List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2484449/publications.pdf

Version: 2024-02-01

ALEDED | MELYNED

#	Article	IF	CITATIONS
1	Structure and photophysics of rubrene–tetracene blends. Electronic Structure, 2022, 4, 014002.	2.8	1
2	Inhomogeneous defect distribution of triangular WS2 monolayer revealed by surface-enhanced and tip-enhanced Raman and photoluminescence spectroscopy. Journal of Chemical Physics, 2022, 156, 034702.	3.0	1
3	Monitoring tautomerization of single hypericin molecules in a tunable optical λ/2 microcavity. Journal of Chemical Physics, 2022, 156, 014203.	3.0	1
4	Spatially resolved fluorescence of caesium lead halide perovskite supercrystals reveals quasi-atomic behavior of nanocrystals. Nature Communications, 2022, 13, 892.	12.8	15
5	Accumulation and penetration behavior of hypericin in glioma tumor spheroids studied by fluorescence microscopy and confocal fluorescence lifetime imaging microscopy. Analytical and Bioanalytical Chemistry, 2022, 414, 4849-4860.	3.7	7
6	Room Temperature Fluorescence Blinking in MoS ₂ Atomic Layers by Single Photon Energy Transfer. Laser and Photonics Reviews, 2022, 16, .	8.7	5
7	(Digital Presentation) Monitoring and Controlling Tautomerization in Phthalocyanines, Porphyrines and Porphycenes By Optical Single-Molecule Imaging and Spectroscopy. ECS Meeting Abstracts, 2022, MA2022-01, 954-954.	0.0	0
8	Scouting for strong light–matter coupling signatures in Raman spectra. Physical Chemistry Chemical Physics, 2021, 23, 16837-16846.	2.8	14
9	Periodic Fluorescence Variations of CdSe Quantum Dots Coupled to Aryleneethynylenes with Aggregation-Induced Emission. ACS Nano, 2021, 15, 480-488.	14.6	4
10	Probing Bias-Induced Electron Density Shifts in Metal–Molecule Interfaces via Tip-Enhanced Raman Scattering. Journal of the American Chemical Society, 2021, 143, 1816-1821.	13.7	13
11	Fibronectin adsorption on oxygen plasma-treated polyurethane surfaces modulates endothelial cell response. Journal of Materials Chemistry B, 2021, 9, 1647-1660.	5.8	9
12	Direct Observation of Structural Heterogeneity and Tautomerization of Single Hypericin Molecules. Journal of Physical Chemistry Letters, 2021, 12, 1025-1031.	4.6	4
13	Hot carrier-mediated avalanche multiphoton photoluminescence from coupled Au–Al nanoantennas. Journal of Chemical Physics, 2021, 154, 074701.	3.0	6
14	Sensitive Interferometric Plasmon Ruler Based on a Single Nanodimer. Journal of Physical Chemistry C, 2021, 125, 6486-6493.	3.1	10
15	Theoretical and Experimental Evidence of Twoâ€Step Tautomerization in Hypericin. Advanced Photonics Research, 2021, 2, 2000170.	3.6	3
16	Combining Optical Strong Mode Coupling with Polaritonic Coupling in a λ/2 Fabry–Pérot Microresonator. Journal of Physical Chemistry C, 2021, 125, 13024-13032.	3.1	3
17	Tailoring Tautomerization of Single Phthalocyanine Molecules through Modification of Chromophore Photophysics by the Purcell Effect of an Optical Microcavity. Journal of Physical Chemistry C, 2021, 125, 14932-14939.	3.1	3
18	Strong coupling between an optical microcavity and photosystems in single living cyanobacteria. Journal of Biophotonics, 2021, , e202100136.	2.3	3

#	Article	IF	CITATIONS
19	Revealing the Three-Dimensional Orientation and Interplay between Plasmons and Interband Transitions for Single Gold Bipyramids by Photoluminescence Excitation Pattern Imaging. Journal of Physical Chemistry C, 2021, 125, 26978-26985.	3.1	3
20	Nanoscale plasmonic phase sensor. Analytical and Bioanalytical Chemistry, 2020, 412, 3405-3411.	3.7	4
21	Direct phase mapping of the light scattered by single plasmonic nanoparticles. Nanoscale, 2020, 12, 1083-1090.	5.6	7
22	Revealing the local crystallinity of single silicon core–shell nanowires using tip-enhanced Raman spectroscopy. Beilstein Journal of Nanotechnology, 2020, 11, 1147-1156.	2.8	4
23	Structural order enhances charge carrier transport in self-assembled Au-nanoclusters. Nature Communications, 2020, 11, 6188.	12.8	32
24	Optically and electrically driven nanoantennas. Beilstein Journal of Nanotechnology, 2020, 11, 1542-1545.	2.8	1
25	Lightâ€Controlled Nearâ€Field Energy Transfer in Plasmonic Metasurface Coupled MoS 2 Monolayer. Small, 2020, 16, 2003539.	10.0	16
26	Room temperature near unity spin polarization in 2D Van der Waals heterostructures. Nature Communications, 2020, 11, 4442.	12.8	44
27	Strain-activated light-induced halide segregation in mixed-halide perovskite solids. Nature Communications, 2020, 11, 6328.	12.8	86
28	Multimode Vibrational Strong Coupling of Methyl Salicylate to a Fabry–Pérot Microcavity. Journal of Physical Chemistry B, 2020, 124, 5709-5716.	2.6	19
29	Nearâ€Unity Polarization of Valleyâ€Dependent Secondâ€Harmonic Generation in Stacked TMDC Layers and Heterostructures at Room Temperature. Advanced Materials, 2020, 32, e1908061.	21.0	36
30	Enhancement of the second harmonic signal of nonlinear crystals by self-assembled gold nanoparticles. Journal of Chemical Physics, 2020, 152, 104711.	3.0	9
31	Hypericin: Single Molecule Spectroscopy of an Active Natural Drug. Journal of Physical Chemistry A, 2020, 124, 2497-2504.	2.5	18
32	Revealing Excitonic and Electron-Hole Plasma States in Stimulated Emission of Single <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:msub><mml:mrow><mml:mi>Cs</mml:mi><mml:mi>Pb</mml:mi><mml:mi>Sr</mml:mi>Nanowires at Room Temperature. Physical Review Applied, 2020, 13, .</mml:mrow></mml:msub></mml:math 	i>∛ <mark>8</mark> mml:n	19 ۱row> <mml:r< td=""></mml:r<>
33	Enhancement of the second harmonic signal of nonlinear crystals by a single metal nanoantenna. Nanoscale, 2020, 12, 23105-23115.	5.6	6
34	Tunable strong coupling of two adjacent optical λ/2 Fabry-Pérot microresonators. Optics Express, 2020, 28, 485.	3.4	9
35	A flexible platform for controlled optical and electrical effects in tailored plasmonic break junctions. Nanophotonics, 2020, 9, 1391-1400.	6.0	10
36	Enhanced two-photon photoluminescence assisted by multi-resonant characteristics of a gold nanocylinder. Nanophotonics, 2020, 9, 4009-4019.	6.0	6

#	Article	lF	CITATIONS
37	Second harmonic generation enhancement by polarization-matched nanostructures -INVITED. EPJ Web of Conferences, 2020, 238, 05001.	0.3	0
38	Charge transfer and electromagnetic enhancement processes revealed in the SERS and TERS of a CoPc thin film. Nanophotonics, 2019, 8, 1533-1546.	6.0	9
39	Simultaneous positive and negative optical patterning with dye-sensitized CdSe quantum dots. Journal of Chemical Physics, 2019, 151, 141102.	3.0	4
40	Strong second-harmonic generation from Au–Al heterodimers. Nanoscale, 2019, 11, 23475-23481.	5.6	13
41	Fast, Infrared-Active Optical Transistors Based on Dye-Sensitized CdSe Nanocrystals. ACS Applied Materials & Interfaces, 2019, 11, 48271-48280.	8.0	7
42	Nature of Large Temporal Fluctuations of Hydrogen Transfer Rates in Single Molecules. Journal of Physical Chemistry Letters, 2018, 9, 1211-1215.	4.6	20
43	Local Observation of Phase Segregation in Mixed-Halide Perovskite. Nano Letters, 2018, 18, 2172-2178.	9.1	186
44	Carrier recombination and plasmonic emission channels in metallic photoluminescence. Nanoscale, 2018, 10, 8240-8245.	5.6	22
45	Designing high performance all-small-molecule solar cells with non-fullerene acceptors: comprehensive studies on photoexcitation dynamics and charge separation kinetics. Energy and Environmental Science, 2018, 11, 211-220.	30.8	38
46	Multi-photon luminescence of single gold nanoparticles: Exploring the dynamics of plasmons and electron hole pairs. EPJ Web of Conferences, 2018, 190, 03016.	0.3	1
47	Correlated, Dualâ€Beam Optical Gating in Coupled Organic–Inorganic Nanostructures. Angewandte Chemie, 2018, 130, 11733-11737.	2.0	7
48	Unusual effects in single molecule tautomerization: hemiporphycene. Physical Chemistry Chemical Physics, 2018, 20, 26591-26596.	2.8	5
49	λ/2 Fabry Pérot micro-resonators in single molecule spectroscopy. EPJ Web of Conferences, 2018, 190, 02007.	0.3	0
50	Active optical antennas driven by inelastic electron tunneling. Nanophotonics, 2018, 7, 1503-1516.	6.0	15
51	Correlated, Dualâ€Beam Optical Gating in Coupled Organic–Inorganic Nanostructures. Angewandte Chemie - International Edition, 2018, 57, 11559-11563.	13.8	7
52	Temperature dependence of metal-enhanced fluorescence of photosystem I from Thermosynechococcus elongatus. Nanoscale, 2017, 9, 4196-4204.	5.6	15
53	Spatially composition-modulated two-dimensional WS _{2x} Se _{2(1â^'x)} nanosheets. Nanoscale, 2017, 9, 4707-4712.	5.6	39
54	Chimeric Autofluorescent Proteins as Photophysical Model System for Multicolor Bimolecular Fluorescence Complementation. Journal of Physical Chemistry B, 2017, 121, 2407-2419.	2.6	0

#	Article	IF	CITATIONS
55	Role of missing carotenoid in reducing the fluorescence of single monomeric photosystem II core complexes. Physical Chemistry Chemical Physics, 2017, 19, 13189-13194.	2.8	4
56	Two-photon luminescence contrast by tip-sample coupling in femtosecond near-field optical microscopy. Applied Physics B: Lasers and Optics, 2017, 123, 1.	2.2	3
57	STM tip-enhanced Raman spectroscopy and the investigation of doped graphene. Vibrational Spectroscopy, 2017, 91, 128-135.	2.2	10
58	Second-harmonic generation in single CdSe nanowires by focused cylindrical vector beams. Optics Letters, 2017, 42, 2623.	3.3	11
59	Direct Comparison of Second Harmonic Generation and Two-Photon Photoluminescence from Single Connected Gold Nanodimers. Journal of Physical Chemistry C, 2016, 120, 17699-17710.	3.1	30
60	Revealing the radiative and non-radiative relaxation rates of the fluorescent dye Atto488 in a λ/2 Fabry–Pérot-resonator by spectral and time resolved measurements. Nanoscale, 2016, 8, 14541-14547.	5.6	4
61	Revealing nanoscale optical properties and morphology in perfluoropentacene films by confocal and tip-enhanced near-field optical microscopy and spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 15919-15926.	2.8	10
62	Power―and polarization dependence of two photon luminescence of single CdSe nanowires with tightly focused cylindrical vector beams of ultrashort laser pulses. Laser and Photonics Reviews, 2016, 10, 835-842.	8.7	16
63	Hot-electron-induced light amplification. Journal of Photonics for Energy, 2016, 6, 042506.	1.3	0
64	One-pot synthesis of micron partly hollow anisotropic dumbbell shaped silica core–shell particles. Chemical Communications, 2016, 52, 14392-14395.	4.1	3
65	Second harmonic generation properties of Ca ₃ (O ₃ C ₃ N ₃) ₂ ‣r ₃ (O ₃ C ₃ N ₃) ₂ solid solutions. Crystal Research and Technology, 2016, 51, 460-465.	1.3	17
66	Resolution enhancement for low-temperature scanning microscopy by cryo-immersion. Optics Express, 2016, 24, 13023.	3.4	12
67	Effects of Irregular Bimetallic Nanostructures on the Optical Properties of Photosystem I from Thermosynechococcus elongatus. Photonics, 2015, 2, 838-854.	2.0	7
68	Superluminescence from an optically pumped molecular tunneling junction by injection of plasmon induced hot electrons. Beilstein Journal of Nanotechnology, 2015, 6, 1100-1106.	2.8	14
69	Controlling the dynamics of Förster resonance energy transfer inside a tunable sub-wavelength Fabry–Pũrot-resonator. Nanoscale, 2015, 7, 10204-10209.	5.6	52
70	Quantum optics, molecular spectroscopy and low-temperature spectroscopy: general discussion. Faraday Discussions, 2015, 184, 275-303.	3.2	13
71	Plasmonics, Tracking and Manipulating, and Living Cells: general discussion. Faraday Discussions, 2015, 184, 451-473.	3.2	9
72	Nonlinear optical imaging of single plasmonic nanoparticles with 30 nm resolution. Physical Chemistry Chemical Physics, 2015, 17, 21288-21293.	2.8	30

#	Article	IF	CITATIONS
73	The Nobel Prize in Chemistry 2014 for the development of super-resolved fluorescence microscopy. Analytical and Bioanalytical Chemistry, 2015, 407, 1797-1800.	3.7	3
74	Strong and Coherent Coupling of a Plasmonic Nanoparticle to a Subwavelength Fabry–Pérot Resonator. Nano Letters, 2015, 15, 4423-4428.	9.1	26
75	Enhancement of Radiative Plasmon Decay by Hot Electron Tunneling. ACS Nano, 2015, 9, 8176-8183.	14.6	34
76	Single gold nanorods as optical probes for spectral imaging. Analytical and Bioanalytical Chemistry, 2015, 407, 4029-4034.	3.7	1
77	Variation of Exciton-Vibrational Coupling in Photosystem II Core Complexes from <i>Thermosynechococcus elongatus</i> As Revealed by Single-Molecule Spectroscopy. Journal of Physical Chemistry B, 2015, 119, 4203-4210.	2.6	9
78	Grating enhanced apertureless near-field optical microscopy. Optics Express, 2015, 23, 18401.	3.4	6
79	Coupling single quantum dots to plasmonic nanocones: optical properties. Faraday Discussions, 2015, 184, 321-337.	3.2	22
80	Cylindrical Vector Beams for Spectroscopic Imaging of Single Molecules and Nanoparticles and Localization with Nanometer Precision in Tunable Microresonators. , 2015, , .		0
81	Orientations between Red Antenna States of Photosystem I Monomers from Thermosynechococcus elongatus Revealed by Single-Molecule Spectroscopy. Journal of Physical Chemistry B, 2015, 119, 13888-13896.	2.6	11
82	Self-aligned placement and detection of quantum dots on the tips of individual conical plasmonic nanostructures. Nanoscale, 2015, 7, 14691-14696.	5.6	28
83	Superresolution techniques, biophysics with nanostructures, and fluorescence energy transfer: general discussion. Faraday Discussions, 2015, 184, 143-162.	3.2	1
84	Optical near-fields & nearfield optics. Beilstein Journal of Nanotechnology, 2014, 5, 186-187.	2.8	2
85	Photosynthesis in a different light: spectro-microscopy for in vivo characterization of chloroplasts. Frontiers in Plant Science, 2014, 5, 292.	3.6	3
86	Nonlinear optical point light sources through field enhancement at metallic nanocones. Optics Express, 2014, 22, 15484.	3.4	36
87	Synthesis, Structure, and Frequencyâ€Doubling Effect of Calcium Cyanurate. Angewandte Chemie - International Edition, 2014, 53, 14260-14263.	13.8	100
88	Extension of solid immersion lens technology to super-resolution Raman microscopy. Nanospectroscopy, 2014, 1, .	0.7	4
89	Spectroscopic properties of photosystem II core complexes from Thermosynechococcus elongatus revealed by single-molecule experiments. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 773-781.	1.0	14
90	Enhanced single-molecule spectroscopy in highly confined optical fields: from λ/2-Fabry–Pérot resonators to plasmonic nano-antennas. Chemical Society Reviews, 2014, 43, 1263-1286.	38.1	34

#	Article	IF	CITATIONS
91	Synthesis and SHG Properties of Two New Cyanurates: Sr ₃ (O ₃ C ₃ N ₃) ₂ (SCY) and Eu ₃ (O ₃ C ₃ N ₃) ₂ (ECY). Inorganic Chemistry, 2014, 53, 12540-12545.	4.0	74
92	Manipulating the excitation transfer in Photosystem I using a Fabry–Perot metal resonator with optical subwavelength dimensions. Physical Chemistry Chemical Physics, 2014, 16, 6175-6181.	2.8	14
93	Dynamic control of Förster energy transfer in a photonic environment. Physical Chemistry Chemical Physics, 2014, 16, 12812-12817.	2.8	43
94	Morphology Related Photodegradation of Lowâ€Bandâ€Gap Polymer Blends. Advanced Energy Materials, 2014, 4, 1400497.	19.5	27
95	Topography-Correlated Confocal Raman Microscopy with Cylindrical Vector Beams for Probing Nanoscale Structural Order. Journal of Physical Chemistry Letters, 2014, 5, 1048-1054.	4.6	19
96	Tipâ€enhanced Raman spectroscopy – an interlaboratory reproducibility and comparison study. Journal of Raman Spectroscopy, 2014, 45, 22-31.	2.5	94
97	Parallel Fabrication of Plasmonic Nanocone Sensing Arrays. Small, 2013, 9, 3987-3992.	10.0	48
98	Au Nanotip as Luminescent Near-Field Probe. Nano Letters, 2013, 13, 3566-3570.	9.1	21
99	Multicolor Microscopy and Spectroscopy Reveals the Physics of the One-Photon Luminescence in Gold Nanorods. Journal of Physical Chemistry C, 2013, 117, 17870-17877.	3.1	63
100	Temperature Dependent Luminescence and Dephasing of Gold Nanorods. Journal of Physical Chemistry C, 2013, 117, 21476-21482.	3.1	23
101	Sensing dielectric media on the nanoscale with freely oriented gold nanorods. Physical Chemistry Chemical Physics, 2013, 15, 5407.	2.8	4
102	Compositional-asymmetry influenced non-linear optical processes of plasmonic nanoparticle dimers. Physical Chemistry Chemical Physics, 2013, 15, 8031.	2.8	17
103	Simulation of a metallic SNOM tip illuminated by a parabolic mirror. Optics Express, 2013, 21, 25926.	3.4	12
104	Nanosphere Lithography: Parallel Fabrication of Plasmonic Nanocone Sensing Arrays (Small 23/2013). Small, 2013, 9, 4088-4088.	10.0	3
105	Coupling of optical far fields into apertureless plasmonic nanofiber tips. Physical Review A, 2013, 88, .	2.5	9
106	Active control of radiative and nonradiative processes in coupled quantum systems embedded in a λ/2-microresonator. , 2013, , .		0
107	Plasmonic oligomers in cylindrical vector light beams. Beilstein Journal of Nanotechnology, 2013, 4, 57-65.	2.8	16
108	Local refractive index probed via the fluorescence decay of semiconductor quantum dots. Optics Express, 2012, 20, 3200.	3.4	19

#	Article	IF	CITATIONS
109	Publisher's Note: Radiative exciton recombination and defect luminescence observed in single silicon nanocrystals [Phys. Rev. B86, 125302 (2012)]. Physical Review B, 2012, 86, .	3.2	2
110	Electrodynamic Coupling of Electric Dipole Emitters to a Fluctuating Mode Density within a Nanocavity. Physical Review Letters, 2012, 108, 163002.	7.8	28
111	Exciton-plasmon coupling: Good or Bad?. , 2012, , .		Ο
112	Controlling the interaction of photons and single quantum systems in an optical microresonator. Proceedings of SPIE, 2012, , .	0.8	1
113	Measurement of Vibrational Modes in SingleSiO2Nanoparticles Using a Tunable Metal Resonator with Optical Subwavelength Dimensions. Physical Review Letters, 2012, 109, 223902.	7.8	21
114	Molecule-Dependent Plasmonic Enhancement of Fluorescence and Raman Scattering near Realistic Nanostructures. ACS Nano, 2012, 6, 9828-9836.	14.6	47
115	Radiative exciton recombination and defect luminescence observed in single silicon nanocrystals. Physical Review B, 2012, 86, .	3.2	55
116	How Molecular Mechanics Can Measure Nanoscopic Flow. Journal of Physical Chemistry C, 2012, 116, 14694-14700.	3.1	1
117	Assessing the plasmonics of gold nano-triangles with higher order laser modes. Beilstein Journal of Nanotechnology, 2012, 3, 674-683.	2.8	19
118	Spectro-Microscopy of Living Plant Cells. Molecular Plant, 2012, 5, 14-26.	8.3	27
119	Determination of the in vivo redox potential by one-wavelength spectro-microscopy of roGFP. Analytical and Bioanalytical Chemistry, 2012, 403, 737-744.	3.7	11
120	Polarizationâ€Dependent SERS at Differently Oriented Single Gold Nanorods. ChemPhysChem, 2012, 13, 952-958.	2.1	21
121	Three-dimensional photoluminescence mapping and emission anisotropy of single gold nanorods. Applied Physics Letters, 2012, 100, 263102.	3.3	42
122	Cylindrical vector beams for imaging and spectroscopy of single nanoparticles and single quantum systems. , 2012, , .		0
123	Simultaneous Spectroscopic and Topographic Near-Field Imaging of TiO ₂ Single Surface States and Interfacial Electronic Coupling. Nano Letters, 2011, 11, 1490-1494.	9.1	33
124	Excitation Isotropy of Single CdSe/ZnS Nanocrystals. Nano Letters, 2011, 11, 1131-1135.	9.1	52
125	Polarized Fluorescence from Single Stopcock Molecules at Channel Entrances of an All-Organic Hostâ^'Guest Compound. Chemistry of Materials, 2011, 23, 1088-1090.	6.7	6
126	Plasmonic Coupling of Bow Tie Antennas with Ag Nanowire. Nano Letters, 2011, 11, 1676-1680.	9.1	142

#	Article	IF	CITATIONS
127	Optical imaging of excited-state tautomerization in single molecules. Physical Chemistry Chemical Physics, 2011, 13, 1722.	2.8	50
128	Nanoscale Probing of Dielectric Interfaces with Single-Molecule Excitation Patterns and Radially Polarized Illumination. Journal of Physical Chemistry Letters, 2011, 2, 2152-2157.	4.6	11
129	Probing the Radiative Transition of Single Molecules with a Tunable Microresonator. Nano Letters, 2011, 11, 1700-1703.	9.1	56
130	Room temperature excitation spectroscopy of single quantum dots. Beilstein Journal of Nanotechnology, 2011, 2, 516-524.	2.8	10
131	Imaging of photoinduced tautomerism in single porphyrin molecules. , 2011, , .		0
132	Complete three-dimensional optical characterization of single gold nanorods. Proceedings of SPIE, 2011, , .	0.8	1
133	Fluorescent Chemosensors for Chromium(III) Ions and the Cr3+/Cr2+ Ratio. Bulletin of the Chemical Society of Japan, 2011, 84, 620-622.	3.2	5
134	Probing the Nanoscale Phase Separation and Photophysics Properties of Lowâ€Bandgap Polymer:Fullerene Blend Film by Nearâ€Field Spectroscopic Mapping. Small, 2011, 7, 2793-2800.	10.0	14
135	Dark proteins disturb multichromophore coupling in tetrameric fluorescent proteins. Journal of Biophotonics, 2011, 4, 114-121.	2.3	4
136	Light Microscopy with Doughnut Modes: A Concept to Detect, Characterize, and Manipulate Individual Nanoobjects. Angewandte Chemie - International Edition, 2011, 50, 5274-5293.	13.8	70
137	Optical trapping of gold nanoparticles using a radially polarized laser beam. , 2011, , .		4
138	Nanophotonics, nano-optics and nanospectroscopy. Beilstein Journal of Nanotechnology, 2011, 2, 499-500.	2.8	4
139	Fluorescence Imaging and Spectroscopy of Single Si and SiO[sub 2] Nanoparticles Using Confocal Microscopy. , 2010, , .		3
140	Microcavities: tailoring the optical properties of single quantum emitters. Analytical and Bioanalytical Chemistry, 2010, 396, 3-14.	3.7	25
141	Application of FLIM-FIDSAM for the in vivo analysis of hormone competence of different cell types. Analytical and Bioanalytical Chemistry, 2010, 398, 1919-1925.	3.7	13
142	Highâ€Resolution Spectroscopic Mapping of the Chemical Contrast from Nanometer Domains in P3HT:PCBM Organic Blend Films for Solarâ€Cell Applications. Advanced Functional Materials, 2010, 20, 492-499.	14.9	96
143	Surface- and tip-enhanced Raman spectroscopy of DNA. Spectroscopy, 2010, 24, 119-124.	0.8	21
144	Controlling the optical properties of quantum emitters by optical confinement in a tunable microcavity. Proceedings of SPIE, 2010, , .	0.8	0

#	Article	IF	CITATIONS
145	Fluorescence Intensity Decay Shape Analysis Microscopy (FIDSAM) for Quantitative and Sensitive Live-Cell Imaging: A Novel Technique for Fluorescence Microscopy of Endogenously Expressed Fusion-Proteins. Molecular Plant, 2010, 3, 555-562.	8.3	24
146	Three-Dimensional Orientation of Single Molecules in a Tunable Optical λ/2 Microresonator. Nano Letters, 2010, 10, 504-508.	9.1	22
147	Detecting the Same Individual Protein and Its Photoproducts via Fluorescence and Surface-Enhanced Raman Spectroscopic Imaging. Journal of Physical Chemistry A, 2010, 114, 143-150.	2.5	7
148	Controlling the interaction of photons and single molecules in a λ/2-microresonator. , 2010, , .		0
149	Controlling Fluorescence Resonance Energy Transfer (FRET) by optical confinement in a $\hat{\sf l} {\sf w}/2$ -microresonator. , 2010, , .		0
150	Novel Application of Fluorescence Lifetime and Fluorescence Microscopy Enables Quantitative Access to Subcellular Dynamics in Plant Cells. PLoS ONE, 2009, 4, e5716.	2.5	29
151	Controlling the optical properties of single molecules by optical confinement in a tunable microcavity. , 2009, , .		0
152	Single-molecule spectral dynamics at room temperature. Molecular Physics, 2009, 107, 1923-1942.	1.7	25
153	Controlling the optical properties of single molecules by optical confinement in a tunable microcavity. Proceedings of SPIE, 2009, , .	0.8	6
154	Parabolic mirrorâ€assisted tipâ€enhanced spectroscopic imaging for nonâ€transparent materials. Journal of Raman Spectroscopy, 2009, 40, 1371-1376.	2.5	76
155	Nanoscale characterization of single Au nanorods by confocal microscopy. Applied Surface Science, 2009, 255, 5391-5395.	6.1	14
156	Confocal microscopy and spectroscopy of defect photoluminescence in single SiO 2 nanoparticles. Proceedings of SPIE, 2009, , .	0.8	4
157	Confocal and near-field spectroscopic investigation of P3HT:PCBM organic blend film upon thermal annealing. Proceedings of SPIE, 2009, , .	0.8	1
158	Longitudinal localization of a fluorescent bead in a tunable microcavity with an accuracy of λ/60. Optics Letters, 2009, 34, 629.	3.3	14
159	Tuning the Fluorescence Emission Spectra of a Single Molecule with a Variable Optical Subwavelength Metal Microcavity. Physical Review Letters, 2009, 102, 073002.	7.8	65
160	Polarized Spectroscopy Studies of Single Molecules of Porphycenes: Tautomerism and Orientation. Journal of Physical Chemistry C, 2009, 113, 11514-11519.	3.1	45
161	Plasmonic gold structures with individually designed geometries. , 2009, , .		0
162	Imaging Nanometre‣ized Hot Spots on Smooth Au Films with Highâ€Resolution Tipâ€Enhanced Luminescence and Raman Nearâ€Field Optical Microscopy. ChemPhysChem, 2008, 9, 316-320.	2.1	80

#	Article	IF	CITATIONS
163	Spectral Versatility of Single Reef Coral Fluorescent Proteins Detected by Spectrallyâ€Resolved Single Molecule Spectroscopy. ChemPhysChem, 2008, 9, 310-315.	2.1	14
164	Coupled molecular excited states form unstable spatial modes in an optical λ/2-microresonator. Journal of Luminescence, 2008, 128, 803-806.	3.1	1
165	New Insights into the Photophysics of DsRed by Multiparameter Spectroscopy on Single Proteins. Journal of Physical Chemistry B, 2008, 112, 7669-7674.	2.6	29
166	High NA particle―and tipâ€enhanced nanoscale Raman spectroscopy with a parabolicâ€mirror microscope. Journal of Microscopy, 2008, 229, 247-253.	1.8	48
167	Three-dimensional optical antennas: Nanocones in an apertureless scanning near-field microscope. Applied Physics Letters, 2008, 93, 111114.	3.3	53
168	Tighter focusing with a parabolic mirror. Optics Letters, 2008, 33, 681.	3.3	114
169	Tight focusing of laser beams in a \hat{l} »/2-microcavity. Optics Express, 2008, 16, 9907.	3.4	28
170	Probing dielectric interfaces on the nanoscale with elastic scattering patterns of single gold nanorods. Optics Express, 2008, 16, 14635.	3.4	17
171	Plasmon-Enhanced Emission in Gold Nanoparticle Aggregates. Journal of Physical Chemistry C, 2008, 112, 3103-3108.	3.1	29
172	Controlling molecular broadband-emission by optical confinement. New Journal of Physics, 2008, 10, 123017.	2.9	19
173	Carbon nanotubes and optical confinement: controlling light emission in nanophotonic devices. Proceedings of SPIE, 2008, , .	0.8	3
174	The Histidine Kinase AHK5 Integrates Endogenous and Environmental Signals in Arabidopsis Guard Cells. PLoS ONE, 2008, 3, e2491.	2.5	138
175	Highly efficient, tunable single photon source based on single molecules. Applied Physics Letters, 2007, 90, 183122.	3.3	27
176	Arrays of Well-Defined Size-Tunable Metallic Nano-Cones for Plasmonic Applications. Materials Research Society Symposia Proceedings, 2007, 1055, 4.	0.1	2
177	Topology measurements of metal nanoparticles with 1 nm accuracy by Confocal Interference Scattering Microscopy. Optics Express, 2007, 15, 8532.	3.4	26
178	Controlling Nonequilibrium Phonon Populations in Single-Walled Carbon Nanotubes. Nano Letters, 2007, 7, 2239-2242.	9.1	13
179	Optical Fourier Transform Spectroscopy of Single-Walled Carbon Nanotubes and Single Molecules. ChemPhysChem, 2007, 8, 1049-1055.	2.1	7
180	Orientational Imaging of Subwavelength Au Particles with Higher Order Laser Modes. Nano Letters, 2006, 6, 1374-1378.	9.1	88

#	Article	IF	CITATIONS
181	Single Oligomer Spectra Probe Chromophore Nanoenvironments of Tetrameric Fluorescent Proteins. Journal of the American Chemical Society, 2006, 128, 8664-8670.	13.7	23
182	Near-field imaging and spectroscopy of electronic states in single-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 3146-3150.	1.5	16
183	Electrochemically deposited silver particles for surface enhanced Raman spectroscopy. Surface Science, 2005, 597, 102-109.	1.9	15
184	Optimal oxygen concentration for the detection of single indocarbocyanine molecules in a polymeric matrix. Chemical Physics Letters, 2005, 405, 352-356.	2.6	18
185	Surface- and Resonance-Enhanced Micro-Raman Spectroscopy of Xanthene Dyes: From the Ensemble to Single Molecules. ChemPhysChem, 2005, 6, 154-163.	2.1	97
186	Single Carbon Nanotube Optical Spectroscopy. ChemPhysChem, 2005, 6, 577-582.	2.1	82
187	Correlation of Emission Intensity and Spectral Diffusion in Room Temperature Single-Molecule Spectroscopy. ChemPhysChem, 2005, 6, 1242-1246.	2.1	21
188	Microcavity-Controlled Single-Molecule Fluorescence. ChemPhysChem, 2005, 6, 2190-2196.	2.1	56
189	Electrochemical preparation of silver and gold nanoparticles: Characterization by confocal and surface enhanced Raman microscopy. Surface Science, 2005, 597, 119-126.	1.9	58
190	Exponential Decay Lifetimes of Excitons in Individual Single-Walled Carbon Nanotubes. Physical Review Letters, 2005, 95, 197401.	7.8	203
191	Imaging of Tautomerism in a Single Molecule. Journal of the American Chemical Society, 2005, 127, 5302-5303.	13.7	74
192	Nanoscale Optical Imaging of Excitons in Single-Walled Carbon Nanotubes. Nano Letters, 2005, 5, 2310-2313.	9.1	100
193	Surface and resonance enhanced micro-Raman spectroscopy of xanthene dyes at the single-molecule level. Journal of Luminescence, 2004, 107, 13-20.	3.1	29
194	Two and multilevel spectral switching of single molecules in polystyrene at room temperature. Chemical Physics, 2004, 300, 153-164.	1.9	27
195	Room Temperature Spectrally Resolved Single-Molecule Spectroscopy Reveals New Spectral Forms and Photophysical Versatility of Aequorea Green Fluorescent Protein Variants. Biophysical Journal, 2004, 87, 4172-4179.	0.5	39
196	Nearâ€field and confocal surfaceâ€enhanced resonance Raman spectroscopy at cryogenic temperatures. Journal of Microscopy, 2003, 209, 162-166.	1.8	20
197	Probing highly confined optical fields in the focal region of a high NA parabolic mirror with subwavelength spatial resolution. Journal of Microscopy, 2003, 210, 203-208.	1.8	42
198	Double-pulse technique as an electrochemical tool for controlling the preparation of metallic nanoparticles. Electrochimica Acta, 2002, 48, 377-386.	5.2	137

#	Article	IF	CITATIONS
199	Single molecule fluorescence spectroscopy of mutants of the Discosoma red fluorescent protein DsRed. Chemical Physics Letters, 2002, 362, 355-361.	2.6	18
200	A high numerical aperture parabolic mirror as imaging device for confocal microscopy. Optics Express, 2001, 8, 458.	3.4	148
201	Confocal microscopy with a high numerical aperture parabolic mirror. Optics Express, 2001, 9, 637.	3.4	54
202	Discrimination and Interpretation of Spectral Phenomena by Room-Temperature Single-Molecule Spectroscopy. Journal of Physical Chemistry A, 2001, 105, 6983-6990.	2.5	63
203	Orientation of Fluorescent Dyes in the Nano Channels of Zeolite L. Journal of Physical Chemistry B, 2001, 105, 25-35.	2.6	118
204	Well-shaped fibre tips by pulling with a foil heater. Journal of Microscopy, 2001, 202, 182-187.	1.8	7
205	Nanoscale surface-enhanced resonance Raman scattering spectroscopy of single molecules on isolated silver clusters. Journal of Luminescence, 2001, 94-95, 147-152.	3.1	54
206	Intrinsic conformer jumps observed by single molecule spectroscopy in real time. Chemical Physics Letters, 2000, 325, 196-202.	2.6	44
207	Single molecule spectral dynamics at room temperature. Journal of Luminescence, 2000, 86, 181-187.	3.1	9
208	Surface-Enhanced Raman Scattering Spectroscopy of Single Carbon Domains on Individual Ag Nanoparticles on a 25 ms Time Scale. Journal of the American Chemical Society, 2000, 122, 5409-5410.	13.7	80
209	Nanocrystalline structures of metal deposits studied by locally resolved Raman microscopy. Electrochimica Acta, 1999, 44, 3659-3666.	5.2	13
210	Dynamics of single dye molecules observed by confocal imaging and spectroscopy. Cytometry, 1999, 36, 217-223.	1.8	27
211	Direct imaging single molecule diffusion in a solid polymer host. Chemical Physics Letters, 1996, 263, 721-726.	2.6	58
212	Super-resolution imaging and detection of fluorescence from single molecules by scanning near-field optical microscopy. Optical Engineering, 1995, 34, 2324.	1.0	58
213	Design and construction of a versatile scanning nearâ€field optical microscope for fluorescence imaging of single molecules. Review of Scientific Instruments, 1995, 66, 3569-3575.	1.3	32
214	Phase transitions in mixed Langmuir films of 8CB and stearic acid. Journal of Chemical Physics, 1994, 101, 4365-4372.	3.0	26
215	Electric-field-modulated photon echoes in Pr^3+:YAlO_3. Optics Letters, 1994, 19, 987.	3.3	13
216	Direct measurement of standing evanescent waves with a photon-scanning tunneling microscope. Applied Optics, 1994, 33, 7995.	2.1	57

#	Article	IF	CITATIONS
217	Measurement of the Stark effect with subhomogeneous linewidth resolution inEu3+:YAlO3with the use of photon-echo modulation. Physical Review B, 1992, 46, 5912-5916.	3.2	38
218	Frequency-domain measurements of spectral hole patterns burned with phase-coherent pulses. Chemical Physics Letters, 1992, 189, 60-66.	2.6	10
219	Spectral hole-burning and stark effect: a centrosymmetric molecule in polymers of different dielectric constants. Chemical Physics Letters, 1992, 190, 75-82.	2.6	18
220	A spectral hole burning study of BaFCl0.5Br0.5:Sm2+. Journal of Luminescence, 1991, 50, 89-100.	3.1	43
221	Spectral hole-burning and holography. Journal of Luminescence, 1991, 48-49, 329-334.	3.1	5
222	Spectral hole-burning and holography. Journal of Chemical Sciences, 1991, 103, 375-381.	1.5	0
223	Spectral hole-burning and holography. Journal of Luminescence, 1990, 45, 320-322.	3.1	0
224	Spectral hole burning and holography. II. Diffraction properties of two spectrally adjacent holograms. Journal of Chemical Physics, 1990, 92, 2748-2755.	3.0	36
225	Spectral hole burning and holography. III. Electric field induced interference of holograms. Journal of Chemical Physics, 1990, 93, 2299-2307.	3.0	21
226	Spectral holeâ€burning and holography. I. Transmission and holographic detection of spectral holes. Journal of Chemical Physics, 1989, 91, 6728-6736.	3.0	58
227	Spectral hole burning: Electric field effect on resorufin, oxazine-4 and cresylviolet in polyvinylbutyral. Journal of Luminescence, 1988, 39, 181-187.	3.1	48
228	Spectral hole burning: High resolution optical spectroscopy and image storage. Journal of Luminescence, 1988, 40-41, 823-824.	3.1	1
229	Spectral hole burning: High-resolution optical spectroscopy and image storage. Journal of Luminescence, 1987, 38, 37-39.	3.1	8
230	Hole Burning, Stark-Effect and Holographic Image Storage. Japanese Journal of Applied Physics, 1987, 26, 233.	1.5	10
231	Spectral hole burning in glasses and polymer films: the Stark effect. The Journal of Physical Chemistry, 1986, 90, 6777-6785.	2.9	150
232	Holographic detection of photochemical holes. Chemical Physics, 1985, 93, 157-162.	1.9	73
233	Revealing local structural properties of an atomically thin MoSe ₂ surface using optical microscopy. Beilstein Journal of Nanotechnology, 0, 13, 572-581.	2.8	0