-363.	21.4	428
33	Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13924-13929.	7.1	407
34	Sulfonylureas in NIDDM. Diabetes Care, 1992, 15, 737-754.	8.6	405
35	Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits. PLoS Genetics, 2013, 9, e1003500.	3.5	371
36	Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nature Genetics, 2015, 47, 1415-1425.	21.4	365

#	Article	IF	Citations
37	Risk of diabetes-associated diseases in subgroups of patients with recent-onset diabetes: a 5-year follow-up study. Lancet Diabetes and Endocrinology,the, 2019, 7, 684-694.	11.4	364
38	Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nature Genetics, 2018, 50, 559-571.	21.4	356
39	Distribution and Medical Impact of Loss-of-Function Variants in the Finnish Founder Population. PLoS Genetics, 2014, 10, e1004494.	3.5	351
40	Genetics of Type 2 Diabetesâ€"Pitfalls and Possibilities. Genes, 2015, 6, 87-123.	2.4	337
41	Genome-Wide Association Identifies Nine Common Variants Associated With Fasting Proinsulin Levels and Provides New Insights Into the Pathophysiology of Type 2 Diabetes. Diabetes, 2011, 60, 2624-2634.	0.6	335
42	The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study. PLoS Genetics, 2015, 11, e1005378.	3.5	331
43	A Systems Genetics Approach Identifies Genes and Pathways for Type 2 Diabetes in Human Islets. Cell Metabolism, 2012, 16, 122-134.	16.2	323
44	Mapping of a gene for type 2 diabetes associated with an insulin secretion defect by a genome scan in Finnish families. Nature Genetics, 1996, 14, 90-94.	21.4	320
45	Predictors of and Longitudinal Changes in Insulin Sensitivity and Secretion Preceding Onset of Type 2 Diabetes. Diabetes, 2005, 54, 166-174.	0.6	315
46	The impact of low-frequency and rare variants on lipid levels. Nature Genetics, 2015, 47, 589-597.	21.4	310
47	Early Metabolic Markers of the Development of Dysglycemia and Type 2 Diabetes and Their Physiological Significance. Diabetes, 2013, 62, 1730-1737.	0.6	307
48	Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nature Genetics, 2011, 43, 753-760.	21.4	289
49	Analysis of 589,306 genomes identifies individuals resilient to severe Mendelian childhood diseases. Nature Biotechnology, 2016, 34, 531-538.	17.5	273
50	Overexpression of Alpha2A-Adrenergic Receptors Contributes to Type 2 Diabetes. Science, 2010, 327, 217-220.	12.6	266
51	Common Missense Variant in the Glucokinase Regulatory Protein Gene Is Associated With Increased Plasma Triglyceride and C-Reactive Protein but Lower Fasting Glucose Concentrations. Diabetes, 2008, 57, 3112-3121.	0.6	264
52	Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nature Genetics, 2016, 48, 1151-1161.	21.4	261
53	Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nature Genetics, 2022, 54, 560-572.	21.4	250
54	Exome sequencing of 20,791Âcases of type 2 diabetes and 24,440Âcontrols. Nature, 2019, 570, 71-76.	27.8	248

#	Article	IF	CITATIONS
55	Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood. Human Molecular Genetics, 2015, 24, 3792-813.	2.9	223
56	Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins. Nature Communications, 2014, 5, 5068.	12.8	216
57	Human pancreatic islet three-dimensional chromatin architecture provides insights into the genetics of type 2 diabetes. Nature Genetics, 2019, 51, 1137-1148.	21.4	208
58	Genetics of the metabolic syndrome. British Journal of Nutrition, 2000, 83, S39-S48.	2.3	207
59	Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes. Nature Communications, 2016, 7, 11089.	12.8	201
60	Increased Melatonin Signaling Is a Risk Factor for Type 2 Diabetes. Cell Metabolism, 2016, 23, 1067-1077.	16.2	194
61	Whole-Exome Sequencing Identifies Rare and Low-Frequency Coding Variants Associated with LDL Cholesterol. American Journal of Human Genetics, 2014, 94, 233-245.	6.2	193
62	Genetic Similarities Between Latent Autoimmune Diabetes in Adults, Type 1 Diabetes, and Type 2 Diabetes. Diabetes, 2008, 57, 1433-1437.	0.6	192
63	Gene-Lifestyle Interaction and Type 2 Diabetes: The EPIC InterAct Case-Cohort Study. PLoS Medicine, 2014, 11, e1001647.	8.4	180
64	TCF7L2 is a master regulator of insulin production and processing. Human Molecular Genetics, 2014, 23, 6419-6431.	2.9	166
65	The Diabetes Susceptibility Gene Clec16a Regulates Mitophagy. Cell, 2014, 157, 1577-1590.	28.9	166
66	A Central Role for GRB10 in Regulation of Islet Function in Man. PLoS Genetics, 2014, 10, e1004235.	3.5	164
67	DNA methylation of loci within <i>ABCG1 </i> and <i>PHOSPHO1 </i> in blood DNA is associated with future type 2 diabetes risk. Epigenetics, 2016, 11, 482-488.	2.7	152
68	Low cellular IRS 1 gene and protein expression predict insulin resistance and NIDDM. FASEB Journal, 1999, 13, 2173-2178.	0.5	143
69	Transcript expression-aware annotation improves rare variant interpretation. Nature, 2020, 581, 452-458.	27.8	142
70	Genetics of Type 2 Diabetes. Clinical Chemistry, 2011, 57, 241-254.	3.2	139
71	A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes. Diabetes, 2018, 67, 1414-1427.	0.6	136
72	Genome-Wide Association Study of Diabetic Kidney Disease Highlights Biology Involved in Glomerular Basement Membrane Collagen. Journal of the American Society of Nephrology: JASN, 2019, 30, 2000-2016.	6.1	135

#	Article	IF	CITATIONS
73	Assessing the phenotypic effects in the general population of rare variants in genes for a dominant Mendelian form of diabetes. Nature Genetics, 2013, 45, 1380-1385.	21.4	129
74	Genetics of diabetes – Are we missing the genes or the disease?. Molecular and Cellular Endocrinology, 2014, 382, 726-739.	3.2	127
75	Biomarkers of rapid chronic kidney disease progression in type 2 diabetes. Kidney International, 2015, 88, 888-896.	5. 2	124
76	The genetics of diabetic complications. Nature Reviews Nephrology, 2015, 11, 277-287.	9.6	124
77	Leveraging Cross-Species Transcription Factor Binding Site Patterns: From Diabetes Risk Loci to Disease Mechanisms. Cell, 2014, 156, 343-358.	28.9	113
78	Insights Into the Molecular Mechanism for Type 2 Diabetes Susceptibility at the <i>KCNQ1</i> Locus From Temporal Changes in Imprinting Status in Human Islets. Diabetes, 2013, 62, 987-992.	0.6	112
79	Modelling of OGTT curve identifies 1 h plasma glucose level as a strong predictor of incident type 2 diabetes: results from two prospective cohorts. Diabetologia, 2015, 58, 87-97.	6.3	106
80	Subtypes of Type 2 Diabetes Determined From Clinical Parameters. Diabetes, 2020, 69, 2086-2093.	0.6	103
81	Heritability of variation in glycaemic response to metformin: a genome-wide complex trait analysis. Lancet Diabetes and Endocrinology,the, 2014, 2, 481-487.	11.4	101
82	The Genetic Landscape of Renal Complications in Type 1 Diabetes. Journal of the American Society of Nephrology: JASN, 2017, 28, 557-574.	6.1	101
83	Preserving Insulin Secretion in Diabetes by Inhibiting VDAC1 Overexpression and Surface Translocation in Î ² Cells. Cell Metabolism, 2019, 29, 64-77.e6.	16.2	100
84	First Genome-Wide Association Study of Latent Autoimmune Diabetes in Adults Reveals Novel Insights Linking Immune and Metabolic Diabetes. Diabetes Care, 2018, 41, 2396-2403.	8.6	99
85	Genetic inactivation of ANGPTL4 improves glucose homeostasis and is associated with reduced risk of diabetes. Nature Communications, 2018, 9, 2252.	12.8	99
86	Power in the phenotypic extremes: a simulation study of power in discovery and replication of rare variants. Genetic Epidemiology, 2011, 35, 236-246.	1.3	97
87	Impaired hepatic lipid synthesis from polyunsaturated fatty acids in TM6SF2 E167K variant carriers with NAFLD. Journal of Hepatology, 2017, 67, 128-136.	3.7	97
88	Early metabolic markers identify potential targets for the prevention of type 2 diabetes. Diabetologia, 2017, 60, 1740-1750.	6.3	96
89	Loss of ZnT8 function protects against diabetes by enhanced insulin secretion. Nature Genetics, 2019, 51, 1596-1606.	21.4	96
90	Identification and Functional Characterization of G6PC2 Coding Variants Influencing Glycemic Traits Define an Effector Transcript at the G6PC2-ABCB11 Locus. PLoS Genetics, 2015, 11, e1004876.	3.5	95

#	Article	IF	Citations
91	Heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance. Nature Communications, 2017, 8, 888.	12.8	95
92	Dose-Dependent Effects of Glyburide on Insulin Secretion and Glucose Uptake in Humans. Diabetes Care, 1991, 14, 724-727.	8.6	94
93	α-Hydroxybutyric Acid Is a Selective Metabolite Biomarker of Impaired Glucose Tolerance. Diabetes Care, 2016, 39, 988-995.	8.6	93
94	Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals. Nature Genetics, 2020, 52, 1314-1332.	21.4	91
95	Identification of novel genes for glucose metabolism based upon expression pattern in human islets and effect on insulin secretion and glycemia. Human Molecular Genetics, 2015, 24, 1945-1955.	2.9	89
96	Genetic variant effects on gene expression in human pancreatic islets and their implications for T2D. Nature Communications, 2020, 11, 4912.	12.8	89
97	A Genome-Wide mQTL Analysis in Human Adipose Tissue Identifies Genetic Variants Associated with DNA Methylation, Gene Expression and Metabolic Traits. PLoS ONE, 2016, 11, e0157776.	2.5	88
98	Sex-dimorphic genetic effects and novel loci for fasting glucose and insulin variability. Nature Communications, 2021, 12, 24.	12.8	87
99	A Variant in the <i>KCNQ1</i> Gene Predicts Future Type 2 Diabetes and Mediates Impaired Insulin Secretion. Diabetes, 2009, 58, 2409-2413.	0.6	86
100	Genetic analysis of obstructive sleep apnoea discovers a strong association with cardiometabolic health. European Respiratory Journal, 2021, 57, 2003091.	6.7	85
101	Associations of autozygosity with a broad range of human phenotypes. Nature Communications, 2019, 10, 4957.	12.8	84
102	Pleiotropic Effects of GIP on Islet Function Involve Osteopontin. Diabetes, 2011, 60, 2424-2433.	0.6	83
103	Genome-wide association analyses highlight etiological differences underlying newly defined subtypes of diabetes. Nature Genetics, 2021, 53, 1534-1542.	21.4	81
104	Genetic Variants of Thiazide-Sensitive NaCl-Cotransporter in Gitelman's Syndrome and Primary Hypertension. Hypertension, 2000, 36, 389-394.	2.7	79
105	A novel atlas of gene expression in human skeletal muscle reveals molecular changes associated with aging. Skeletal Muscle, 2015, 5, 35.	4.2	78
106	Discovery and Fine-Mapping of Glycaemic and Obesity-Related Trait Loci Using High-Density Imputation. PLoS Genetics, 2015, 11, e1005230.	3.5	77
107	Insulin and Glucagon Secretion in Patients with Slowly Progressing Autoimmune Diabetes (LADA)1. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 76-80.	3.6	75
108	Link Between GIP and Osteopontin in Adipose Tissue and Insulin Resistance. Diabetes, 2013, 62, 2088-2094.	0.6	75

#	Article	IF	CITATIONS
109	Prevalence and risk factors of gestational diabetes in Punjab, North India: results from a population screening program. European Journal of Endocrinology, 2015, 173, 257-267.	3.7	7 5
110	A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape. Nature Communications, 2016, 7, 13357.	12.8	74
111	Non-insulin-dependent Diabetes Mellitus - A Collision between Thrifty Genes and an Affluent Society. Annals of Medicine, 1997, 29, 37-53.	3.8	70
112	Epigenetic regulation of the thioredoxin-interacting protein (TXNIP) gene by hyperglycemia in kidney. Kidney International, 2016, 89, 342-353.	5.2	70
113	Absence of Islet Autoantibodies and Modestly Raised Glucose Values at Diabetes Diagnosis Should Lead to Testing for MODY: Lessons From a 5-Year Pediatric Swedish National Cohort Study. Diabetes Care, 2020, 43, 82-89.	8.6	68
114	Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies <i>BCL2</i> and <i>FAM19A2</i> as Novel Insulin Sensitivity Loci. Diabetes, 2016, 65, 3200-3211.	0.6	67
115	Age- and Sex-Specific Causal Effects of Adiposity on Cardiovascular Risk Factors. Diabetes, 2015, 64, 1841-1852.	0.6	63
116	Overweight, obesity and the risk of LADA: results from a Swedish case–control study and the Norwegian HUNT Study. Diabetologia, 2018, 61, 1333-1343.	6.3	63
117	Hydroxysteroid $17\cdot\hat{l}^2$ dehydrogenase 13 variant increases phospholipids and protects against fibrosis in nonalcoholic fatty liver disease. JCI Insight, 2020, 5, .	5.0	62
118	Chromosome X-Wide Association Study Identifies Loci for Fasting Insulin and Height and Evidence for Incomplete Dosage Compensation. PLoS Genetics, 2014, 10, e1004127.	3.5	61
119	Glucose-Induced Changes in Gene Expression in Human Pancreatic Islets: Causes or Consequences of Chronic Hyperglycemia. Diabetes, 2017, 66, 3013-3028.	0.6	61
120	Type 2 diabetes susceptibility gene variants predispose to adult-onset autoimmune diabetes. Diabetologia, 2014, 57, 1859-1868.	6.3	59
121	Haplotype Sharing Provides Insights into Fine-Scale Population History and Disease in Finland. American Journal of Human Genetics, 2018, 102, 760-775.	6.2	57
122	Genes and type 2 diabetes mellitus. Current Diabetes Reports, 2008, 8, 192-197.	4.2	55
123	Prevalence of diabetic retinopathy in relation to age at onset of the diabetes, treatment, duration and glycemic control. Acta Ophthalmologica, 1996, 74, 523-527.	0.3	54
124	Functional Investigations of <i>HNF1A</i> Identify Rare Variants as Risk Factors for Type 2 Diabetes in the General Population. Diabetes, 2017, 66, 335-346.	0.6	54
125	Obstructive sleep apnoea and the risk for coronary heart disease and type 2 diabetes: a longitudinal population-based study in Finland. BMJ Open, 2018, 8, e022752.	1.9	54
126	Multiethnic Genome-Wide Association Study of Diabetic Retinopathy Using Liability Threshold Modeling of Duration of Diabetes and Glycemic Control. Diabetes, 2019, 68, 441-456.	0.6	54

#	Article	IF	Citations
127	Adhesion G Protein-Coupled Receptor G1 (ADGRG1/GPR56) and Pancreatic \hat{l}^2 -Cell Function. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 4637-4645.	3.6	53
128	1-Hour Post-OGTT Glucose Improves the Early Prediction of Type 2 Diabetes by Clinical and Metabolic Markers. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 1131-1140.	3.6	53
129	A genomeâ€wide association study suggests new evidence for an association of the <scp>NADPH</scp> Oxidase 4 (<i><scp>NOX</scp>4</i>) gene with severe diabetic retinopathy in type 2 diabetes. Acta Ophthalmologica, 2018, 96, e811-e819.	1.1	52
130	The rs7903146 Variant in the <i>TCF7L2</i> Gene Increases the Risk of Prediabetes/Type 2 Diabetes in Obese Adolescents by Impairing β-Cell Function and Hepatic Insulin Sensitivity. Diabetes Care, 2017, 40, 1082-1089.	8.6	50
131	Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes. Nature Communications, 2021, 12, 3505.	12.8	49
132	Progression of retinopathy is related to glycaemic control even in patients with mild diabetes mellitus. Acta Ophthalmologica, 1996, 74, 528-532.	0.3	48
133	A Low-Frequency Inactivating <i>AKT2</i> Variant Enriched in the Finnish Population Is Associated With Fasting Insulin Levels and Type 2 Diabetes Risk. Diabetes, 2017, 66, 2019-2032.	0.6	47
134	Discovering human diabetes-risk gene function with genetics and physiological assays. Nature Communications, 2018, 9, 3855.	12.8	47
135	Multi-ancestry genome-wide association study of gestational diabetes mellitus highlights genetic links with type 2 diabetes. Human Molecular Genetics, 2022, 31, 3377-3391.	2.9	47
136	Genetic determinants of circulating GIP and GLP-1 concentrations. JCI Insight, 2017, 2, .	5.0	46
137	TIGER: The gene expression regulatory variation landscape of human pancreatic islets. Cell Reports, 2021, 37, 109807.	6.4	45
138	Replication and cross-validation of type 2 diabetes subtypes based on clinical variables: an IMI-RHAPSODY study. Diabetologia, 2021, 64, 1982-1989.	6.3	44
139	MECHANISMS IN ENDOCRINOLOGY: Epigenetic modifications and gestational diabetes: a systematic review of published literature. European Journal of Endocrinology, 2017, 176, R247-R267.	3.7	42
140	N1-methylnicotinamide is a signalling molecule produced in skeletal muscle coordinating energy metabolism. Scientific Reports, 2018, 8, 3016.	3.3	42
141	Glucose-Dependent Insulinotropic Polypeptide Stimulates Osteopontin Expression in the Vasculature via Endothelin-1 and CREB. Diabetes, 2016, 65, 239-254.	0.6	41
142	Impaired Insulin-Stimulated Expression of the Glycogen Synthase Gene in Skeletal Muscle of Type 2 Diabetic Patients Is Acquired Rather Than Inherited 1. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 1584-1590.	3.6	37
143	Glucocorticoid induces human beta cell dysfunction by involving riborepressor GAS5 LincRNA. Molecular Metabolism, 2020, 32, 160-167.	6.5	37
144	Interactions Between Glucose and FFA Metabolism in Man. Diabetes/metabolism Reviews, 1996, 12, 15-36.	0.3	35

#	Article	IF	Citations
145	Epigenetic markers associated with metformin response and intolerance in drug-na \tilde{A} -ve patients with type 2 diabetes. Science Translational Medicine, 2020, 12, .	12.4	34
146	Subgroups of patients with young-onset type 2 diabetes in India reveal insulin deficiency as a major driver. Diabetologia, 2022, 65, 65-78.	6.3	34
147	Epigenetic regulation of glucose-stimulated osteopontin (OPN) expression in diabetic kidney. Biochemical and Biophysical Research Communications, 2016, 469, 108-113.	2.1	33
148	Data-driven subgroups of type 2 diabetes, metabolic response, and renal risk profile after bariatric surgery: a retrospective cohort study. Lancet Diabetes and Endocrinology, the, 2022, 10, 167-176.	11.4	32
149	Genome Wide Meta-analysis Highlights the Role of Genetic Variation in RARRES2 in the Regulation of Circulating Serum Chemerin. PLoS Genetics, 2014, 10, e1004854.	3.5	31
150	Sequence data and association statistics from 12,940 type 2 diabetes cases and controls. Scientific Data, 2017, 4, 170179.	5.3	31
151	Validation of the classification for type 2 diabetes into five subgroups: a report from the ORIGIN trial. Diabetologia, 2022, 65, 206-215.	6.3	31
152	Elevated circulating follistatin associates with an increased risk of type 2 diabetes. Nature Communications, 2021, 12, 6486.	12.8	31
153	Co-occurrence of Risk Alleles in or Near Genes Modulating Insulin Secretion Predisposes Obese Youth to Prediabetes. Diabetes Care, 2014, 37, 475-482.	8.6	30
154	Ethnic differences in the contribution of insulin action and secretion to type 2 diabetes in immigrants from the Middle East compared to native Swedes. Diabetes Research and Clinical Practice, 2014, 105, 79-87.	2.8	30
155	A variant within the FTO confers susceptibility to diabetic nephropathy in Japanese patients with type 2 diabetes. PLoS ONE, 2018, 13, e0208654.	2.5	30
156	The molecular genetics of non-insulin-dependent diabetes mellitus. Journal of Internal Medicine, 1997, 241, 95-101.	6.0	29
157	A Novel Test for Recessive Contributions to Complex Diseases Implicates Bardet-Biedl Syndrome Gene BBS10 in Idiopathic Type 2 Diabetes and Obesity. American Journal of Human Genetics, 2014, 95, 509-520.	6.2	29
158	Genetics of Type 2 Diabetes: It Matters From Which Parent We Inherit the Risk. Review of Diabetic Studies, 2015, 12, 233-242.	1.3	28
159	Harmonising and linking biomedical and clinical data across disparate data archives to enable integrative cross-biobank research. European Journal of Human Genetics, 2016, 24, 521-528.	2.8	27
160	Smoking and the Risk of LADA: Results From a Swedish Population-Based Case-Control Study. Diabetes Care, 2016, 39, 794-800.	8.6	26
161	Distinct Molecular Signatures of Clinical Clusters in People With Type 2 Diabetes: An IMI-RHAPSODY Study. Diabetes, 2021, 70, 2683-2693.	0.6	26
162	DOLORisk: study protocol for a multi-centre observational study to understand the risk factors and determinants of neuropathic pain. Wellcome Open Research, 2018, 3, 63.	1.8	26

#	Article	IF	CITATIONS
163	Urinary extracellular vesicles: Assessment of preâ€analytical variables and development of a quality control with focus on transcriptomic biomarker research. Journal of Extracellular Vesicles, 2021, 10, e12158.	12.2	26
164	Progression to proliferative retinopathy and macular oedema requiring treatment. Assessment of the alternative classification of the Wisconsin Study. Acta Ophthalmologica, 1999, 77, 218-223.	0.3	25
165	Nonsuppressed Glucagon After Glucose Challenge as a Potential Predictor for Glucose Tolerance. Diabetes, 2017, 66, 1373-1379.	0.6	25
166	Controllability in an islet specific regulatory network identifies the transcriptional factor NFATC4, which regulates Type 2 Diabetes associated genes. Npj Systems Biology and Applications, 2018, 4, 25.	3.0	25
167	Accuracy of 1-Hour Plasma Glucose During the Oral Glucose Tolerance Test in Diagnosis of Type 2 Diabetes in Adults: A Meta-analysis. Diabetes Care, 2021, 44, 1062-1069.	8.6	25
168	Reply to "Statistical concerns about the GSEA procedure". Nature Genetics, 2004, 36, 663-663.	21.4	24
169	Simulation of Finnish Population History, Guided by Empirical Genetic Data, to Assess Power of Rare-Variant Tests in Finland. American Journal of Human Genetics, 2014, 94, 710-720.	6.2	24
170	CART is overexpressed in human type 2 diabetic islets and inhibits glucagon secretion and increases insulin secretion. Diabetologia, 2016, 59, 1928-1937.	6.3	24
171	Clusters provide a better holistic view of type 2 diabetes than simple clinical features. Lancet Diabetes and Endocrinology,the, 2019, 7, 668-669.	11.4	24
172	The functional impact of G protein-coupled receptor 142 (Gpr142) on pancreatic \hat{l}^2 -cell in rodent. Pflugers Archiv European Journal of Physiology, 2019, 471, 633-645.	2.8	24
173	Metabolic Effects of Gastric Bypass Surgery: Is It All About Calories?. Diabetes, 2020, 69, 2027-2035.	0.6	24
174	Genome-Wide Association Study of Peripheral Artery Disease. Circulation Genomic and Precision Medicine, 2021, 14, e002862.	3.6	24
175	Rare coding variants in 35 genes associate with circulating lipid levelsâ€"A multi-ancestry analysis of 170,000 exomes. American Journal of Human Genetics, 2022, 109, 81-96.	6.2	24
176	Silencing of the FTO gene inhibits insulin secretion: An in vitro study using GRINCH cells. Molecular and Cellular Endocrinology, 2018, 472, 10-17.	3.2	23
177	Genetic Discrimination Between LADA and Childhood-Onset Type 1 Diabetes Within the MHC. Diabetes Care, 2020, 43, 418-425.	8.6	23
178	Interaction Between Overweight and Genotypes of HLA, TCF7L2, and FTO in Relation to the Risk of Latent Autoimmune Diabetes in Adults and Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 4815-4826.	3.6	22
179	Roadmap for a precision-medicine initiative in the Nordic region. Nature Genetics, 2019, 51, 924-930.	21.4	22
180	Influence of Familial Renal Glycosuria Due to Mutations in the SLC5A2 Gene on Changes in Glucose Tolerance over Time. PLoS ONE, 2016, 11, e0146114.	2.5	22

#	Article	IF	Citations
181	Effects of meal and incretins in the regulation of splanchnic blood flow. Endocrine Connections, 2017, 6, 179-187.	1.9	21
182	Adultâ€onset diabetes in Middle Eastern immigrants to Sweden: Novel subgroups and diabetic complications—The All New Diabetes in Scania cohort diabetic complications and ethnicity. Diabetes/Metabolism Research and Reviews, 2021, 37, e3419.	4.0	21
183	Association between a polymorphism in the carboxyl ester lipase gene and serum cholesterol profile. European Journal of Human Genetics, 2004, 12, 627-632.	2.8	20
184	Histone acetylation of glucose-induced thioredoxin-interacting protein gene expression in pancreatic islets. International Journal of Biochemistry and Cell Biology, 2016, 81, 82-91.	2.8	20
185	Genome editing of human pancreatic beta cell models: problems, possibilities and outlook. Diabetologia, 2019, 62, 1329-1336.	6.3	20
186	Glucose-Dependent Insulinotropic Peptide in the High-Normal Range Is Associated With Increased Carotid Intima-Media Thickness. Diabetes Care, 2021, 44, 224-230.	8.6	20
187	Interactions Between Glucose and FFA Metabolism in Man. Diabetes/metabolism Reviews, 1996, 12, 15-36.	0.3	20
188	Association between parental history of diabetes and type 2 diabetes genetic risk scores in the PPP-Botnia and Framingham Offspring Studies. Diabetes Research and Clinical Practice, 2011, 93, e76-e79.	2.8	19
189	A Variant of GJD2, Encoding for Connexin 36, Alters the Function of Insulin Producing \hat{l}^2 -Cells. PLoS ONE, 2016, 11, e0150880.	2.5	19
190	Excess maternal transmission of variants in the THADA gene to offspring with type 2 diabetes. Diabetologia, 2016, 59, 1702-1713.	6.3	19
191	Genome-wide association analysis of type 2 diabetes in the EPIC-InterAct study. Scientific Data, 2020, 7, 393.	5.3	19
192	Glucose-dependent insulinotropic peptide and risk of cardiovascular events and mortality: a prospective study. Diabetologia, 2020, 63, 1043-1054.	6.3	18
193	Alcohol and the risk for latent autoimmune diabetes in adults: results based on Swedish ESTRID study. European Journal of Endocrinology, 2014, 171, 535-543.	3.7	17
194	Atrial Natriuretic Peptide in the High Normal Range Is Associated With Lower Prevalence of Insulin Resistance. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 1372-1380.	3.6	17
195	Automated pathway and reaction prediction facilitates in silico identification of unknown metabolites in human cohort studies. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1071, 58-67.	2.3	16
196	Genome-wide meta-analysis and omics integration identifies novel genes associated with diabetic kidney disease. Diabetologia, 2022, 65, 1495-1509.	6.3	16
197	Genome-wide meta-analysis identifies novel determinants of circulating serum progranulin. Human Molecular Genetics, 2018, 27, 546-558.	2.9	15
198	FOETAL for NCDâ€"FOetal Exposure and Epidemiological Transitions: the role of Anaemia in early Life for Non-Communicable Diseases in later life: a prospective preconception study in rural Tanzania. BMJ Open, 2019, 9, e024861.	1.9	15

#	Article	IF	CITATIONS
199	Novel Reclassification of Adult Diabetes Is Useful to Distinguish Stages of \hat{l}^2 -Cell Function Linked to the Risk of Vascular Complications: The DOLCE Study From Northern Ukraine. Frontiers in Genetics, 2021, 12, 637945.	2.3	15
200	Novel Subgroups of Type 2 Diabetes Display Different Epigenetic Patterns That Associate With Future Diabetic Complications. Diabetes Care, 2022, 45, 1621-1630.	8.6	15
201	Estimation of Blood Flow Heterogeneity in Human Skeletal Muscle Using Intravascular Tracer Data: Importance for Modeling Transcapillary Exchange. Annals of Biomedical Engineering, 1998, 26, 764-774.	2.5	14
202	Bariatric Surgery Enhances Splanchnic Vascular Responses in Patients With Type 2 Diabetes. Diabetes, 2017, 66, 880-885.	0.6	13
203	Aortic diameter at age 65 in men with newly diagnosed type 2 diabetes. Scandinavian Cardiovascular Journal, 2017, 51, 202-206.	1.2	13
204	Family history of diabetes and its relationship with insulin secretion and insulin sensitivity in Iraqi immigrants and native Swedes: a population-based cohort study. Acta Diabetologica, 2018, 55, 233-242.	2.5	13
205	Fostering improved human islet research: a European perspective. Diabetologia, 2019, 62, 1514-1516.	6.3	13
206	HAPT2D: high accuracy of prediction of T2D with a model combining basic and advanced data depending on availability. European Journal of Endocrinology, 2018, 178, 331-341.	3.7	12
207	Predictors of responses to clinicâ€based childhood obesity care. Pediatric Diabetes, 2018, 19, 1351-1356.	2.9	12
208	Liver blood dynamics after bariatric surgery: the effects of mixed-meal test and incretin infusions. Endocrine Connections, 2018, 7, 888-896.	1.9	12
209	Two New Mutations in the <i>CEL</i> Gene Causing Diabetes and Hereditary Pancreatitis: How to Correctly Identify MODY8 Cases. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e1455-e1466.	3.6	12
210	Downregulation of Type II Diabetes Mellitus and Maturity Onset Diabetes of Young Pathways in Human Pancreatic Islets from Hyperglycemic Donors. Journal of Diabetes Research, 2014, 2014, 1-7.	2.3	11
211	Genetics and neonatal diabetes: towards precision medicine. Lancet, The, 2015, 386, 934-935.	13.7	11
212	Physical Activity, Genetic Susceptibility, and the Risk of Latent Autoimmune Diabetes in Adults and Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e4112-e4123.	3.6	11
213	Insulin Sensitivity in Adults with Growth Hormone Deficiency and Effect of Growth Hormone Treatment. Hormone Research in Paediatrics, 2005, 64, 45-50.	1.8	10
214	Country of birth modifies the association of fatty liver index with insulin action in Middle Eastern immigrants to Sweden. Diabetes Research and Clinical Practice, 2015, 110, 66-74.	2.8	10
215	The impact of Roux-en-Y gastric bypass surgery on normal metabolism in a porcine model. PLoS ONE, 2017, 12, e0173137.	2.5	10
216	Role of osteopontin and its regulation in pancreatic islet. Biochemical and Biophysical Research Communications, 2018, 495, 1426-1431.	2.1	8

#	Article	IF	Citations
217	Liver nucleotide biosynthesis is linked to protection from vascular complications in individuals with long-term type 1 diabetes. Scientific Reports, 2020, 10, 11561.	3.3	8
218	Metabolic and Genetic Determinants of Glucose Shape After Oral Challenge in Obese Youths: A Longitudinal Study. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 534-542.	3.6	8
219	Combined lifestyle factors and the risk of LADA and type 2 diabetes – Results from a Swedish population-based case-control study. Diabetes Research and Clinical Practice, 2021, 174, 108760.	2.8	8
220	HLA class I genes modulate disease risk and age at onset together with DR-DQ in Chinese patients with insulin-requiring type 1 diabetes. Diabetologia, 2021, 64, 2026-2036.	6.3	8
221	Mapping the Cord Blood Transcriptome of Pregnancies Affected by Early Maternal Anemia to Identify Signatures of Fetal Programming. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 1303-1316.	3.6	8
222	Single-Cell Sequencing of Human Pancreatic Isletsâ€"New Kids on the Block. Cell Metabolism, 2016, 24, 523-524.	16.2	7
223	Turning Vice into Virtue: Using Batch-Effects to Detect Errors in Large Genomic Data Sets. Genome Biology and Evolution, 2018, 10, 2697-2708.	2.5	7
224	The associations of daylight and melatonin receptor 1B gene rs10830963 variant with glycemic traits: the prospective PPP-Botnia study. Annals of Medicine, 2019, 51, 58-67.	3.8	7
225	Reduced expression of OXPHOS and DNA damage genes is linked to protection from microvascular complications in long-term type 1 diabetes: the PROLONG study. Scientific Reports, 2021, 11, 20735.	3.3	7
226	The role of circulating galectin-1 in type 2 diabetes and chronic kidney disease: evidence from cross-sectional, longitudinal and Mendelian randomisation analyses. Diabetologia, 2022, 65, 128-139.	6.3	7
227	A multigenerational study on phenotypic consequences of the most common causal variant of HNF1A-MODY. Diabetologia, 2022, 65, 632-643.	6.3	7
228	Melatonin receptor 1B gene rs10830963 polymorphism, depressive symptoms and glycaemic traits. Annals of Medicine, 2018, 50, 704-712.	3.8	6
229	Genotypes of HLA, TCF7L2, and FTO as potential modifiers of the association between sweetened beverage consumption and risk of LADA and type 2 diabetes. European Journal of Nutrition, 2020, 59, 127-135.	3.9	6
230	Relationship between insulin sensitivity and gene expression in human skeletal muscle. BMC Endocrine Disorders, 2021, 21, 32.	2.2	6
231	Continuous and simultaneous determination of venous blood metabolites. Talanta, 2017, 171, 270-274.	5.5	5
232	Genetic Predisposition to Coronary Artery Disease in Type 2 Diabetes Mellitus. Circulation Genomic and Precision Medicine, 2020, 13, e002769.	3.6	5
233	Pathogenesis of Insulin Resistance in Type 2 Diabetes. Drugs, 1999, 58, 11-12.	10.9	4
234	Novel diabetes subgroups – Authors' reply. Lancet Diabetes and Endocrinology,the, 2018, 6, 440-441.	11.4	4

#	Article	IF	CITATIONS
235	Heterogeneity of diabetes – An Indian perspective. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2019, 13, 3065-3067.	3.6	4
236	Activation of imidazoline receptor I 2 , and improved pancreatic \hat{l}^2 -cell function in human islets. Journal of Diabetes and Its Complications, 2018, 32, 813-818.	2.3	3
237	Low-cost exercise interventions improve long-term cardiometabolic health independently of a family history of type 2 diabetes: a randomized parallel group trial. BMJ Open Diabetes Research and Care, 2020, 8, e001377.	2.8	3
238	Mechanistic Insights Into the Heterogeneity of Glucose Response Classes in Youths With Obesity: A Latent Class Trajectory Approach. Diabetes Care, 0, , .	8.6	3
239	Impact of the TCF7L2 genotype on risk of hypoglycaemia and glucagon secretion during hypoglycaemia. Endocrine Connections, 2016, 5, 53-60.	1.9	2
240	Genetic factors affect the susceptibility to bacterial infections in diabetes. Scientific Reports, 2021, 11, 9464.	3.3	2
241	MuscleAtlasExplorer: a web service for studying gene expression in human skeletal muscle. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	3.0	2
242	Obesity-associated Blunted Subcutaneous Adipose Tissue Blood Flow After Meal Improves After Bariatric Surgery. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 1930-1938.	3.6	2
243	Genetic Epidemiology of Type 2 Diabetes. , 0, , 95-110.		1
244	Genetics of type 2 diabetes. An overview. Endocrinologia Y Nutricion: Organo De La Sociedad Espanola De Endocrinologia Y Nutricion, 2009, 56 Suppl 4, 34-7.	0.8	1
245	Pro-atrial natriuretic peptide (1-30) is tightly correlated to salt sensitivity. American Journal of Hypertension, 2001, 14, A158.	2.0	0
246	Carl-David Agardh, 1946–2013. Diabetologia, 2014, 57, 651-652.	6.3	0
247	Lipid-Associated Variants near ANGPTL3 and LPL Show Parent-of-Origin Specific Effects on Blood Lipid Levels and Obesity. Genes, 2022, 13, 91.	2.4	0
248	Basics of Molecular Genetics: Lessons from Type 2 Diabetes. , 0, , 367-376.		0