List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2484281/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tunable Aziridinium Ylide Reactivity: Noncovalent Interactions Enable Divergent Product Outcomes. ACS Catalysis, 2022, 12, 1572-1580.	5.5	10
2	Iron pentacarbonyl ligands on silver scorpionates. Chemical Communications, 2022, 58, 3222-3225.	2.2	7
3	Rücktitelbild: Siteâ€Specific Reductionâ€Induced Hydrogenation of a Helical Bilayer Nanographene with K and Rb Metals: Electron Multiaddition and Selective Rb ⁺ Complexation (Angew. Chem.) Tj ETQq1 1	0. 7& 4314	rg®T /Over
4	Understanding the reactivity of frustrated Lewis pairs with the help of the activation strain model–energy decomposition analysis method. Chemical Communications, 2022, 58, 4931-4940.	2.2	21
5	A neutral, acyclic, borataalkene-like ligand for group 11 metals: L- and Z-type ligands side by side. Chemical Communications, 2022, 58, 3905-3908.	2.2	3
6	Stepwise reduction of a corannulene-based helical molecular nanographene with Na metal. Chemical Communications, 2022, 58, 5574-5577.	2.2	11
7	Understanding the catalysis by bis-selenonium cations as bidentate chalcogen bond donors. , 2022, 1, 100008.		7
8	Bonding situation in isolable silver(I) carbonyl complexes of the Scorpionates. Journal of Computational Chemistry, 2022, 43, 796-803.	1.5	3
9	Siteâ€Specific Reductionâ€Induced Hydrogenation of a Helical Bilayer Nanographene with K and Rb Metals: Electron Multiaddition and Selective Rb ⁺ Complexation. Angewandte Chemie, 2022, 134, .	1.6	4
10	Siteâ€Specific Reductionâ€Induced Hydrogenation of a Helical Bilayer Nanographene with K and Rb Metals: Electron Multiaddition and Selective Rb ⁺ Complexation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
11	Aromaticity-enhanced reactivity of geminal frustrated Lewis pairs. Chemical Communications, 2022, 58, 6801-6804.	2.2	6
12	Origin of Catalysis and Selectivity in Lewis Acid-Promoted Diels–Alder Reactions Involving Vinylazaarenes as Dienophiles. Journal of Organic Chemistry, 2022, 87, 9307-9315.	1.7	3
13	Bifunctional Hydrogen Bond Donorâ€Catalyzed Diels–Alder Reactions: Origin of Stereoselectivity and Rate Enhancement. Chemistry - A European Journal, 2021, 27, 5180-5190.	1.7	37
14	Understanding the Câ^'F Bond Activation Mediated by Frustrated Lewis Pairs: Crucial Role of Nonâ€covalent Interactions. Chemistry - A European Journal, 2021, 27, 3823-3831.	1.7	26
15	Catalytic conversion of alkynes to $\hat{I}\pm$ -vinyl sulfides mediated by carbene-linker-carbene (CXC) rhodium and iridium complexes. Catalysis Science and Technology, 2021, 11, 516-523.	2.1	7
16	Iron-promoted dealkylative carbene aminocyclization of δ-arylamino-α-diazoesters. Dalton Transactions, 2021, 50, 2167-2176.	1.6	1
17	Origin of the Ir–Si bond shortening in Ir–NSiN complexes. Dalton Transactions, 2021, 50, 5951-5959.	1.6	4

18 Quantifying aromaticity according to the energetic criterion. , 2021, , 195-235.

1

#	Article	IF	CITATIONS
19	Reactions of Late Firstâ€Row Transition Metal (Feâ€Zn) Dichlorides with a PGeP Pincer Germylene. Chemistry - A European Journal, 2021, 27, 4985-4992.	1.7	16
20	Assembly of a Dihydrideborate and Two Aryl Nitriles to Form a C,N,N′-Pincer Ligand Coordinated to Osmium. Organometallics, 2021, 40, 635-642.	1.1	4
21	The Pauli Repulsion-Lowering Concept in Catalysis. Accounts of Chemical Research, 2021, 54, 1972-1981.	7.6	75
22	Nature of the Hydrogen Bond Enhanced Halogen Bond. Molecules, 2021, 26, 1885.	1.7	5
23	Catalysis by Bidentate Iodine(III)-Based Halogen Donors: Surpassing the Activity of Strong Lewis Acids. Journal of Organic Chemistry, 2021, 86, 5317-5326.	1.7	41
24	Highly Enantioselective Cobaltâ€Catalyzed (3+2) Cycloadditions of Alkynylidenecyclopropanes. Angewandte Chemie - International Edition, 2021, 60, 8182-8188.	7.2	17
25	Highly Enantioselective Cobaltâ€Catalyzed (3+2) Cycloadditions of Alkynylidenecyclopropanes. Angewandte Chemie, 2021, 133, 8263-8269.	1.6	7
26	Metal–CO Bonding in Mononuclear Transition Metal Carbonyl Complexes. Jacs Au, 2021, 1, 623-645.	3.6	57
27	Reactivity of [Pt(P ^{<i>t</i>} Bu ₃) ₂] with Zinc(I/II) Compounds: Bimetallic Adducts, Zn–Zn Bond Cleavage, and Cooperative Reactivity. Organometallics, 2021, 40, 1113-1119.	1.1	18
28	Lewis Acid atalyzed Dielsâ€Alder Reactions: Reactivity Trends across the Periodic Table. Chemistry - A European Journal, 2021, 27, 10610-10620.	1.7	26
29	Reactivity of Stabilized Vinyldiazo Compounds toward Alkenyl- and Alkynylsilanes under Gold Catalysis: Regio- and Stereoselective Synthesis of Skipped Dienes and Enynes. Organic Letters, 2021, 23, 4452-4456.	2.4	8
30	Scope and Mechanistic Investigations of Pd-Catalyzed Coupling/Cyclization and Cycloisomerization of Allenyl Malonates. ACS Catalysis, 2021, 11, 9485-9494.	5.5	4
31	Helically Arranged Chiral Molecular Nanographenes. Journal of the American Chemical Society, 2021, 143, 11864-11870.	6.6	33
32	lron(II) and Copper(I) Control the Total Regioselectivity in the Hydrobromination of Alkenes. Organic Letters, 2021, 23, 6105-6109.	2.4	4
33	Factors Controlling the Aluminum(I)―meta â€Selective Câ^'H Activation in Arenes. Chemistry - A European Journal, 2021, 27, 12422-12429.	1.7	8
34	Gold atalyzed Reaction of Propargyl Esters and Alkynylsilanes: Synthesis of Vinylallene Derivatives through a Twofold 1,2â€Rearrangement. Angewandte Chemie, 2021, 133, 25462.	1.6	0
35	Regioselective Monoborylation of Spirocyclobutenes. Organic Letters, 2021, 23, 7434-7438.	2.4	25
36	Goldâ€Catalyzed Reaction of Propargyl Esters and Alkynylsilanes: Synthesis of Vinylallene Derivatives through a Twofold 1,2â€Rearrangement. Angewandte Chemie - International Edition, 2021, 60, 25258-25262.	7.2	8

#	Article	IF	CITATIONS
37	A dicoordinate gold(<scp>i</scp>)–ethylene complex. Chemical Communications, 2021, 57, 9280-9283.	2.2	12
38	Stannylenes based on pyrrole-phosphane and dipyrromethane-diphosphane scaffolds: syntheses and behavior as precursors to PSnP pincer palladium(<scp>ii</scp>), palladium(0) and gold(<scp>i</scp>) complexes. Dalton Transactions, 2021, 50, 16122-16132.	1.6	7
39	Rationalizing the influence of α-cationic phospholes on π-catalysis. Dalton Transactions, 2021, 50, 18036-18043.	1.6	3
40	Nature of Câ''lâ‹â‹ï€ Halogen Bonding and its Role in Organocatalysis. European Journal of Organic Chemistry, 2021, 2021, 6102-6110.	1.2	8
41	Transition metal-free cyclobutene rearrangement in fused naphthalen-1-ones: controlled access to functionalized quinones. Chemical Communications, 2020, 56, 1290-1293.	2.2	2
42	Homo and Hetero Molecular 3D Nanographenes Employing a Cyclooctatetraene Scaffold. Journal of the American Chemical Society, 2020, 142, 4162-4172.	6.6	68
43	The Valence Orbitals of the Alkalineâ€Earth Atoms. Chemistry - A European Journal, 2020, 26, 14194-14210.	1.7	39
44	Chelated Fischer carbene complexes of annulated thiophenes: synthesis, structure and electrochemistry. Dalton Transactions, 2020, 49, 15339-15354.	1.6	2
45	Dihydroboration of Alkyl Nitriles Catalyzed by an Osmium-Polyhydride: Scope, Kinetics, and Mechanism. Organometallics, 2020, 39, 3864-3872.	1.1	16
46	Synthesis, antioxidant properties and neuroprotection of α-phenyl-tert-butylnitrone derived HomoBisNitrones in in vitro and in vivo ischemia models. Scientific Reports, 2020, 10, 14150.	1.6	13
47	Comment on "Topological Analysis of the Electron Density in the Carbonyl Complexes M(CO) ₈ (M = Ca, Sr, Ba)― Organometallics, 2020, 39, 2956-2958.	1.1	6
48	AgNO3·SiO2: Convenient AgNPs source for the sustainable hydrofunctionalization of allenyl-indoles using heterogeneous catalysis. Journal of Catalysis, 2020, 389, 432-439.	3.1	6
49	Synthesis and Photophysical Properties of Tâ€Shaped Coinageâ€Metal Complexes. Chemistry - A European Journal, 2020, 26, 6993-6998.	1.7	30
50	Intermolecular [3+3] ring expansion of aziridines to dehydropiperi-dines through the intermediacy of aziridinium ylides. Nature Communications, 2020, 11, 1273.	5.8	25
51	Understanding the reactivity of polycyclic aromatic hydrocarbons and related compounds. Chemical Science, 2020, 11, 3769-3779.	3.7	60
52	Biomimetic 2-Imino-Nazarov Cyclizations via Eneallene Aziridination. Journal of the American Chemical Society, 2020, 142, 5568-5573.	6.6	13
53	Origin of rate enhancement and asynchronicity in iminium catalyzed Diels–Alder reactions. Chemical Science, 2020, 11, 8105-8112.	3.7	55
54	Unraveling the Selectivity Patterns in Phosphine-Catalyzed Annulations of Azomethine Imines and Allenoates. Journal of Organic Chemistry, 2020, 85, 9272-9280.	1.7	12

#	Article	IF	CITATIONS
55	How Lewis Acids Catalyze Diels–Alder Reactions. Angewandte Chemie, 2020, 132, 6260-6265.	1.6	42
56	How Lewis Acids Catalyze Diels–Alder Reactions. Angewandte Chemie - International Edition, 2020, 59, 6201-6206.	7.2	113
57	Rationalizing the Al I â€Promoted Oxidative Addition of Câ^'C Versus Câ^'H Bonds in Arenes. Chemistry - A European Journal, 2020, 26, 11806-11813.	1.7	18
58	Bimetallic scorpionate-based helical organoaluminum complexes for efficient carbon dioxide fixation into a variety of cyclic carbonates. Catalysis Science and Technology, 2020, 10, 3265-3278.	2.1	27
59	Organoseleno-Catalyzed Synthesis of α,β-Unsaturated α′-Alkoxy Ketones from Allenes Enabled by Se···O Interactions. Organic Letters, 2020, 22, 3979-3984.	2.4	9
60	Rh-Catalyzed Aziridine Ring Expansions to Dehydropiperazines. Organic Letters, 2020, 22, 3637-3641.	2.4	14
61	Characterization of a CholesteroNitrone (ISQ-201), a Novel Drug Candidate for the Treatment of Ischemic Stroke. Antioxidants, 2020, 9, 291.	2.2	9
62	Understanding the role of frustrated Lewis pairs as ligands in transition metal-catalyzed reactions. Dalton Transactions, 2020, 49, 3129-3137.	1.6	10
63	A Quantitative Approach to Understanding Reactivity in Organometallic Chemistry. Topics in Organometallic Chemistry, 2020, , 107-130.	0.7	0
64	A Germylene Supported by Two 2â€Pyrrolylphosphane Groups as Precursor to PGeP Pincer Squareâ€Planar Groupâ€10 Metal(II) and T‧haped Gold(I) Complexes. Chemistry - A European Journal, 2019, 25, 12423-1243	0. ^{1.7}	26
65	A dipyrromethane-based diphosphane–germylene as precursor to tetrahedral copper(<scp>i</scp>) and T-shaped silver(<scp>i</scp>) and gold(<scp>i</scp>) PGeP pincer complexes. Dalton Transactions, 2019, 48, 13273-13280.	1.6	32
66	Understanding the Reactivity of Neutral Geminal Group 14 Element/Phosphorus Frustrated Lewis Pairs. Journal of Physical Chemistry A, 2019, 123, 10095-10101.	1.1	20
67	Site Selectivity in Pd-Catalyzed Reactions of α-Diazo-α-(methoxycarbonyl)acetamides: Effects of Catalysts and Substrate Substitution in the Synthesis of Oxindoles and β-Lactams. Molecules, 2019, 24, 3551.	1.7	5
68	Aromaticity can enhance the reactivity of P-donor/borole frustrated Lewis pairs. Chemical Communications, 2019, 55, 675-678.	2.2	33
69	Grubbs catalysts in intramolecular carbene C(sp ³)–H insertion reactions from α-diazoesters. Chemical Communications, 2019, 55, 1160-1163.	2.2	8
70	Carbones and Heavier Ylidones (EL ₂) in Frustrated Lewis Pair Chemistry: Influence of the Nature of EL ₂ on Dihydrogen Activation. Inorganic Chemistry, 2019, 58, 7828-7836.	1.9	26
71	Regioselectivity in Diels–Alder Cycloadditions of #6094C68 Fullerene with a Triplet Ground State. Journal of Organic Chemistry, 2019, 84, 9017-9024.	1.7	7
72	Reduction of Benzonitriles via Osmium–Azavinylidene Intermediates Bearing Nucleophilic and Electrophilic Centers. Inorganic Chemistry, 2019, 58, 8673-8684.	1.9	15

#	Article	IF	CITATIONS
73	Impact of C=C/Bâ^'N Replacement on the Diels–Alder Reactivity of Curved Polycyclic Aromatic Hydrocarbons. Chemistry - A European Journal, 2019, 25, 9771-9779.	1.7	7
74	Palladium―and Rutheniumâ€Catalyzed Intramolecular Carbene C Ar â^'H Functionalization of γâ€Aminoâ€Î±â€diazoesters for the Synthesis of Tetrahydroquinolines. Chemistry - A European Journal, 2019, 25, 10239-10245.	1.7	11
75	Wie Dihalogene Michaelâ€Additionsreaktionen katalysieren. Angewandte Chemie, 2019, 131, 9015-9020.	1.6	20
76	How Dihalogens Catalyze Michael Addition Reactions. Angewandte Chemie - International Edition, 2019, 58, 8922-8926.	7.2	90
77	Iridium-Promoted B–B Bond Activation: Preparation and X-ray Diffraction Analysis of a mer-Tris(boryl) Complex. Inorganic Chemistry, 2019, 58, 4712-4717.	1.9	20
78	Factors Controlling the Reactivity of Strained-Alkyne Embedded Cycloparaphenylenes. Journal of Organic Chemistry, 2019, 84, 4330-4337.	1.7	9
79	Bent Phosphaallenes With "Hidden―Lone Pairs as Ligands. Chemistry - A European Journal, 2019, 25, 7912-7920.	1.7	2
80	Understanding exo-selective Diels–Alder reactions involving Fischer-type carbene complexes. Organic and Biomolecular Chemistry, 2019, 17, 2985-2991.	1.5	4
81	The Diels–Alder Reaction from the EDAâ€NOCV Perspective: A Reâ€Examination of the Frontier Molecular Orbital Model. European Journal of Organic Chemistry, 2019, 2019, 478-485.	1.2	10
82	Chemoselectivity Switching in the Rhodiumâ€Catalyzed Reactions of 4â€Substitutedâ€1â€sulfonylâ€1,2,3â€triaz with Allenols: Noticeable Differences between 4â€Acyl―and 4â€Arylâ€Triazoles. Advanced Synthesis and Catalysis, 2019, 361, 1160-1165.	oles 2.1	9
83	Origin of the Anti-Markovnikov Hydroamination of Alkenes Catalyzed by L–Au(I) Complexes: Coordination Mode Determines Regioselectivity. ACS Catalysis, 2019, 9, 848-858.	5.5	45
84	Siteâ€selective Synthesis of βâ€{70]PCBMâ€like Fullerenes: Efficient Application in Perovskite Solar Cells. Chemistry - A European Journal, 2019, 25, 3224-3228.	1.7	37
85	Synthesis and Reactivity Studies of Amido‣ubstituted Germanium(I)/Tin(I) Dimers and Clusters. Chemistry - A European Journal, 2019, 25, 2773-2785.	1.7	46
86	Cycloosmathioborane Compounds: Other Manifestations of the Hückel Aromaticity. Inorganic Chemistry, 2019, 58, 2265-2269.	1.9	14
87	Analysis of Reactivity from the Noncovalent Interactions Perspective. RSC Catalysis Series, 2019, , 628-643.	0.1	2
88	Rationalizing the Regioselectivity of the Diels–Alder Biscycloaddition of Fullerenes. Journal of Organic Chemistry, 2018, 83, 3285-3292.	1.7	11
89	Barium as Honorary Transition Metal in Action: Experimental and Theoretical Study of Ba(CO) ⁺ and Ba(CO) ^{â^'} . Angewandte Chemie, 2018, 130, 4038-4044.	1.6	16
90	Carbon dioxide-based facile synthesis of cyclic carbamates from amino alcohols. Chemical Communications, 2018, 54, 3166-3169.	2.2	48

#	Article	IF	CITATIONS
91	Synthesis of a Helical Bilayer Nanographene. Angewandte Chemie, 2018, 130, 6890-6895.	1.6	69
92	Synthesis of a Helical Bilayer Nanographene. Angewandte Chemie - International Edition, 2018, 57, 6774-6779.	7.2	161
93	Barium as Honorary Transition Metal in Action: Experimental and Theoretical Study of Ba(CO) ⁺ and Ba(CO) ^{â^'} . Angewandte Chemie - International Edition, 2018, 57, 3974-3980.	7.2	60
94	Understanding the Reactivity of Fullerenes Through the Activation Strain Model. European Journal of Organic Chemistry, 2018, 2018, 1394-1402.	1.2	25
95	Energy Decomposition Analysis and Related Methods. , 2018, , 191-226.		21
96	Evidence for a Bis(Elongated σ)-Dihydrideborate Coordinated to Osmium. Inorganic Chemistry, 2018, 57, 4482-4491.	1.9	33
97	Unraveling the Nature of the Catalytic Power of Fluoroacetate Dehalogenase. ChemCatChem, 2018, 10, 1052-1063.	1.8	14
98	Goldâ€Catalyzed Divergent Ringâ€Closing Modes of Indoleâ€Tethered Amino Allenynes. Chemistry - A European Journal, 2018, 24, 1448-1454.	1.7	6
99	A Route to Base Coordinate Silicon Difluoride and the Silicon Trifluoride Radical. Chemistry - A European Journal, 2018, 24, 1264-1268.	1.7	24
100	Frontispiz: Synthesis of a Helical Bilayer Nanographene. Angewandte Chemie, 2018, 130, .	1.6	0
101	Frontispiece: Synthesis of a Helical Bilayer Nanographene. Angewandte Chemie - International Edition, 2018, 57, .	7.2	0
102	Enhancement of anion recognition exhibited by a zinc-imidazole-based ion-pair receptor composed of C–H hydrogen- and halogen-bond donor groups. Dalton Transactions, 2018, 47, 15941-15947.	1.6	12
103	Influence of the charge on the reactivity of azafullerenes. Physical Chemistry Chemical Physics, 2018, 20, 28011-28018.	1.3	11
104	Ï€-Extended Corannulene-Based Nanographenes: Selective Formation of Negative Curvature. Journal of the American Chemical Society, 2018, 140, 17188-17196.	6.6	156
105	Influence of the Lewis Acid/Base Pairs on the Reactivity of Geminal Eâ€CH ₂ â€E′ Frustrated Lewis Pairs. Chemistry - A European Journal, 2018, 24, 17823-17831.	1.7	34
106	Organo-Aluminum and Zinc Acetamidinates: Preparation, Coordination Ability, and Ring-Opening Polymerization Processes of Cyclic Esters. Inorganic Chemistry, 2018, 57, 12132-12142.	1.9	15
107	Buckyball Difluoride F ₂ ^{â^'} @C ₆₀ ⁺ —A Singleâ€Molecule Crystal. Angewandte Chemie - International Edition, 2018, 57, 13931-13934.	7.2	28
108	Stereodiversified Modular Synthesis of Nonâ€planar Fiveâ€Membered Cyclic <i>N</i> â€Hydroxylamidines: Reactivity Study and Application to the Synthesis of Cyclic Amidines. Advanced Synthesis and Catalysis, 2018, 360, 4362-4371.	2.1	7

#	Article	IF	CITATIONS
109	Buckyball Difluoride F2â^'@C60+—A Singleâ€Molecule Crystal. Angewandte Chemie, 2018, 130, 14127-14130.	1.6	3
110	Hydrogenation of Multiple Bonds by Geminal Aminoboraneâ€Based Frustrated Lewis Pairs. Chemistry - A European Journal, 2018, 24, 8833-8840.	1.7	32
111	Palladium Catalysis in the Intramolecular Carbene C–H Insertion of αâ€Diazoâ€Î±â€(methoxycarbonyl)acetamides to Form βâ€Lactams. European Journal of Organic Chemistry, 201 2018, 4446-4455.	.8,,2	14
112	Controlling Selectivities in Palladium-Catalyzed Cyclization Reactions Leading to Heterocycles. , 2018, , 311-337.		6
113	Janus Face of the Steric Effect in a Lewis Acid Catalyst with Size-Exclusion Design: Steric Repulsion and Steric Attraction in the Catalytic Exo-Selective Diels–Alder Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 10869-10875.	3.2	11
114	Redox-Assisted Osmium-Promoted C–C Bond Activation of Alkylnitriles. Organometallics, 2018, 37, 2014-2017.	1.1	14
115	Understanding the Diels-Alder reactivity of 1,2-azaborine analogues. Tetrahedron, 2018, 74, 4289-4294.	1.0	7
116	Ring Expansion of Bicyclic Methyleneaziridines via Concerted, Near-Barrierless [2,3]-Stevens Rearrangements of Aziridinium Ylides. ACS Catalysis, 2018, 8, 7907-7914.	5.5	36
117	Pt–M Complexes (M=Ag, Au) as Models for Intermediates in Transmetalation Processes. Chemistry - A European Journal, 2018, 24, 13879-13889.	1.7	18
118	Cationic Au ^{III} versus Au ^I : Catalystâ€Controlled Divergent Reactivity of Alkyneâ€Tethered Lactams. Chemistry - A European Journal, 2017, 23, 3012-3015.	1.7	13
119	Stereodivergentâ€atâ€Metal Synthesis of [60]Fullerene Hybrids. Angewandte Chemie, 2017, 129, 2168-2171.	1.6	7
120	Stereodivergentâ€atâ€Metal Synthesis of [60]Fullerene Hybrids. Angewandte Chemie - International Edition, 2017, 56, 2136-2139.	7.2	22
121	Palladium-catalysed intramolecular carbenoid insertion of α-diazo-α-(methoxycarbonyl)acetanilides for oxindole synthesis. Chemical Communications, 2017, 53, 3110-3113.	2.2	15
122	Effect of Lewis acid bulkiness on the stereoselectivity of Diels–Alder reactions between acyclic dienes and α,β-enals. Organic Chemistry Frontiers, 2017, 4, 1390-1399.	2.3	29
123	Understanding the Reactivity of Ionâ€Encapsulated Fullerenes. Chemistry - A European Journal, 2017, 23, 11030-11036.	1.7	33
124	Elongated σ-Borane versus σ-Borane in Pincer–POP–Osmium Complexes. Organometallics, 2017, 36, 2298-2307.	1.1	36
125	Influence of the Transitionâ€Metal Fragment on the Reactivity of Metallaanthracenes. Chemistry - A European Journal, 2017, 23, 6634-6642.	1.7	26
126	Access to Enantiopure 5-, 7-, and 5,7-Substituted <i>cis</i> -Decahydroquinolines: Enantioselective Synthesis of (â^')-Cermizine B. Organic Letters, 2017, 19, 1714-1717.	2.4	17

#	Article	IF	CITATIONS
127	Predicting and Understanding the Reactivity of Aza[60]fullerenes. Journal of Organic Chemistry, 2017, 82, 754-758.	1.7	20
128	Understanding the Effect of α-Cationic Phosphines and Group 15 Analogues on π-Acid Catalysis. Organometallics, 2017, 36, 460-466.	1.1	26
129	De Novo Synthesis of αâ€Hydroxy Ketones by Gallic Acidâ€Promoted Aerobic Coupling of Terminal Alkynes with Diazonium Salts. Chemistry - A European Journal, 2017, 23, 17227-17230.	1.7	5
130	Reactions between microhydrated superoxide anions and formic acid. Physical Chemistry Chemical Physics, 2017, 19, 23176-23186.	1.3	3
131	Direct Access to 2,3,4,6-Tetrasubstituted Tetrahydro-2 <i>H</i> -pyrans via Tandem S _N 2′–Prins Cyclization. Organic Letters, 2017, 19, 4834-4837.	2.4	17
132	Parent Thioketene Sâ€Oxide H ₂ CCSO: Gasâ€Phase Generation, Structure, and Bonding Analysis. Chemistry - A European Journal, 2017, 23, 16566-16573.	1.7	39
133	Transition Metalâ€Catalysed Intramolecular Carbenoid Câ~'H Insertion for Pyrrolidine Formation by Decomposition of αâ€Diazoesters. Advanced Synthesis and Catalysis, 2017, 359, 3654-3664.	2.1	16
134	Factors Governing the Diels–Alder Reactivity of (2,7)Pyrenophanes. Journal of Organic Chemistry, 2017, 82, 8157-8164.	1.7	8
135	Exploring Partners for the Domino αâ€Arylation/Michael Addition Reaction Leading to Tetrahydroisoquinolines. European Journal of Organic Chemistry, 2017, 2017, 799-805.	1.2	8
136	Fineâ€Tuning the Fluorescence Gain of FRETâ€Type (Bodipy)(Bodipyâ€2)â€NHCâ€Iridium Complexes for CO Dete with a Large Virtual Stokes Shift. Chemistry - A European Journal, 2017, 23, 711-719.	ction 1.7	20
137	A Hemilabile and Cooperative Nâ€Donorâ€Functionalized 1,2,3â€Triazolâ€5â€Ylidene Ligand for Alkyne Hydrothiolation Reactions. Chemistry - A European Journal, 2017, 23, 1393-1401.	1.7	46
138	A Oneâ€Pot Synthesis of <i>N</i> â€Arylâ€2â€Oxazolidinones and Cyclic Urethanes by the Lewis Base Catalyzed Fixation of Carbon Dioxide into Anilines and Bromoalkanes. Chemistry - A European Journal, 2016, 22, 10355-10359.	1.7	32
139	Interplay between aromaticity and strain in double group transfer reactions to 1,2-benzyne. Journal of Computational Chemistry, 2016, 37, 1265-1273.	1.5	20
140	Reactivity and Selectivity of Bowlâ€Shaped Polycyclic Aromatic Hydrocarbons: Relationship to C ₆₀ . Chemistry - A European Journal, 2016, 22, 1368-1378.	1.7	31
141	Palladiumâ€Catalyzed Intramolecular Carbene Insertion into C(sp ³)â~'H Bonds. Angewandte Chemie - International Edition, 2016, 55, 6467-6470.	7.2	41
142	Understanding the Reactivity of Planar Polycyclic Aromatic Hydrocarbons: Towards the Graphene Limit. Chemistry - A European Journal, 2016, 22, 10572-10580.	1.7	27
143	Unusual Metal–Metal Bonding in a Dinuclear Pt–Au Complex: Snapshot of a Transmetalation Process. Angewandte Chemie, 2016, 128, 7092-7096.	1.6	9
144	Factors Controlling the Reactivity and Selectivity of the Diels–Alder Reactions Involving 1,2-Azaborines. Journal of Organic Chemistry, 2016, 81, 6554-6562.	1.7	18

#	Article	IF	CITATIONS
145	Palladium atalyzed Intramolecular Carbene Insertion into C(sp ³)â^'H Bonds. Angewandte Chemie, 2016, 128, 6577-6580.	1.6	14
146	Hydrogen bond–aromaticity cooperativity in selfâ€assembling 4â€pyridone chains. Journal of Computational Chemistry, 2016, 37, 59-63.	1.5	15
147	Remote Control by π-Conjugation of the Emissive Properties of Fischer Carbene-BODIPY Dyads. Inorganic Chemistry, 2016, 55, 2737-2747.	1.9	19
148	2,4,5-Trimethylimidazolium Scaffold for Anion Recognition Receptors Acting Through Charge-Assisted Aliphatic and Aromatic C–H Interactions. Journal of Organic Chemistry, 2016, 81, 3790-3798.	1.7	17
149	Systematic Modulation of the Fluorescence Brightness in Boronâ€Dipyrromethene (BODIPY)â€Tagged <i>N</i> â€Heterocyclic Carbene (NHC)–Gold–Thiolates. Chemistry - A European Journal, 2016, 22, 18066-18072.	1.7	12
150	Breaking the Isolated Pentagon Rule by Encapsulating Xe ₂ in C ₆₀ : The Guest Defines the Shape of the Host. ChemistrySelect, 2016, 1, 2405-2408.	0.7	11
151	Enantiodivergent Synthesis of (+)―and (â^')â€Pyrrolidineâ€197B: Synthesis of <i>trans</i> â€2,5â€Disubstitut Pyrrolidines by Intramolecular Hydroamination. Chemistry - A European Journal, 2016, 22, 15529-15535.	ed 1.7	19
152	Understanding the Oxidative Addition of Ïfâ€Bonds to Groupâ€13 Compounds. Chemistry - A European Journal, 2016, 22, 13669-13676.	1.7	25
153	Metal atalyzed Cyclization Reactions of 2,3,4â€Trienâ€1â€ols: A Joint Experimental–Computational Study. Chemistry - A European Journal, 2016, 22, 11667-11676.	1.7	7
154	Stereoselective synthesis of strained cage compounds via gold-catalyzed allene functionalization. Chemical Communications, 2016, 52, 10265-10268.	2.2	6
155	Deeper Insight into the Factors Controlling H ₂ Activation by Geminal Aminoboraneâ€Based Frustrated Lewis Pairs. Chemistry - A European Journal, 2016, 22, 18801-18809.	1.7	52
156	Deeper Insight into the Diels–Alder Reaction through the Activation Strain Model. Chemistry - an Asian Journal, 2016, 11, 3297-3304.	1.7	47
157	Stereocontrolled Access to Enantiopure 7-Substituted <i>cis</i> and <i>trans</i> -Octahydroindoles. Organic Letters, 2016, 18, 5836-5839.	2.4	20
158	An Entry to Stable Mixed Phosphine–Osmium–NHC Polyhydrides. Inorganic Chemistry, 2016, 55, 5062-5070.	1.9	24
159	Fluorescence Quenching in BODIPYs Having Ir―and Rhâ€Tethered Complexes. European Journal of Inorganic Chemistry, 2016, 2016, 844-852.	1.0	11
160	Unusual Metal–Metal Bonding in a Dinuclear Pt–Au Complex: Snapshot of a Transmetalation Process. Angewandte Chemie - International Edition, 2016, 55, 6978-6982.	7.2	39
161	Metalâ€Free Alleneâ€Based Synthesis of Enantiopure Fused Polycyclic Sultones. Chemistry - A European Journal, 2016, 22, 285-294	1.7	12
162	Pd-Catalyzed α-Arylation of Sulfones in a Three-Component Synthesis of 3-[2-(Phenyl/methylsulfonyl)ethyl]indoles. ACS Catalysis, 2016, 6, 1691-1700.	5.5	17

#	Article	IF	CITATIONS
163	A DFT-Elucidated Comparison of the Solution-Phase and SAM Electrochemical Properties of Short-Chain Mercaptoalkylferrocenes: Synthetic and Spectroscopic Aspects, and the Structure of Fc–CH ₂ CH ₂ A€"S–S–S–CH ₂ CH ₂ –Fc. Inorganic Chemist 2016, 55, 2584-2596.	1.9 try,	14
164	Oxidation of NOË™ by small oxygen species HO2â^' and O2Ë™â^': the role of negative charge, electronic spin and water solvation. Physical Chemistry Chemical Physics, 2016, 18, 9524-9536.	1.3	4
165	The effect of the metal fragment on the aromaticity and synchronicity of the gold(<scp>i</scp>)-catalysed divinylcyclopropane–cycloheptadiene rearrangement. Physical Chemistry Chemical Physics, 2016, 18, 11677-11682.	1.3	5
166	Factors Controlling βâ€Elimination Reactions in Groupâ€10 Metal Complexes. Chemistry - A European Journal, 2015, 21, 14237-14237.	1.7	0
167	A Joint Experimental–Computational Comparative Study of the Pd ⁰ atalysed Reactions of Aryl lodides and Aldehydes with N, O, and S Tethers. European Journal of Organic Chemistry, 2015, 2015, 3935-3942.	1.2	8
168	Factors Controlling βâ€Elimination Reactions in Groupâ€10 Metal Complexes. Chemistry - A European Journal, 2015, 21, 14362-14369.	1.7	36
169	Hydrogen Bond Controlled Antiâ€Azaâ€Michael Addition: Diastereoselective Synthesis of Cyclobutene ontaining Amino Acid Derivatives. European Journal of Organic Chemistry, 2015, 2015, 3462-3469.	1.2	4
170	Prins Cyclization Catalyzed by a Fe ^{III} /Trimethylsilyl Halide System: The Oxocarbenium Ion Pathway versus the [2+2] Cycloaddition. Chemistry - A European Journal, 2015, 21, 15211-15217.	1.7	24
171	Diverting Hydrogenations with Wilkinson's Catalyst towards Highly Reactive Rhodium(I) Species. Angewandte Chemie - International Edition, 2015, 54, 14321-14325.	7.2	21
172	Versatile Synthesis of Polyfunctionalized Carbazoles from (3-Iodoindol-2-yl)butynols via a Gold-Catalyzed Intramolecular Iodine-Transfer Reaction. ACS Catalysis, 2015, 5, 3417-3421.	5.5	32
173	σ-Holeâ<ï€ and lone pairâ<ï€ interactions in benzylic halides. Organic and Biomolecular Chemistry, 2015, 13, 6194-6202.	1.5	17
174	Nucleophilic Substitution in Reactions between Partially Hydrated Superoxide Anions and Alkyl Halides. Journal of Organic Chemistry, 2015, 80, 6133-6142.	1.7	19
175	Computational Study on the C–Heteroatom Bond Formation via Stille Cross-Coupling Reaction: Differences between Organoheterostannanes Me ₃ SnAsPh ₂ vs Me ₃ SnPPh ₂ . Organometallics, 2015, 34, 159-166.	1.1	9
176	Osmium(II)–Bis(dihydrogen) Complexes Containing <i>C</i> _{aryl} , <i>C</i> _{NHC} –Chelate Ligands: Preparation, Bonding Situation, and Acidity. Organometallics, 2015, 34, 778-789.	1.1	34
177	Hydroboration and Hydrogenation of an Osmium–Carbon Triple Bond: Osmium Chemistry of a Bis-σ-Borane. Organometallics, 2015, 34, 547-550.	1.1	29
178	Fischer-Type Carbene Complexes of Tris(1,4-phenylene)amines and Tri(2-furyl)phosphine. Organometallics, 2015, 34, 696-710.	1.1	5
179	Unveiling the uncatalyzed reaction of alkynes with 1,2-dipoles for the room temperature synthesis of cyclobutenes. Chemical Communications, 2015, 51, 3395-3398.	2.2	35
180	Synthesis of the Tetracyclic ABCD Ring Systems of Madangamines D–F. Organic Letters, 2015, 17, 568-571.	2.4	17

#	Article	IF	CITATIONS
181	Understanding the Reactivity of Endohedral Metallofullerenes: C ₇₈ versus Sc ₃ N@C ₇₈ . Chemistry - A European Journal, 2015, 21, 5760-5768.	1.7	45
182	Aromaticity of metallabenzenes and related compounds. Chemical Society Reviews, 2015, 44, 6452-6463.	18.7	197
183	Gold-Catalyzed Reactivity Reversal of Indolizidinone-Tethered β-Amino Allenes Controlled by the Stereochemistry. ACS Catalysis, 2015, 5, 4842-4845.	5.5	23
184	Multifunctional Imidazobenzothiadiazole Probe Displaying Solvatofluorochromism and Ability To Form Ion-Pair Complexes in Solid State and in Solution. Organic Letters, 2015, 17, 2374-2377.	2.4	9
185	Azole Assisted C–H Bond Activation Promoted by an Osmium-Polyhydride: Discerning between N and NH. Organometallics, 2015, 34, 1898-1910.	1.1	29
186	Iron(III)-Catalyzed Prins Cyclization towards the Synthesis of trans-Fused Bicyclic Tetrahydropyrans. Synthesis, 2015, 47, 1791-1798.	1.2	12
187	Synthesis of Oxaspiranic Compounds through [3 + 2] Annulation of Cyclopropenones and Donor–Acceptor Cyclopropanes. Journal of Organic Chemistry, 2015, 80, 1207-1213.	1.7	44
188	Synthesis of the ABC fragment of calyciphylline A-type Daphniphyllum alkaloids. Tetrahedron, 2015, 71, 3642-3651.	1.0	31
189	Activation-Strain Analysis Reveals Unexpected Origin of Fast Reactivity in Heteroaromatic Azadiene Inverse-Electron-Demand Diels–Alder Cycloadditions. Journal of Organic Chemistry, 2015, 80, 548-558.	1.7	49
190	Divergent Reactivity of Homologue <i>ortho</i> â€Allenylbenzaldehydes Controlled by the Tether Length: Chromone versus Chromene Formation. Chemistry - A European Journal, 2015, 21, 1533-1541.	1.7	15
191	Is it possible to achieve a complete desaturation of cycloalkanes promoted by o-benzyne?. Chemical Communications, 2015, 51, 5302-5305.	2.2	4
192	Redox Behaviour of Cymantrene Fischer Carbene Complexes in Designing Organometallic Multiâ€ŧags. Chemistry - A European Journal, 2014, 20, 4974-4985.	1.7	20
193	Synthesis of Fused Cyclopentenones through Palladium atalyzed Cyclization of 2â€Iodoaryl Allenols. Advanced Synthesis and Catalysis, 2014, 356, 1370-1374.	2.1	10
194	Eneâ€eneâ€yne Reactions: Activation Strain Analysis and the Role of Aromaticity. Chemistry - A European Journal, 2014, 20, 10791-10801.	1.7	56
195	A gold-catalysed imine–propargylamine cascade sequence: synthesis of 3-substituted-2,5-dimethylpyrazines and the reaction mechanism. Chemical Communications, 2014, 50, 4567-4570.	2.2	31
196	Tuning the Photophysical Properties of BODIPY Molecules by Ï€â€Conjugation with Fischer Carbene Complexes. Chemistry - A European Journal, 2014, 20, 1367-1375.	1.7	29
197	The Photochemical Reaction of Vinylaziridines and Vinylazetidines with Chromium(0) and Molybdenum(0) (Fischer) Carbene Complexes. Chemistry - A European Journal, 2014, 20, 1359-1366.	1.7	14
198	Fischer-type gold(<scp>i</scp>) carbene complexes stabilized by aurophilic interactions. Dalton Transactions, 2014, 43, 398-401.	1.6	12

#	Article	IF	CITATIONS
199	Controlling the Ambiphilic Nature of If -Arylpalladium Intermediates in Intramolecular Cyclization Reactions. Accounts of Chemical Research, 2014, 47, 168-179.	7.6	37
200	Origin of the "endo rule―in Diels-Alder reactions. Journal of Computational Chemistry, 2014, 35, 371-376.	1.5	75
201	Allenes and computational chemistry: from bonding situations to reaction mechanisms. Chemical Society Reviews, 2014, 43, 3041.	18.7	155
202	Combined activation strain model and energy decomposition analysis methods: a new way to understand pericyclic reactions. Physical Chemistry Chemical Physics, 2014, 16, 7662-7671.	1.3	85
203	Origin of Reactivity Trends of Noble Gas Endohedral Fullerenes Ng ₂ @C ₆₀ (Ng) Tj ETQqI	1 <u>1 0</u> .7843	314 rgBT / <mark>O</mark> \
204	Aromaticity in transition structures. Chemical Society Reviews, 2014, 43, 4909-4921.	18.7	124
205	Controlling the oxidative addition of aryl halides to Au(I). Journal of Computational Chemistry, 2014, 35, 2140-2145.	1.5	65
206	The activation strain model and molecular orbital theory: understanding and designing chemical reactions. Chemical Society Reviews, 2014, 43, 4953-4967.	18.7	604
207	Nickel-Catalyzed Intramolecular [3 + 2 + 2] Cycloadditions of Alkylidenecyclopropanes. A Straightforward Entry to Fused 6,7,5-Tricyclic Systems. Organic Letters, 2014, 16, 5008-5011.	2.4	49
208	Synthesis of Isoquinolinâ€4â€ols by Palladium atalysed Intramolecular Nucleophilic Addition of Aryl Iodides to Aldehydes. Advanced Synthesis and Catalysis, 2014, 356, 3237-3243.	2.1	16
209	Unprecedented Addition of Tetrahydroborate to an Osmium–Carbon Triple Bond. Organometallics, 2014, 33, 2689-2692.	1.1	17
210	One-Pot Synthesis of 1,3,5-Triazine Derivatives via Controlled Cross-Cyclotrimerization of Nitriles: A Mechanism Approach. Journal of Organic Chemistry, 2014, 79, 7012-7024.	1.7	38
211	Microwave-Promoted Synthesis of Bicyclic Azocine-β-Lactams from Bis(allenes). Journal of Organic Chemistry, 2014, 79, 7075-7083.	1.7	11
212	Osmium-Promoted Dehydrogenation of Amine–Boranes and B–H Bond Activation of the Resulting Amino–Boranes. Organometallics, 2014, 33, 1104-1107.	1.1	30
213	Synthesis and electrochemical investigation of chromium(0) ferrocenyl-substituted carbene complexes. Inorganica Chimica Acta, 2014, 423, 184-192.	1.2	8
214	Discovering Mechanistic Insights by Application of <i>Tandem</i> Ultrafast Multidimensional NMR Techniques. Journal of Organic Chemistry, 2014, 79, 8086-8093.	1.7	10
215	Rhodium atalyzed Intramolecular [3+2+2] Cycloadditions between Alkylidenecyclopropanes, Alkynes, and Alkenes. Chemistry - A European Journal, 2014, 20, 10255-10259.	1.7	42
216	Applied computational chemistry. Chemical Society Reviews, 2014, 43, 4906.	18.7	6

#	Article	IF	CITATIONS
217	Direct Assembly of 2â€Oxazolidinones by Chemical Fixation of Carbon Dioxide. Chemistry - A European Journal, 2014, 20, 8867-8871.	1.7	21
218	lodine recycling via 1,3-migration in iodoindoles under metal catalysis. Chemical Communications, 2013, 49, 7779.	2.2	21
219	Reactivity in Nucleophilic Vinylic Substitution (SNV):SNVπ versus SNVσ Mechanistic Dichotomy. Journal of Organic Chemistry, 2013, 78, 8574-8584.	1.7	35
220	Platinumâ€Catalyzed Divergent Reactivity of αâ€Hydroxyallenes: Synthesis of Dihydrofurans and α,βâ€Unsaturated Ketones. Advanced Synthesis and Catalysis, 2013, 355, 2681-2685.	2.1	19
221	Regio- and Diastereoselective Stepwise [8 + 3]-Cycloaddition Reaction between Tropone Derivatives and Donor–Acceptor Cyclopropanes. Organic Letters, 2013, 15, 4928-4931.	2.4	66
222	Electrochemical illumination of thienyl and ferrocenyl chromium(0) Fischer carbene complexes. Dalton Transactions, 2013, 42, 5367.	1.6	28
223	Computational insights on the mechanism of the catalytic hydrogenation with BINAP–diamine–Ru complexes: the role of base and origin of selectivity. Chemical Communications, 2013, 49, 4277-4279.	2.2	16
224	Control over the E/Z Selectivity of the Catalytic Dimerization of Group 6 (Fischer) Metal Carbene Complexes. Journal of Organic Chemistry, 2013, 78, 865-871.	1.7	22
225	Description of Aromaticity in Porphyrinoids. Journal of the American Chemical Society, 2013, 135, 315-321.	6.6	99
226	Synthesis, Structure, and Electronic Properties of Extended π onjugated Groupâ€6 Fischer Alkoxy–Bis(carbene) Complexes. Chemistry - A European Journal, 2013, 19, 5899-5908.	1.7	25
227	Gold-catalysed tuning of reactivity in allenes: 9-endo hydroarylation versus formal 5-exo hydroalkylation. Chemical Communications, 2013, 49, 1282.	2.2	45
228	The Gold(I)- and Silver(I)-Catalyzed Nicholas Reaction. Organometallics, 2013, 32, 951-956.	1.1	17
229	Why Do Cycloaddition Reactions Involving C ₆₀ Prefer [6,6] over [5,6] Bonds?. Chemistry - A European Journal, 2013, 19, 7416-7422.	1.7	100
230	Substituent Effects on the Electrochemical, Spectroscopic, and Structural Properties of Fischer Mono- and Biscarbene Complexes of Chromium(0). Inorganic Chemistry, 2013, 52, 6674-6684.	1.9	31
231	On the incidence of non-covalent intramolecular interligand interactions on the conformation of carbene complexes: a case study. Dalton Transactions, 2013, 42, 898-901.	1.6	28
232	Substituent Effects on "Hyperconjugative―Aromaticity and Antiaromaticity in Planar Cyclopolyenes. Organic Letters, 2013, 15, 2990-2993.	2.4	87
233	Functionalized arene–ruthenium(ii) complexes: dangling vs. tethering side chain. Dalton Transactions, 2013, 42, 5412.	1.6	12
234	Carbocyclization versus Oxycyclization on the Metal-Catalyzed Reactions of Oxyallenyl C3-Linked Indoles. Journal of Organic Chemistry, 2013, 78, 6688-6701.	1.7	39

#	Article	IF	CITATIONS
235	Mono- and dinuclear osmium N,N′-di- and tetraphenylbipyridyls and extended bipyridyls. Synthesis, structure and electrochemistry. Dalton Transactions, 2013, 42, 3597.	1.6	15
236	Noyori Hydrogenation: Aromaticity, Synchronicity, and Activation Strain Analysis. Journal of Organic Chemistry, 2013, 78, 5669-5676.	1.7	44
237	Cationic Dihydride Boryl and Dihydride Silyl Osmium(IV) NHC Complexes: A Marked Diagonal Relationship. Organometallics, 2013, 32, 2744-2752.	1.1	29
238	Electrochemical and Computational Study of Tungsten(0) Ferrocene Complexes: Observation of the Mono-Oxidized Tungsten(0) Ferrocenium Species and Intramolecular Electronic Interactions. Organometallics, 2013, 32, 7334-7344.	1.1	23
239	Gold-catalyzed oxycyclization of allenic carbamates: expeditious synthesis of 1,3-oxazin-2-ones. Beilstein Journal of Organic Chemistry, 2013, 9, 818-826.	1.3	28
240	Intramolecular Pd(0)-Catalyzed Reactions of (2-Iodoanilino)-aldehydes: A Joint Experimental–Computational Study. Journal of Organic Chemistry, 2012, 77, 10272-10284.	1.7	36
241	Transition metal-catalysed (4 + 3) cycloaddition reactions involving allyl cations. Organic and Biomolecular Chemistry, 2012, 10, 699-704.	1.5	43
242	Rational Design of a Nonbasic Molecular Receptor for Selective NH ₄ ⁺ /K ⁺ Complexation in the Gas Phase. Chemistry - A European Journal, 2012, 18, 16884-16889.	1.7	5
243	Neutral noble gas compounds exhibiting a Xe–Xe bond: structure, stability and bonding situation. Physical Chemistry Chemical Physics, 2012, 14, 14869.	1.3	43
244	Effects of Attractive Through Space π–π* Interactions on the Structure, Reactivity, and Activity of Grubbs II Complexes. Organometallics, 2012, 31, 1155-1160.	1.1	35
245	Preparation, Structure, Bonding, and Preliminary Reactivity of a Six-Coordinate d ⁴ Osmium–Boryl Complex. Organometallics, 2012, 31, 4646-4649.	1.1	21
246	Synthesis and characterisation of [6]-azaosmahelicenes: the first d4-heterometallahelicenes. Chemical Communications, 2012, 48, 5328.	2.2	65
247	Regioselective and Stepwise [8 + 2] Cycloaddition Reaction between Alkynyl–Fischer Carbene Complexes and Tropothione. Journal of Organic Chemistry, 2012, 77, 6648-6652.	1.7	26
248	Typeâ€I Dyotropic Reactions: Understanding Trends in Barriers. Chemistry - A European Journal, 2012, 18, 12395-12403.	1.7	79
249	Why Cyclooctatetraene Is Highly Stabilized: The Importance of "Two-Way―(Double) Hyperconjugation. Journal of Chemical Theory and Computation, 2012, 8, 1280-1287.	2.3	52
250	Biological activity of Fe(iii) aquo-complexes towards ferric chelate reductase (FCR). Organic and Biomolecular Chemistry, 2012, 10, 2272.	1.5	11
251	Palladium-catalyzed carbocyclization–cross-coupling reactions of two different allenic moieties: synthesis of 3-(buta-1,3-dienyl) carbazoles and mechanistic insights. Chemical Communications, 2012, 48, 6604.	2.2	26
252	A Joint Experimental and Computational Investigation on Homoconjugated Pushâ€Pull Chromophores Derived from 7,7â€Diphenylnorbornane. European Journal of Organic Chemistry, 2012, 2012, 2643-2655.	1.2	6

#	Article	IF	CITATIONS
253	Control over the Chemoselectivity of Pdâ€Catalyzed Cyclization Reactions of (2â€lodoanilino)carbonyl Compounds. Chemistry - A European Journal, 2012, 18, 6950-6958.	1.7	20
254	Alderâ€ene reaction: Aromaticity and activationâ€strain analysis. Journal of Computational Chemistry, 2012, 33, 509-516.	1.5	93
255	7â€Arylnorbornanes: Model Compounds for the Study of CH···π and OH···π Interactions. European Journal of Organic Chemistry, 2012, 2012, 940-947.	1.2	4
256	Aromaticity and Activation Strain Analysis of [3 + 2] Cycloaddition Reactions between Group 14 Heteroallenes and Triple Bonds. Journal of Organic Chemistry, 2011, 76, 2310-2314.	1.7	86
257	Fascinating reactivity in gold catalysis: synthesis of oxetenes through rare 4-exo-dig allene cyclization and infrequent β-hydride elimination. Chemical Communications, 2011, 47, 9054.	2.2	76
258	Photochemistry of Group 6 Fischer Carbene Complexes: Beyond the Photocarbonylation Reaction. Accounts of Chemical Research, 2011, 44, 479-490.	7.6	70
259	Trapping Intermediates in an [8 + 2] Cycloaddition Reaction with the Help of DFT Calculations. Organic Letters, 2011, 13, 2892-2895.	2.4	35
260	General Route to Olefins and Polyenes Having Metal Termini through the Palladium-Catalyzed Self-Dimerization of Bimetallic Fischer Carbenes. Organometallics, 2011, 30, 1794-1803.	1.1	24
261	DFT Study of Thermal 1,3-Dipolar Cycloaddition Reactions between Alkynyl Metal(0) Fischer Carbene Complexes and 3 <i>H</i> -1,2-Dithiole-3-thione Derivatives. Organometallics, 2011, 30, 466-476.	1.1	38
262	A DFT Study of the Ambiphilic Nature of Arylpalladium Species in Intramolecular Cyclization Reactions. Journal of Organic Chemistry, 2011, 76, 1592-1598.	1.7	21
263	Peroxide bond strength of antimalarial drugs containing an endoperoxide cycle. Relation with biological activity. Organic and Biomolecular Chemistry, 2011, 9, 4098.	1.5	27
264	Synthesis, Structure and Electrochemistry of Macrocyclic Tetrametallic Group 6 (Fischer) Carbene Complexes. European Journal of Inorganic Chemistry, 2011, 2011, 842-849.	1.0	16
265	Insight into the Mechanism of Quinoline Formation by the Chromium(0) Fischer Carbene Catalytic Transmetallation to Palladium and Rhodium: Application to the Synthesis of the Alkaloids of <i>Ruta chalepensis</i> . European Journal of Organic Chemistry, 2011, 2011, 3293-3300.	1.2	12
266	Aromaticity in Groupâ€14 Homologues of the Cyclopropenylium Cation. Chemistry - A European Journal, 2011, 17, 2215-2224.	1.7	50
267	Electron Delocalization in Homoconjugated 7,7â€Diarylnorbornane Systems: A Computational and Experimental Study. Chemistry - A European Journal, 2011, 17, 7327-7335.	1.7	13
268	Do μ2(CO) Stretching Frequencies in Metal Carbonyl Complexes Unequivocally Correlate with the Intrinsic Electronâ€Donicity of Ancillary Ligands?. Chemistry - A European Journal, 2011, 17, 6602-6605.	1.7	55
269	Striking Alkenol Versus Allenol Reactivity: Metalâ€Catalyzed Chemodifferentiating Oxycyclization of Enallenols. Chemistry - A European Journal, 2011, 17, 15005-15013.	1.7	30
270	Studying Double Group Transfer Reactions by Means of Computational Methods. Current Organic Chemistry, 2010, 14, 1578-1585.	0.9	20

#	Article	IF	CITATIONS
271	The Electronic Structure and Photochemistry of Groupâ€6 Bimetallic (Fischer) Carbene Complexes: Beyond the Photocarbonylation Reaction. Chemistry - A European Journal, 2010, 16, 6616-6624.	1.7	21
272	Response to the Comment on "The Interplay between Steric and Electronic Effects in S _N 2 Reactions― Chemistry - A European Journal, 2010, 16, 5542-5543.	1.7	9
273	Concerted and Stepwise Mechanisms in Metalâ€Free and Metalâ€Assisted [4+3] Cycloadditions Involving Allyl Cations. Chemistry - A European Journal, 2010, 16, 12147-12157.	1.7	53
274	Nickelâ€Catalyzed [3+2+2] Cycloadditions between Alkynylidenecyclopropanes and Activated Alkenes. Angewandte Chemie - International Edition, 2010, 49, 9886-9890.	7.2	83
275	Multiple Câ^'H Bond Activation of Phenyl-Substituted Pyrimidines and Triazines Promoted by an Osmium Polyhydride: Formation of Osmapolycycles with Three, Five, and Eight Fused Rings. Organometallics, 2010, 29, 976-986.	1.1	42
276	Consistent Aromaticity Evaluations of Methylenecyclopropene Analogues. Journal of Organic Chemistry, 2010, 75, 8252-8257.	1.7	27
277	Rate-Determining Factors in Nucleophilic Aromatic Substitution Reactions. Journal of Organic Chemistry, 2010, 75, 2971-2980.	1.7	119
278	The Interplay between Steric and Electronic Effects in S _N 2 Reactions. Chemistry - A European Journal, 2009, 15, 2166-2175.	1.7	76
279	Metal‶uned Photochemistry of Metalloceneâ€&ubstituted Chromium(0)–Carbene Complexes. Chemistry - A European Journal, 2009, 15, 593-596.	1.7	20
280	Synthesis and Properties of Mononuclear Group 10 Alkoxyâ€Biscarbene Complexes. Chemistry - A European Journal, 2009, 15, 3595-3603.	1.7	22
281	Double Group Transfer Reactions: Role of Activation Strain and Aromaticity in Reaction Barriers. Chemistry - A European Journal, 2009, 15, 13022-13032.	1.7	76
282	Is it Possible To Synthesize a Neutral Noble Gas Compound Containing a NgNg Bond? A Theoretical Study of HNgNgF (Ng=Ar, Kr, Xe). Angewandte Chemie - International Edition, 2009, 48, 366-369.	7.2	65
283	Molecular Alloys, Linking Organometallics with Intermetallic Humeâ^'Rothery Phases: The Highly Coordinated Transition Metal Compounds [M(ZnR) _{<i>n</i>/i>}] (<i>n</i> &¥ 8) Containing Organoâ^'Zinc Ligands. Journal of the American Chemical Society, 2009, 131, 16063-16077.	6.6	65
284	Aromatization of a Dihydro-3-ruthenaindolizine Complex. Organometallics, 2009, 28, 4876-4879.	1.1	23
285	Borylene-Based Direct Functionalization of Organic Substrates: Synthesis, Characterization, and Photophysical Properties of Novel π-Conjugated Borirenes. Journal of the American Chemical Society, 2009, 131, 8989-8999.	6.6	90
286	Behavior of Group 6 Fischer Aminocarbene Complexes in a Supercharged Medium: A Single Electron Transferâ^'H Atom Transfer Process. Organometallics, 2009, 28, 2762-2772.	1.1	13
287	Dyotropic Reactions: Mechanisms and Synthetic Applications. Chemical Reviews, 2009, 109, 6687-6711.	23.0	163
288	Exocyclic Delocalization at the Expense of Aromaticity in 3,5-bis(Ï€-Donor) Substituted Pyrazolium Ions and Corresponding Cyclic Bent Allenes. Journal of the American Chemical Society, 2009, 131, 11875-11881.	6.6	119

#	Article	IF	CITATIONS
289	Organometallic Chemistry of Ga ⁺ : Formation of an Unusual Gallium Dimer in the Coordination Sphere of Ruthenium. Chemistry - A European Journal, 2008, 14, 10789-10796.	1.7	30
290	Transmetalation Reactions from Fischer Carbene Complexes to Late Transition Metals: A DFT Study. Chemistry - A European Journal, 2008, 14, 11222-11230.	1.7	44
291	The Noncarbonylative Photochemistry of Group 6 Fischer Carbene Complexes. European Journal of Inorganic Chemistry, 2008, 2008, 2454-2462.	1.0	20
292	Structural Evidence for Antiaromaticity in Free Boroles. Angewandte Chemie - International Edition, 2008, 47, 1951-1954.	7.2	178
293	Twelve Oneâ€Electron Ligands Coordinating One Metal Center: Structure and Bonding of [Mo(ZnCH ₃) ₉ (ZnCp*) ₃]. Angewandte Chemie - International Edition, 2008, 47, 9150-9154.	7.2	85
294	Computational and experimental tools in solving some mechanistic problems in the chemistry of Fischer carbene complexes. Chemical Communications, 2008, , 4671.	2.2	51
295	Ï€-Stacking Effect on Levoglucosenone Derived Internal Chiral Auxiliaries. A Case of Complete Enantioselectivity Inversion on the Dielsâ~'Alder Reaction. Organic Letters, 2008, 10, 3389-3392.	2.4	35
296	Electronic Structure of Alkoxychromium(0) Carbene Complexes: A Joint TD-DFT/Experimental Study. Inorganic Chemistry, 2008, 47, 5253-5258.	1.9	50
297	Structure and Bonding of [Eâ^'Cpâ^'Eâ€2]+ Complexes (E and Eâ€2 = Bâ^'Tl; Cp = Cyclopentadienyl). Organometallics, 2008, 27, 1106-1111.	1.1	34
298	DFT Study on the Dielsâ^'Alder Cycloaddition between Alkenylâ^'M(0) (M = Cr, W) Carbene Complexes and Neutral 1,3-Dienes. Journal of Organic Chemistry, 2008, 73, 2083-2089.	1.7	46
299	Deeper Insight into the Mechanism of the Reaction of Photogenerated Metallaketenes and Imines. Journal of the American Chemical Society, 2008, 130, 13892-13899.	6.6	30
300	Further Shortening of the Câ^'C Single Bond in Substituted Tetrahedranyl Tetrahedrane Systems: An Energy Decomposition Analysis. Journal of Physical Chemistry A, 2008, 112, 12919-12924.	1.1	9
301	Cu-Catalyzed Synthesis of Symmetric Group 6 (Fischer) Bis-carbene Complexes. Organic Letters, 2008, 10, 365-368.	2.4	13
302	Direct estimate of conjugation and aromaticity in cyclic compounds with the EDA method. Faraday Discussions, 2007, 135, 403-421.	1.6	129
303	Hyperconjugative Stabilization in Alkyl Carbocations:  Direct Estimate of the β-Effect of Group-14 Elements. Journal of Physical Chemistry A, 2007, 111, 8028-8035.	1.1	38
304	In-Plane Aromaticity in Double Group Transfer Reactions. Journal of Organic Chemistry, 2007, 72, 1488-1491.	1.7	60
305	Divergent Pathways in the Reaction of Fischer Carbenes and Palladium. Organic Letters, 2007, 9, 1757-1759.	2.4	54
306	Multimetallocenes. A Theoretical Study. Organometallics, 2007, 26, 4731-4736.	1.1	118

#	Article	IF	CITATIONS
307	Mechanism of the Generation of Ketenimineâ^'M(CO)n Complexes (M = Cr, W, Fe) from Fischer Carbenes and Isocyanides. Organometallics, 2007, 26, 3010-3017.	1.1	44
308	EDA Study of ï€-Conjugation in Tunable Bis(gem-diethynylethene) Fluorophores. Journal of Organic Chemistry, 2007, 72, 7367-7372.	1.7	27
309	Steric versus Electronic Effects in the Structure of Heteroatom (S and O)-Substituted Free and Metal (Cr and W)-Complexed Carbenes. Organometallics, 2007, 26, 5854-5858.	1.1	36
310	Aromaticity in Metallabenzenes. Chemistry - A European Journal, 2007, 13, 5873-5884.	1.7	155
311	Stable Pentacoordinate Carbocations: Structure and Bonding. Chemistry - A European Journal, 2007, 13, 8620-8626.	1.7	30
312	Synthesis and Electronic Structure of a Ferroborirene. Angewandte Chemie - International Edition, 2007, 46, 5215-5218.	7.2	67
313	Double Group Transfer Reactions as Indicators of Aromatic Stabilization. European Journal of Organic Chemistry, 2007, 2007, 5410-5415.	1.2	19
314	Effect of the Metal Fragment in the Thermal Cycloaddition between Alkynyl Metal(0) Fischer Carbene Complexes and Nitrones. Journal of Organic Chemistry, 2006, 71, 6178-6184.	1.7	43
315	Ï€-Conjugation in donor-substituted cyanoethynylethenes: an EDA study. Chemical Communications, 2006, , 5030-5032.	2.2	33
316	Correlation between Hammett Substituent Constants and Directly Calculated π-Conjugation Strength. Journal of Organic Chemistry, 2006, 71, 2251-2256.	1.7	92
317	On the Structure and Spin States of Fe(III)-EDDHA Complexes. Inorganic Chemistry, 2006, 45, 5321-5327.	1.9	10
318	Direct Estimate of the Strength of Conjugation and Hyperconjugation by the Energy Decomposition Analysis Method. Chemistry - A European Journal, 2006, 12, 3617-3629.	1.7	114
319	Stereoelectronic Effects on Type I 1,2-Dyotropic Rearrangements in Vicinal Dibromides. Chemistry - A European Journal, 2006, 12, 6323-6330.	1.7	37
320	The Photochemical Reactivity of the "Photo-Inert―Tungsten (Fischer) Carbene Complexes. Angewandte Chemie - International Edition, 2006, 45, 125-128.	7.2	25
321	"Naked―Ga+ and In+ as Pure Acceptor Ligands: Structure and Bonding of [GaPt(GaCp*)4][BArF]. Angewandte Chemie - International Edition, 2006, 45, 5207-5210.	7.2	61
322	Stereochemistry of the Tetrabutylammonium Cyanide-Catalyzed Cyanosylilation of Cyclic α,β-Epoxyketones – Dependence of the Diastereoselectivity on the Ring Size. European Journal of Organic Chemistry, 2006, 2006, 3969-3976.	1.2	12
323	Computational and Experimental Studies on the Mechanism of the Photochemical Carbonylation of Group 6 Fischer Carbene Complexes. Chemistry - A European Journal, 2005, 11, 5988-5996.	1.7	40
324	Study of the ESI-Mass Spectrometry Ionization Mechanism of Fischer Carbene Complexes. Journal of Organic Chemistry, 2005, 70, 5269-5277.	1.7	13

#	Article	IF	CITATIONS
325	Structure and Conformations of Heteroatom-Substituted Free Carbenes and Their Group 6 Transition Metal Analogues. Organometallics, 2004, 23, 1065-1071.	1.1	53
326	Chromium Imidate Complexes from the Metathesis-Like Reaction of Phosphinimines and Chromium(0) Fischer Carbene Complexes. Organometallics, 2004, 23, 1851-1856.	1.1	10
327	ESI Mass Spectrometry as a Tool for the Study of Electron Transfer in Nonconventional Media:Â The Case of Bi- and Polymetallic Carbene Complexesâ€. Organometallics, 2004, 23, 4647-4654.	1.1	25
328	Unexpected Reaction Pathways in the Reaction of Alkoxyalkynylchromium(0) Carbenes with Aromatic Dinucleophiles. Chemistry - A European Journal, 2003, 9, 4943-4953.	1.7	25
329	Light-Induced Aminocarbene to Imine Dyotropic Rearrangement in a Chromium(0) Center:  An Unprecedented Reaction Pathway. Journal of the American Chemical Society, 2003, 125, 9572-9573.	6.6	37
330	New Rearrangement and Fragmentation Processes of Group 6 Alkoxyalkynyl (Fischer) Carbene Complexes Induced by Aromatic Diamines. Organometallics, 2003, 22, 384-386.	1.1	16
331	Synthesis and Electrochemical Properties of Novel Tetrametallic Macrocyclic Fischer Carbene Complexes. Organic Letters, 2003, 5, 1237-1240.	2.4	32
332	Synthesis of Cyclophanic Chromium(0) Bis(carbene) Complexes. Organometallics, 2001, 20, 4304-4306.	1.1	23
333	A Theoreticalâ^'Experimental Approach to the Mechanism of the Photocarbonylation of Chromium(0) (Fischer)â^'Carbene Complexes and Their Reaction with Imines. Journal of the American Chemical Society, 2000, 122, 11509-11510.	6.6	69
334	Influence of the CH/B replacement on the Reactivity of Boranthrene and Related Compounds. ACS Organic & Inorganic Au, 0, , .	1.9	6