Beata Morawiec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2484360/publications.pdf

Version: 2024-02-01

257450 276875 67 1,823 24 41 h-index citations g-index papers 68 68 68 2215 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Prospective Validation of the 0/1-h Algorithm for Early Diagnosis of Myocardial Infarction. Journal of the American College of Cardiology, 2018, 72, 620-632.	2.8	147
2	Direct Comparison of 4 Very Early Rule-Out Strategies for Acute Myocardial Infarction Using High-Sensitivity Cardiac Troponin I. Circulation, 2017, 135, 1597-1611.	1.6	138
3	0/1-Hour Triage Algorithm for Myocardial Infarction in Patients With Renal Dysfunction. Circulation, 2018, 137, 436-451.	1.6	110
4	Clinical Validation of a Novel High-Sensitivity Cardiac Troponin I Assay for Early Diagnosis of Acute Myocardial Infarction. Clinical Chemistry, 2018, 64, 1347-1360.	3.2	110
5	Effect of Definition on Incidence and Prognosis of Type 2 Myocardial Infarction. Journal of the American College of Cardiology, 2017, 70, 1558-1568.	2.8	94
6	Early Diagnosis of Myocardial Infarction With Point-of-Care High-Sensitivity Cardiac Troponin I. Journal of the American College of Cardiology, 2020, 75, 1111-1124.	2.8	94
7	Impact of age on the performance of the ESC 0/1h-algorithms for early diagnosis of myocardial infarction. European Heart Journal, 2018, 39, 3780-3794.	2.2	78
8	Clinical Effect of Sex-Specific Cutoff Values of High-Sensitivity Cardiac Troponin T in Suspected Myocardial Infarction. JAMA Cardiology, 2016, 1, 912.	6.1	75
9	Direct Comparison of Cardiac Myosin-Binding Protein C With Cardiac Troponins for the Early Diagnosis of Acute Myocardial Infarction. Circulation, 2017, 136, 1495-1508.	1.6	63
10	High-Sensitivity Cardiac Troponin I Assay for Early Diagnosis of Acute Myocardial Infarction. Clinical Chemistry, 2019, 65, 893-904.	3.2	59
11	Combining High-Sensitivity Cardiac Troponin I and Cardiac Troponin T in the Early Diagnosis of Acute Myocardial Infarction. Circulation, 2018, 138, 989-999.	1.6	56
12	Circadian rhythm of blood cardiac troponin T concentration. Clinical Research in Cardiology, 2017, 106, 1026-1032.	3.3	49
13	Direct Admission Versus Interhospital Transfer for Primary Percutaneous Coronary Intervention in ST-Segment Elevation Myocardial Infarction. JACC: Cardiovascular Interventions, 2017, 10, 438-447.	2.9	48
14	Direct Comparison of the $0/1h$ and $0/3h$ Algorithms for Early Rule-Out of Acute Myocardial Infarction. Circulation, 2018, 137, 2536-2538.	1.6	48
15	Comparison of fourteen rule-out strategies for acute myocardial infarction. International Journal of Cardiology, 2019, 283, 41-47.	1.7	45
16	Incidence and outcomes of unstable angina compared with non-ST-elevation myocardial infarction. Heart, 2019, 105, 1423-1431.	2.9	42
17	Clinical Use of a New High-Sensitivity Cardiac Troponin I Assay in Patients with Suspected Myocardial Infarction. Clinical Chemistry, 2019, 65, 1426-1436.	3.2	41
18	B-Type Natriuretic Peptides and Cardiac Troponins for Diagnosis and Risk-Stratification of Syncope. Circulation, 2019, 139, 2403-2418.	1.6	40

#	Article	IF	Citations
19	Early diagnosis of acute myocardial infarction in patients with mild elevations of cardiac troponin. Clinical Research in Cardiology, 2017, 106, 457-467.	3.3	35
20	Myocardial Infarct Size and Mortality Depend on the Time of Dayâ€"A Large Multicenter Study. PLoS ONE, 2015, 10, e0119157.	2.5	32
21	Predicting Major Adverse Events in Patients With Acute Myocardial Infarction. Journal of the American College of Cardiology, 2019, 74, 842-854.	2.8	28
22	Copeptin. Journal of Cardiovascular Medicine, 2013, 14, 19-25.	1.5	27
23	Modified HEART Score and High-Sensitivity Cardiac Troponin in Patients With Suspected Acute Myocardial Infarction. Journal of the American College of Cardiology, 2019, 73, 873-875.	2.8	26
24	Novel Criteria for the Observe-Zone of the ESC 0/1h-hs-cTnT Algorithm. Circulation, 2021, 144, 773-787.	1.6	25
25	Diagnosis of acute myocardial infarction in the presence of left bundle branch block. Heart, 2019, 105, 1559-1567.	2.9	24
26	Cardiovascular Biomarkers in the Early Discrimination of Type 2 Myocardial Infarction. JAMA Cardiology, 2021, 6, 771.	6.1	24
27	Prospective validation of prognostic and diagnostic syncope scores in the emergency department. International Journal of Cardiology, 2018, 269, 114-121.	1.7	18
28	Prohormones in the Early Diagnosis of Cardiac Syncope. Journal of the American Heart Association, 2017, 6, .	3.7	16
29	Diagnostic Contribution of Cardiac Magnetic Resonance in Patients with Acute Coronary Syndrome and Culprit-Free Angiograms. Medical Science Monitor, 2015, 21, 171-180.	1.1	16
30	Effect of a Proposed Modification of the Type 1 and Type 2 Myocardial Infarction Definition on Incidence and Prognosis. Circulation, 2020, 142, 2083-2085.	1.6	14
31	Relationship between time of day and periprocedural myocardial infarction after elective angioplasty. Chronobiology International, 2014, 31, 206-213.	2.0	13
32	Diagnostic and prognostic value of QRS duration and QTc interval in patients with suspected myocardial infarction. Cardiology Journal, 2018, 25, 601-610.	1.2	13
33	Characteristics and Outcomes of Type 2 Myocardial Infarction. JAMA Cardiology, 2022, 7, 427.	6.1	12
34	Comparison of Coronary Artery Bypass Grafting with Percutaneous Coronary Intervention for Unprotected Left Main Coronary Artery Disease. Yonsei Medical Journal, 2012, 53, 58.	2.2	10
35	Copeptin as a Prognostic Marker in Acute Chest Pain and Suspected Acute Coronary Syndrome. Disease Markers, 2018, 2018, 1-8.	1.3	10
36	The Role of Parathyroid Hormone and Vitamin D Serum Concentrations in Patients with Cardiovascular Diseases. Disease Markers, 2018, 2018, 1-9.	1.3	10

#	Article	IF	CITATIONS
37	Long-Term Percutaneous Coronary Intervention Outcomes of Patients with Chronic Kidney Disease in the Era of Second-Generation Drug-Eluting Stents. CardioRenal Medicine, 2017, 7, 85-95.	1.9	9
38	Performance of the ESC 0/2h-algorithm using high-sensitivity cardiac troponin I in the early diagnosis of myocardial infarction. American Heart Journal, 2021, 242, 132-137.	2.7	9
39	Comparison of First- and Second-Generation Drug-Eluting Stents in an All-Comer Population of Patients with Diabetes Mellitus (from Katowice-Zabrze Registry). Medical Science Monitor, 2015, 21, 3261-3269.	1.1	9
40	First- Versus Second-Generation Drug-Eluting Stents in Acute Coronary Syndromes (Katowice-Zabrze) Tj ETQc	0 0 0 o gBT /0	Overlock 10 T
41	Role of copeptin in dual–cardiac marker strategy for patients with chest pain presented to ED. American Journal of Emergency Medicine, 2015, 33, 1732-1736.	1.6	7
42	Circadian, weekly, seasonal, and temperature-dependent patterns of syncope aetiology in patients at increased risk of cardiac syncope. Europace, 2019, 21, 511-521.	1.7	7
43	Early Diagnosis of Myocardial Infarction in Patients With a History of Coronary Artery Bypass Grafting. Journal of the American College of Cardiology, 2019, 74, 587-589.	2.8	7
44	Predicting Acute Myocardial Infarction with a Single Blood Draw. Clinical Chemistry, 2019, 65, 437-450.	3.2	7
45	Annual Trends in Total Ischemic Time and One-Year Fatalities: The Paradox of STEMI Network Performance Assessment. Journal of Clinical Medicine, 2019, 8, 78.	2.4	7
46	Use of cardiac troponin in the early diagnosis of acute myocardial infarction. Kardiologia Polska, 2020, 78, 1099-1106.	0.6	7
47	Performance of highly sensitive cardiac troponin T assay to detect ischaemia at PET-CT in low-risk patients with acute coronary syndrome: a prospective observational study. BMJ Open, 2017, 7, e014655.	1.9	6
48	Gender differences and bleeding complications after PCI on first and second generation DES. Scandinavian Cardiovascular Journal, 2017, 51, 53-60.	1.2	6
49	Effect of Acute Coronary Syndrome Probability on Diagnostic and Prognostic Performance of High-Sensitivity Cardiac Troponin. Clinical Chemistry, 2018, 64, 515-525.	3.2	5
50	Results of PCI with Drug-Eluting Stents in an All-Comer Population Depending on Vessel Diameter. Journal of Clinical Medicine, 2020, 9, 524.	2.4	5
51	Impact of anaemia on long-term outcomes in patients treated with first- and second-generation drug-eluting stents; Katowice-Zabrze Registry. Kardiologia Polska, 2016, 74, 561-569.	0.6	5
52	A 0/1h-algorithm using cardiac myosin-binding protein C for early diagnosis of myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2022, 11, 325-335.	1.0	4
53	Combined Use of High-Sensitive Cardiac Troponin, Copeptin, and the Modified HEART Score for Rapid Evaluation of Chest Pain Patients. Disease Markers, 2018, 2018, 1-7.	1.3	3
54	Diagnostic and prognostic value of ST-segment deviation scores in suspected acute myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2020, 9, 857-868.	1.0	3

#	Article	IF	CITATIONS
55	The influence of obstructive sleep breathing disturbances on echocardiographic and pulmonary haemodynamic parameters in patients with dilated cardiomyopathy. Kardiologia Polska, 2016, 74, 135-141.	0.6	3
56	Performance of the American Heart Association/American College of Cardiology/Heart Rhythm Society versus European Society of Cardiology Guideline Criteria for Hospital Admission of Patients with Syncope. Heart Rhythm, 2022, , .	0.7	3
57	COPeptin for diagnosis and prediction in Acute Coronary Syndrome (COPACS) Study: design and objectives. Postepy W Kardiologii Interwencyjnej, 2016, 4, 360-363.	0.2	2
58	Response by Kaier et al to Letter Regarding Article, "Direct Comparison of Cardiac Myosin-Binding Protein C With Cardiac Troponins for the Early Diagnosis of Acute Myocardial Infarction― Circulation, 2018, 138, 544-545.	1.6	2
59	First report on biventricular stress cardiomyopathy with concomitant atrio-ventricular high-grade conduction disorder. Cardiology Journal, 2017, 24, 98-100.	1.2	2
60	Real-Life Outcomes of Coronary Bifurcation Stenting in Acute Myocardial Infarction (Zabrze–Opole) Tj ETQq0	0 0 rgBT /	Overlock 10 1
61	Second-generation drug-eluting stents in the elderly patients with acute coronary syndrome: the in-hospital and 12-month follow-up of the all-comer registry. Aging Clinical and Experimental Research, 2017, 29, 885-893.	2.9	1
62	Utility of Echocardiography in Patients With Suspected Acute Myocardial Infarction and Left Bundleâ€Branch Block. Journal of the American Heart Association, 2021, 10, e021262.	3.7	1
63	Ideal coronary stent: development, characteristics, and vessel size impact. Annales Academiae Medicae Silesiensis, 2020, 74, 191-197.	0.1	1
64	Optimal invasive strategy for multivessel coronary artery disease in elderly diabetic patients. Current Medical Research and Opinion, 2016, 32, 1871-1872.	1.9	0
65	Coronary bifurcations – anatomy, physiology and treatment with selected aspects of left main stem bifurcation. Annales Academiae Medicae Silesiensis, 2021, 75, 24-32.	0.1	O
66	Main problems associated with obtaining informed consent of cardiologic patients for participation in scientific studies: Focus on acute care. Clinical Research and Trials, $2016, 2, .$	0.1	0
67	How should I treat a coronary artery fistula complicated with myocarditis – PCI or surgery?. EuroIntervention, 2016, 12, e291-e294.	3.2	О