Israel Fernandez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2484281/publications.pdf

Version: 2024-02-01

334 papers 11,324 citations

51 h-index 80 g-index

390 all docs 390 does citations

times ranked

390

7352 citing authors

#	Article	IF	CITATIONS
1	The activation strain model and molecular orbital theory: understanding and designing chemical reactions. Chemical Society Reviews, 2014, 43, 4953-4967.	38.1	604
2	Aromaticity of metallabenzenes and related compounds. Chemical Society Reviews, 2015, 44, 6452-6463.	38.1	197
3	Structural Evidence for Antiaromaticity in Free Boroles. Angewandte Chemie - International Edition, 2008, 47, 1951-1954.	13.8	178
4	Dyotropic Reactions: Mechanisms and Synthetic Applications. Chemical Reviews, 2009, 109, 6687-6711.	47.7	163
5	Synthesis of a Helical Bilayer Nanographene. Angewandte Chemie - International Edition, 2018, 57, 6774-6779.	13.8	161
6	Ï∈-Extended Corannulene-Based Nanographenes: Selective Formation of Negative Curvature. Journal of the American Chemical Society, 2018, 140, 17188-17196.	13.7	156
7	Aromaticity in Metallabenzenes. Chemistry - A European Journal, 2007, 13, 5873-5884.	3.3	155
8	Allenes and computational chemistry: from bonding situations to reaction mechanisms. Chemical Society Reviews, 2014, 43, 3041.	38.1	155
9	Direct estimate of conjugation and aromaticity in cyclic compounds with the EDA method. Faraday Discussions, 2007, 135, 403-421.	3.2	129
10	Aromaticity in transition structures. Chemical Society Reviews, 2014, 43, 4909-4921.		104
	Alomaticity in transition structures. Chemical Society Reviews, 2017, 15, 1505-1521.	38.1	124
11	Exocyclic Delocalization at the Expense of Aromaticity in 3,5-bis(Ï€-Donor) Substituted Pyrazolium Ions and Corresponding Cyclic Bent Allenes. Journal of the American Chemical Society, 2009, 131, 11875-11881.	13.7	119
11	Exocyclic Delocalization at the Expense of Aromaticity in 3,5-bis(Ï€-Donor) Substituted Pyrazolium Ions		
	Exocyclic Delocalization at the Expense of Aromaticity in 3,5-bis(Ï€-Donor) Substituted Pyrazolium Ions and Corresponding Cyclic Bent Allenes. Journal of the American Chemical Society, 2009, 131, 11875-11881. Rate-Determining Factors in Nucleophilic Aromatic Substitution Reactions. Journal of Organic	13.7	119
12	Exocyclic Delocalization at the Expense of Aromaticity in 3,5-bis(Ï€-Donor) Substituted Pyrazolium Ions and Corresponding Cyclic Bent Allenes. Journal of the American Chemical Society, 2009, 131, 11875-11881. Rate-Determining Factors in Nucleophilic Aromatic Substitution Reactions. Journal of Organic Chemistry, 2010, 75, 2971-2980.	3.2	119
12	Exocyclic Delocalization at the Expense of Aromaticity in 3,5-bis(Ĩ€-Donor) Substituted Pyrazolium Ions and Corresponding Cyclic Bent Allenes. Journal of the American Chemical Society, 2009, 131, 11875-11881. Rate-Determining Factors in Nucleophilic Aromatic Substitution Reactions. Journal of Organic Chemistry, 2010, 75, 2971-2980. Multimetallocenes. A Theoretical Study. Organometallics, 2007, 26, 4731-4736. Direct Estimate of the Strength of Conjugation and Hyperconjugation by the Energy Decomposition	13.7 3.2 2.3	119 119 118
12 13 14	Exocyclic Delocalization at the Expense of Aromaticity in 3,5-bis(Ï∈-Donor) Substituted Pyrazolium Ions and Corresponding Cyclic Bent Allenes. Journal of the American Chemical Society, 2009, 131, 11875-11881. Rate-Determining Factors in Nucleophilic Aromatic Substitution Reactions. Journal of Organic Chemistry, 2010, 75, 2971-2980. Multimetallocenes. A Theoretical Study. Organometallics, 2007, 26, 4731-4736. Direct Estimate of the Strength of Conjugation and Hyperconjugation by the Energy Decomposition Analysis Method. Chemistry - A European Journal, 2006, 12, 3617-3629. How Lewis Acids Catalyze Diels–Alder Reactions. Angewandte Chemie - International Edition, 2020, 59,	13.7 3.2 2.3 3.3	119 119 118 114
12 13 14 15	Exocyclic Delocalization at the Expense of Aromaticity in 3,5-bis(΀-Donor) Substituted Pyrazolium Ions and Corresponding Cyclic Bent Allenes. Journal of the American Chemical Society, 2009, 131, 11875-11881. Rate-Determining Factors in Nucleophilic Aromatic Substitution Reactions. Journal of Organic Chemistry, 2010, 75, 2971-2980. Multimetallocenes. A Theoretical Study. Organometallics, 2007, 26, 4731-4736. Direct Estimate of the Strength of Conjugation and Hyperconjugation by the Energy Decomposition Analysis Method. Chemistry - A European Journal, 2006, 12, 3617-3629. How Lewis Acids Catalyze Diels–Alder Reactions. Angewandte Chemie - International Edition, 2020, 59, 6201-6206. Why Do Cycloaddition Reactions Involving C ₆₀ Prefer [6,6] over [5,6] Bonds?. Chemistry -	13.7 3.2 2.3 3.3	119 119 118 114 113

#	Article	IF	Citations
19	Correlation between Hammett Substituent Constants and Directly Calculated π-Conjugation Strength. Journal of Organic Chemistry, 2006, 71, 2251-2256.	3.2	92
20	Borylene-Based Direct Functionalization of Organic Substrates: Synthesis, Characterization, and Photophysical Properties of Novel π-Conjugated Borirenes. Journal of the American Chemical Society, 2009, 131, 8989-8999.	13.7	90
21	How Dihalogens Catalyze Michael Addition Reactions. Angewandte Chemie - International Edition, 2019, 58, 8922-8926.	13.8	90
22	Substituent Effects on "Hyperconjugative―Aromaticity and Antiaromaticity in Planar Cyclopolyenes. Organic Letters, 2013, 15, 2990-2993.	4.6	87
23	Aromaticity and Activation Strain Analysis of [3 + 2] Cycloaddition Reactions between Group 14 Heteroallenes and Triple Bonds. Journal of Organic Chemistry, 2011, 76, 2310-2314.	3.2	86
24	Twelve Oneâ€Electron Ligands Coordinating One Metal Center: Structure and Bonding of [Mo(ZnCH ₃) ₉ (ZnCp*) ₃]. Angewandte Chemie - International Edition, 2008, 47, 9150-9154.	13.8	85
25	Combined activation strain model and energy decomposition analysis methods: a new way to understand pericyclic reactions. Physical Chemistry Chemical Physics, 2014, 16, 7662-7671.	2.8	85
26	Nickelâ€Catalyzed [3+2+2] Cycloadditions between Alkynylidenecyclopropanes and Activated Alkenes. Angewandte Chemie - International Edition, 2010, 49, 9886-9890.	13.8	83
27	Typeâ€l Dyotropic Reactions: Understanding Trends in Barriers. Chemistry - A European Journal, 2012, 18, 12395-12403.	3.3	79
28	The Interplay between Steric and Electronic Effects in S $<$ sub $>$ N $<$ /sub $>$ 2 Reactions. Chemistry - A European Journal, 2009, 15, 2166-2175.	3.3	76
29	Double Group Transfer Reactions: Role of Activation Strain and Aromaticity in Reaction Barriers. Chemistry - A European Journal, 2009, 15, 13022-13032.	3.3	76
30	Fascinating reactivity in gold catalysis: synthesis of oxetenes through rare 4-exo-dig allene cyclization and infrequent \hat{l}^2 -hydride elimination. Chemical Communications, 2011, 47, 9054.	4.1	76
31	Origin of the "endo rule―in Diels-Alder reactions. Journal of Computational Chemistry, 2014, 35, 371-376.	3.3	75
32	The Pauli Repulsion-Lowering Concept in Catalysis. Accounts of Chemical Research, 2021, 54, 1972-1981.	15.6	75
33	Photochemistry of Group 6 Fischer Carbene Complexes: Beyond the Photocarbonylation Reaction. Accounts of Chemical Research, 2011, 44, 479-490.	15.6	70
34	A Theoreticalâ^'Experimental Approach to the Mechanism of the Photocarbonylation of Chromium(0) (Fischer)â^'Carbene Complexes and Their Reaction with Imines. Journal of the American Chemical Society, 2000, 122, 11509-11510.	13.7	69
35	Synthesis of a Helical Bilayer Nanographene. Angewandte Chemie, 2018, 130, 6890-6895.	2.0	69
36	Homo and Hetero Molecular 3D Nanographenes Employing a Cyclooctatetraene Scaffold. Journal of the American Chemical Society, 2020, 142, 4162-4172.	13.7	68

#	Article	IF	CITATIONS
37	Synthesis and Electronic Structure of a Ferroborirene. Angewandte Chemie - International Edition, 2007, 46, 5215-5218.	13.8	67
38	Regio- and Diastereoselective Stepwise [8 + 3]-Cycloaddition Reaction between Tropone Derivatives and Donor–Acceptor Cyclopropanes. Organic Letters, 2013, 15, 4928-4931.	4.6	66
39	Is it Possible To Synthesize a Neutral Noble Gas Compound Containing a NgNg Bond? A Theoretical Study of HNgNgF (Ng=Ar, Kr, Xe). Angewandte Chemie - International Edition, 2009, 48, 366-369.	13.8	65
40	Molecular Alloys, Linking Organometallics with Intermetallic Humeâ^'Rothery Phases: The Highly Coordinated Transition Metal Compounds [M(ZnR) _{<i>n</i>}] (<i>n</i> ê%¥ 8) Containing Organoâ^'Zinc Ligands. Journal of the American Chemical Society, 2009, 131, 16063-16077.	13.7	65
41	Synthesis and characterisation of [6]-azaosmahelicenes: the first d4-heterometallahelicenes. Chemical Communications, 2012, 48, 5328.	4.1	65
42	Controlling the oxidative addition of aryl halides to Au(I). Journal of Computational Chemistry, 2014, 35, 2140-2145.	3.3	65
43	"Naked―Ga+ and In+ as Pure Acceptor Ligands: Structure and Bonding of [GaPt(GaCp*)4][BArF]. Angewandte Chemie - International Edition, 2006, 45, 5207-5210.	13.8	61
44	In-Plane Aromaticity in Double Group Transfer Reactions. Journal of Organic Chemistry, 2007, 72, 1488-1491.	3.2	60
45	Barium as Honorary Transition Metal in Action: Experimental and Theoretical Study of Ba(CO) ⁺ and Ba(CO) ^{â^'} . Angewandte Chemie - International Edition, 2018, 57, 3974-3980.	13.8	60
46	Understanding the reactivity of polycyclic aromatic hydrocarbons and related compounds. Chemical Science, 2020, 11, 3769-3779.	7.4	60
47	Metal–CO Bonding in Mononuclear Transition Metal Carbonyl Complexes. Jacs Au, 2021, 1, 623-645.	7.9	57
48	Eneâ€eneâ€yne Reactions: Activation Strain Analysis and the Role of Aromaticity. Chemistry - A European Journal, 2014, 20, 10791-10801.	3.3	56
49	Do ν(CO) Stretching Frequencies in Metal Carbonyl Complexes Unequivocally Correlate with the Intrinsic Electronâ€Donicity of Ancillary Ligands?. Chemistry - A European Journal, 2011, 17, 6602-6605.	3.3	55
50	Origin of rate enhancement and asynchronicity in iminium catalyzed Diels–Alder reactions. Chemical Science, 2020, 11, 8105-8112.	7.4	55
51	Divergent Pathways in the Reaction of Fischer Carbenes and Palladium. Organic Letters, 2007, 9, 1757-1759.	4.6	54
52	Structure and Conformations of Heteroatom-Substituted Free Carbenes and Their Group 6 Transition Metal Analogues. Organometallics, 2004, 23, 1065-1071.	2.3	53
53	Concerted and Stepwise Mechanisms in Metalâ€Free and Metalâ€Assisted [4+3] Cycloadditions Involving Allyl Cations. Chemistry - A European Journal, 2010, 16, 12147-12157.	3.3	53
54	Why Cyclooctatetraene Is Highly Stabilized: The Importance of "Two-Way―(Double) Hyperconjugation. Journal of Chemical Theory and Computation, 2012, 8, 1280-1287.	5.3	52

#	Article	IF	CITATIONS
55	Deeper Insight into the Factors Controlling H ₂ Activation by Geminal Aminoboraneâ€Based Frustrated Lewis Pairs. Chemistry - A European Journal, 2016, 22, 18801-18809.	3.3	52
56	Computational and experimental tools in solving some mechanistic problems in the chemistry of Fischer carbene complexes. Chemical Communications, 2008, , 4671.	4.1	51
57	Electronic Structure of Alkoxychromium(0) Carbene Complexes: A Joint TD-DFT/Experimental Study. Inorganic Chemistry, 2008, 47, 5253-5258.	4.0	50
58	Aromaticity in Groupâ€14 Homologues of the Cyclopropenylium Cation. Chemistry - A European Journal, 2011, 17, 2215-2224.	3.3	50
59	Nickel-Catalyzed Intramolecular $[3 + 2 + 2]$ Cycloadditions of Alkylidenecyclopropanes. A Straightforward Entry to Fused 6,7,5-Tricyclic Systems. Organic Letters, 2014, 16, 5008-5011.	4.6	49
60	Activation-Strain Analysis Reveals Unexpected Origin of Fast Reactivity in Heteroaromatic Azadiene Inverse-Electron-Demand Diels–Alder Cycloadditions. Journal of Organic Chemistry, 2015, 80, 548-558.	3.2	49
61	Carbon dioxide-based facile synthesis of cyclic carbamates from amino alcohols. Chemical Communications, 2018, 54, 3166-3169.	4.1	48
62	Deeper Insight into the Diels–Alder Reaction through the Activation Strain Model. Chemistry - an Asian Journal, 2016, 11, 3297-3304.	3.3	47
63	DFT Study on the Dielsâ^'Alder Cycloaddition between Alkenylâ^'M(0) (M = Cr, W) Carbene Complexes and Neutral 1,3-Dienes. Journal of Organic Chemistry, 2008, 73, 2083-2089.	3.2	46
64	A Hemilabile and Cooperative Nâ€Donorâ€Functionalized 1,2,3â€Triazolâ€5â€Ylidene Ligand for Alkyne Hydrothiolation Reactions. Chemistry - A European Journal, 2017, 23, 1393-1401.	3.3	46
65	Synthesis and Reactivity Studies of Amidoâ€Substituted Germanium(I)/Tin(I) Dimers and Clusters. Chemistry - A European Journal, 2019, 25, 2773-2785.	3.3	46
66	Gold-catalysed tuning of reactivity in allenes: 9-endo hydroarylation versus formal 5-exo hydroalkylation. Chemical Communications, 2013, 49, 1282.	4.1	45
67	Understanding the Reactivity of Endohedral Metallofullerenes: C ₇₈ versus Sc ₃ N@C ₇₈ . Chemistry - A European Journal, 2015, 21, 5760-5768.	3.3	45
68	Origin of the Anti-Markovnikov Hydroamination of Alkenes Catalyzed by L–Au(I) Complexes: Coordination Mode Determines Regioselectivity. ACS Catalysis, 2019, 9, 848-858.	11.2	45
69	Mechanism of the Generation of Ketenimineâ^'M(CO)n Complexes (M = Cr, W, Fe) from Fischer Carbenes and Isocyanides. Organometallics, 2007, 26, 3010-3017.	2.3	44
70	Transmetalation Reactions from Fischer Carbene Complexes to Late Transition Metals: A DFT Study. Chemistry - A European Journal, 2008, 14, 11222-11230.	3.3	44
71	Noyori Hydrogenation: Aromaticity, Synchronicity, and Activation Strain Analysis. Journal of Organic Chemistry, 2013, 78, 5669-5676.	3.2	44
72	Synthesis of Oxaspiranic Compounds through [3 + 2] Annulation of Cyclopropenones and Donor–Acceptor Cyclopropanes. Journal of Organic Chemistry, 2015, 80, 1207-1213.	3.2	44

#	Article	IF	CITATIONS
73	Effect of the Metal Fragment in the Thermal Cycloaddition between Alkynyl Metal(0) Fischer Carbene Complexes and Nitrones. Journal of Organic Chemistry, 2006, 71, 6178-6184.	3.2	43
74	Transition metal-catalysed $(4 + 3)$ cycloaddition reactions involving allyl cations. Organic and Biomolecular Chemistry, 2012, 10, 699-704.	2.8	43
75	Neutral noble gas compounds exhibiting a Xe–Xe bond: structure, stability and bonding situation. Physical Chemistry Chemical Physics, 2012, 14, 14869.	2.8	43
76	Multiple Câ^'H Bond Activation of Phenyl-Substituted Pyrimidines and Triazines Promoted by an Osmium Polyhydride: Formation of Osmapolycycles with Three, Five, and Eight Fused Rings. Organometallics, 2010, 29, 976-986.	2.3	42
77	Rhodiumâ€Catalyzed Intramolecular [3+2+2] Cycloadditions between Alkylidenecyclopropanes, Alkynes, and Alkenes. Chemistry - A European Journal, 2014, 20, 10255-10259.	3.3	42
78	How Lewis Acids Catalyze Diels–Alder Reactions. Angewandte Chemie, 2020, 132, 6260-6265.	2.0	42
79	Palladium atalyzed Intramolecular Carbene Insertion into C(sp ³)â^'H Bonds. Angewandte Chemie - International Edition, 2016, 55, 6467-6470.	13.8	41
80	Catalysis by Bidentate Iodine(III)-Based Halogen Donors: Surpassing the Activity of Strong Lewis Acids. Journal of Organic Chemistry, 2021, 86, 5317-5326.	3.2	41
81	Computational and Experimental Studies on the Mechanism of the Photochemical Carbonylation of Group 6 Fischer Carbene Complexes. Chemistry - A European Journal, 2005, 11, 5988-5996.	3.3	40
82	Carbocyclization versus Oxycyclization on the Metal-Catalyzed Reactions of Oxyallenyl C3-Linked Indoles. Journal of Organic Chemistry, 2013, 78, 6688-6701.	3.2	39
83	Unusual Metal–Metal Bonding in a Dinuclear Pt–Au Complex: Snapshot of a Transmetalation Process. Angewandte Chemie - International Edition, 2016, 55, 6978-6982.	13.8	39
84	Parent Thioketene Sâ€Oxide H ₂ CCSO: Gasâ€Phase Generation, Structure, and Bonding Analysis. Chemistry - A European Journal, 2017, 23, 16566-16573.	3.3	39
85	The Valence Orbitals of the Alkalineâ€Earth Atoms. Chemistry - A European Journal, 2020, 26, 14194-14210.	3.3	39
86	Hyperconjugative Stabilization in Alkyl Carbocations:  Direct Estimate of the β-Effect of Group-14 Elements. Journal of Physical Chemistry A, 2007, 111, 8028-8035.	2.5	38
87	DFT Study of Thermal 1,3-Dipolar Cycloaddition Reactions between Alkynyl Metal(0) Fischer Carbene Complexes and 3 <i>H</i> -1,2-Dithiole-3-thione Derivatives. Organometallics, 2011, 30, 466-476.	2.3	38
88	One-Pot Synthesis of 1,3,5-Triazine Derivatives via Controlled Cross-Cyclotrimerization of Nitriles: A Mechanism Approach. Journal of Organic Chemistry, 2014, 79, 7012-7024.	3.2	38
89	Light-Induced Aminocarbene to Imine Dyotropic Rearrangement in a Chromium(0) Center:  An Unprecedented Reaction Pathway. Journal of the American Chemical Society, 2003, 125, 9572-9573.	13.7	37
90	Stereoelectronic Effects on Type I 1,2-Dyotropic Rearrangements in Vicinal Dibromides. Chemistry - A European Journal, 2006, 12, 6323-6330.	3.3	37

#	Article	IF	Citations
91	Controlling the Ambiphilic Nature of Ïf-Arylpalladium Intermediates in Intramolecular Cyclization Reactions. Accounts of Chemical Research, 2014, 47, 168-179.	15.6	37
92	Siteâ€selective Synthesis of βâ€[70]PCBMâ€like Fullerenes: Efficient Application in Perovskite Solar Cells. Chemistry - A European Journal, 2019, 25, 3224-3228.	3.3	37
93	Bifunctional Hydrogen Bond Donorâ€Catalyzed Diels–Alder Reactions: Origin of Stereoselectivity and Rate Enhancement. Chemistry - A European Journal, 2021, 27, 5180-5190.	3.3	37
94	Steric versus Electronic Effects in the Structure of Heteroatom (S and O)-Substituted Free and Metal (Cr and W)-Complexed Carbenes. Organometallics, 2007, 26, 5854-5858.	2.3	36
95	Intramolecular Pd(0)-Catalyzed Reactions of (2-Iodoanilino)-aldehydes: A Joint Experimental–Computational Study. Journal of Organic Chemistry, 2012, 77, 10272-10284.	3.2	36
96	Factors Controlling βâ€Elimination Reactions in Groupâ€10 Metal Complexes. Chemistry - A European Journal, 2015, 21, 14362-14369.	3.3	36
97	Elongated Ïf-Borane versus Ïf-Borane in Pincer–POP–Osmium Complexes. Organometallics, 2017, 36, 2298-2307.	2.3	36
98	Ring Expansion of Bicyclic Methyleneaziridines via Concerted, Near-Barrierless [2,3]-Stevens Rearrangements of Aziridinium Ylides. ACS Catalysis, 2018, 8, 7907-7914.	11.2	36
99	Ï∈-Stacking Effect on Levoglucosenone Derived Internal Chiral Auxiliaries. A Case of Complete Enantioselectivity Inversion on the Dielsâ^'Alder Reaction. Organic Letters, 2008, 10, 3389-3392.	4.6	35
100	Trapping Intermediates in an $[8+2]$ Cycloaddition Reaction with the Help of DFT Calculations. Organic Letters, 2011, 13, 2892-2895.	4.6	35
101	Effects of Attractive Through Space π–π* Interactions on the Structure, Reactivity, and Activity of Grubbs II Complexes. Organometallics, 2012, 31, 1155-1160.	2.3	35
102	Reactivity in Nucleophilic Vinylic Substitution (SNV):SNVπ versus SNVσ Mechanistic Dichotomy. Journal of Organic Chemistry, 2013, 78, 8574-8584.	3.2	35
103	Unveiling the uncatalyzed reaction of alkynes with 1,2-dipoles for the room temperature synthesis of cyclobutenes. Chemical Communications, 2015, 51, 3395-3398.	4.1	35
104	Structure and Bonding of [Eâ^'Cpâ^'E′]+ Complexes (E and E′ = Bâ^'Tl; Cp = Cyclopentadienyl). Organometallics, 2008, 27, 1106-1111.	2.3	34
105	Origin of Reactivity Trends of Noble Gas Endohedral Fullerenes Ng ₂ @C ₆₀ (Ng) Tj ETQq1	. 1.0.7843 5.3	14 rgBT /
106	Osmium(II)–Bis(dihydrogen) Complexes Containing <i>C</i> _{aryl} , <i>C</i> _{NHC} –Chelate Ligands: Preparation, Bonding Situation, and Acidity. Organometallics, 2015, 34, 778-789.	2.3	34
107	Influence of the Lewis Acid/Base Pairs on the Reactivity of Geminal E H ₂ â€E′ Frustrated Lewis Pairs. Chemistry - A European Journal, 2018, 24, 17823-17831.	3.3	34
108	Ï€-Conjugation in donor-substituted cyanoethynylethenes: an EDA study. Chemical Communications, 2006, , 5030-5032.	4.1	33

#	Article	IF	CITATIONS
109	Understanding the Reactivity of Ionâ€Encapsulated Fullerenes. Chemistry - A European Journal, 2017, 23, 11030-11036.	3.3	33
110	Evidence for a Bis (Elongated $\ddot{l}f$)-Dihydrideborate Coordinated to Osmium. Inorganic Chemistry, 2018, 57, 4482-4491.	4.0	33
111	Aromaticity can enhance the reactivity of P-donor/borole frustrated Lewis pairs. Chemical Communications, 2019, 55, 675-678.	4.1	33
112	Helically Arranged Chiral Molecular Nanographenes. Journal of the American Chemical Society, 2021, 143, 11864-11870.	13.7	33
113	Synthesis and Electrochemical Properties of Novel Tetrametallic Macrocyclic Fischer Carbene Complexes. Organic Letters, 2003, 5, 1237-1240.	4.6	32
114	Versatile Synthesis of Polyfunctionalized Carbazoles from (3-lodoindol-2-yl)butynols via a Gold-Catalyzed Intramolecular Iodine-Transfer Reaction. ACS Catalysis, 2015, 5, 3417-3421.	11.2	32
115	A Oneâ€Pot Synthesis of <i>N</i> â€Arylâ€2â€Oxazolidinones and Cyclic Urethanes by the Lewis Base Catalyzed Fixation of Carbon Dioxide into Anilines and Bromoalkanes. Chemistry - A European Journal, 2016, 22, 10355-10359.	3.3	32
116	Hydrogenation of Multiple Bonds by Geminal Aminoboraneâ€Based Frustrated Lewis Pairs. Chemistry - A European Journal, 2018, 24, 8833-8840.	3.3	32
117	A dipyrromethane-based diphosphane–germylene as precursor to tetrahedral copper(<scp>i</scp>) and T-shaped silver(<scp>i</scp>) and gold(<scp>i</scp>) PGeP pincer complexes. Dalton Transactions, 2019, 48, 13273-13280.	3.3	32
118	Substituent Effects on the Electrochemical, Spectroscopic, and Structural Properties of Fischer Mono- and Biscarbene Complexes of Chromium(0). Inorganic Chemistry, 2013, 52, 6674-6684.	4.0	31
119	A gold-catalysed imine–propargylamine cascade sequence: synthesis of 3-substituted-2,5-dimethylpyrazines and the reaction mechanism. Chemical Communications, 2014, 50, 4567-4570.	4.1	31
120	Synthesis of the ABC fragment of calyciphylline A-type Daphniphyllum alkaloids. Tetrahedron, 2015, 71, 3642-3651.	1.9	31
121	Reactivity and Selectivity of Bowlâ€Shaped Polycyclic Aromatic Hydrocarbons: Relationship to C ₆₀ . Chemistry - A European Journal, 2016, 22, 1368-1378.	3.3	31
122	Stable Pentacoordinate Carbocations: Structure and Bonding. Chemistry - A European Journal, 2007, 13, 8620-8626.	3.3	30
123	Organometallic Chemistry of Ga ⁺ : Formation of an Unusual Gallium Dimer in the Coordination Sphere of Ruthenium. Chemistry - A European Journal, 2008, 14, 10789-10796.	3.3	30
124	Deeper Insight into the Mechanism of the Reaction of Photogenerated Metallaketenes and Imines. Journal of the American Chemical Society, 2008, 130, 13892-13899.	13.7	30
125	Striking Alkenol Versus Allenol Reactivity: Metalâ€Catalyzed Chemodifferentiating Oxycyclization of Enallenols. Chemistry - A European Journal, 2011, 17, 15005-15013.	3.3	30
126	Osmium-Promoted Dehydrogenation of Amine–Boranes and B–H Bond Activation of the Resulting Amino–Boranes. Organometallics, 2014, 33, 1104-1107.	2.3	30

#	Article	IF	CITATIONS
127	Synthesis and Photophysical Properties of Tâ€Shaped Coinageâ€Metal Complexes. Chemistry - A European Journal, 2020, 26, 6993-6998.	3.3	30
128	Cationic Dihydride Boryl and Dihydride Silyl Osmium(IV) NHC Complexes: A Marked Diagonal Relationship. Organometallics, 2013, 32, 2744-2752.	2.3	29
129	Tuning the Photophysical Properties of BODIPY Molecules by Ï€â€Conjugation with Fischer Carbene Complexes. Chemistry - A European Journal, 2014, 20, 1367-1375.	3.3	29
130	Hydroboration and Hydrogenation of an Osmium–Carbon Triple Bond: Osmium Chemistry of a Bis-Ïf-Borane. Organometallics, 2015, 34, 547-550.	2.3	29
131	Azole Assisted C–H Bond Activation Promoted by an Osmium-Polyhydride: Discerning between N and NH. Organometallics, 2015, 34, 1898-1910.	2.3	29
132	Effect of Lewis acid bulkiness on the stereoselectivity of Diels–Alder reactions between acyclic dienes and α,β-enals. Organic Chemistry Frontiers, 2017, 4, 1390-1399.	4.5	29
133	Electrochemical illumination of thienyl and ferrocenyl chromium(0) Fischer carbene complexes. Dalton Transactions, 2013, 42, 5367.	3.3	28
134	On the incidence of non-covalent intramolecular interligand interactions on the conformation of carbene complexes: a case study. Dalton Transactions, 2013, 42, 898-901.	3.3	28
135	Gold-catalyzed oxycyclization of allenic carbamates: expeditious synthesis of 1,3-oxazin-2-ones. Beilstein Journal of Organic Chemistry, 2013, 9, 818-826.	2.2	28
136	Buckyball Difluoride F ₂ ^{â^'} @C ₆₀ ⁺ â€"A Singleâ€Molecule Crystal. Angewandte Chemie - International Edition, 2018, 57, 13931-13934.	13.8	28
137	EDA Study of π-Conjugation in Tunable Bis(gem-diethynylethene) Fluorophores. Journal of Organic Chemistry, 2007, 72, 7367-7372.	3.2	27
138	Consistent Aromaticity Evaluations of Methylenecyclopropene Analogues. Journal of Organic Chemistry, 2010, 75, 8252-8257.	3.2	27
139	Peroxide bond strength of antimalarial drugs containing an endoperoxide cycle. Relation with biological activity. Organic and Biomolecular Chemistry, 2011, 9, 4098.	2.8	27
140	Understanding the Reactivity of Planar Polycyclic Aromatic Hydrocarbons: Towards the Graphene Limit. Chemistry - A European Journal, 2016, 22, 10572-10580.	3.3	27
141	Bimetallic scorpionate-based helical organoaluminum complexes for efficient carbon dioxide fixation into a variety of cyclic carbonates. Catalysis Science and Technology, 2020, 10, 3265-3278.	4.1	27
142	Regioselective and Stepwise [8 + 2] Cycloaddition Reaction between Alkynyl–Fischer Carbene Complexes and Tropothione. Journal of Organic Chemistry, 2012, 77, 6648-6652.	3.2	26
143	Palladium-catalyzed carbocyclization–cross-coupling reactions of two different allenic moieties: synthesis of 3-(buta-1,3-dienyl) carbazoles and mechanistic insights. Chemical Communications, 2012, 48, 6604.	4.1	26
144	Influence of the Transitionâ€Metal Fragment on the Reactivity of Metallaanthracenes. Chemistry - A European Journal, 2017, 23, 6634-6642.	3.3	26

#	Article	IF	CITATIONS
145	Understanding the Effect of î±-Cationic Phosphines and Group 15 Analogues on ï€-Acid Catalysis. Organometallics, 2017, 36, 460-466.	2.3	26
146	A Germylene Supported by Two 2â€Pyrrolylphosphane Groups as Precursor to PGeP Pincer Squareâ€Planar Groupâ€10 Metal(II) and Tâ€Shaped Gold(I) Complexes. Chemistry - A European Journal, 2019, 25, 12423-1243	0.3.3	26
147	Carbones and Heavier Ylidones (EL ₂) in Frustrated Lewis Pair Chemistry: Influence of the Nature of EL ₂ on Dihydrogen Activation. Inorganic Chemistry, 2019, 58, 7828-7836.	4.0	26
148	Understanding the Câ^'F Bond Activation Mediated by Frustrated Lewis Pairs: Crucial Role of Nonâ€covalent Interactions. Chemistry - A European Journal, 2021, 27, 3823-3831.	3.3	26
149	Lewis Acidâ€Catalyzed Dielsâ€Alder Reactions: Reactivity Trends across the Periodic Table. Chemistry - A European Journal, 2021, 27, 10610-10620.	3.3	26
150	Unexpected Reaction Pathways in the Reaction of Alkoxyalkynylchromium(0) Carbenes with Aromatic Dinucleophiles. Chemistry - A European Journal, 2003, 9, 4943-4953.	3.3	25
151	ESI Mass Spectrometry as a Tool for the Study of Electron Transfer in Nonconventional Media: The Case of Bi- and Polymetallic Carbene Complexesâ€. Organometallics, 2004, 23, 4647-4654.	2.3	25
152	The Photochemical Reactivity of the "Photo-Inert―Tungsten (Fischer) Carbene Complexes. Angewandte Chemie - International Edition, 2006, 45, 125-128.	13.8	25
153	Synthesis, Structure, and Electronic Properties of Extended Ï€â€Conjugated Groupâ€6 Fischer Alkoxy–Bis(carbene) Complexes. Chemistry - A European Journal, 2013, 19, 5899-5908.	3.3	25
154	Understanding the Oxidative Addition of Ïfâ€Bonds to Groupâ€13 Compounds. Chemistry - A European Journal, 2016, 22, 13669-13676.	3.3	25
155	Understanding the Reactivity of Fullerenes Through the Activation Strain Model. European Journal of Organic Chemistry, 2018, 2018, 1394-1402.	2.4	25
156	Intermolecular [3+3] ring expansion of aziridines to dehydropiperi-dines through the intermediacy of aziridinium ylides. Nature Communications, 2020, 11, 1273.	12.8	25
157	Regioselective Monoborylation of Spirocyclobutenes. Organic Letters, 2021, 23, 7434-7438.	4.6	25
158	General Route to Olefins and Polyenes Having Metal Termini through the Palladium-Catalyzed Self-Dimerization of Bimetallic Fischer Carbenes. Organometallics, 2011, 30, 1794-1803.	2.3	24
159	Prins Cyclization Catalyzed by a Fe ^{III} /Trimethylsilyl Halide System: The Oxocarbenium Ion Pathway versus the [2+2] Cycloaddition. Chemistry - A European Journal, 2015, 21, 15211-15217.	3.3	24
160	An Entry to Stable Mixed Phosphine–Osmium–NHC Polyhydrides. Inorganic Chemistry, 2016, 55, 5062-5070.	4.0	24
161	A Route to Base Coordinate Silicon Difluoride and the Silicon Trifluoride Radical. Chemistry - A European Journal, 2018, 24, 1264-1268.	3.3	24
162	Synthesis of Cyclophanic Chromium(0) Bis(carbene) Complexes. Organometallics, 2001, 20, 4304-4306.	2.3	23

#	Article	IF	Citations
163	Aromatization of a Dihydro-3-ruthenaindolizine Complex. Organometallics, 2009, 28, 4876-4879.	2.3	23
164	Electrochemical and Computational Study of Tungsten(0) Ferrocene Complexes: Observation of the Mono-Oxidized Tungsten(0) Ferrocenium Species and Intramolecular Electronic Interactions. Organometallics, 2013, 32, 7334-7344.	2.3	23
165	Gold-Catalyzed Reactivity Reversal of Indolizidinone-Tethered \hat{l}^2 -Amino Allenes Controlled by the Stereochemistry. ACS Catalysis, 2015, 5, 4842-4845.	11.2	23
166	Synthesis and Properties of Mononuclear Group 10 Alkoxyâ€Biscarbene Complexes. Chemistry - A European Journal, 2009, 15, 3595-3603.	3.3	22
167	Control over the E/Z Selectivity of the Catalytic Dimerization of Group 6 (Fischer) Metal Carbene Complexes. Journal of Organic Chemistry, 2013, 78, 865-871.	3.2	22
168	Stereodivergentâ€atâ€Metal Synthesis of [60]Fullerene Hybrids. Angewandte Chemie - International Edition, 2017, 56, 2136-2139.	13.8	22
169	The Electronic Structure and Photochemistry of Groupâ€6 Bimetallic (Fischer) Carbene Complexes: Beyond the Photocarbonylation Reaction. Chemistry - A European Journal, 2010, 16, 6616-6624.	3.3	21
170	A DFT Study of the Ambiphilic Nature of Arylpalladium Species in Intramolecular Cyclization Reactions. Journal of Organic Chemistry, 2011, 76, 1592-1598.	3.2	21
171	Preparation, Structure, Bonding, and Preliminary Reactivity of a Six-Coordinate d ⁴ Osmium–Boryl Complex. Organometallics, 2012, 31, 4646-4649.	2.3	21
172	lodine recycling via 1,3-migration in iodoindoles under metal catalysis. Chemical Communications, 2013, 49, 7779.	4.1	21
173	Direct Assembly of 2â€Oxazolidinones by Chemical Fixation of Carbon Dioxide. Chemistry - A European Journal, 2014, 20, 8867-8871.	3.3	21
174	Diverting Hydrogenations with Wilkinson's Catalyst towards Highly Reactive Rhodium(I) Species. Angewandte Chemie - International Edition, 2015, 54, 14321-14325.	13.8	21
175	Energy Decomposition Analysis and Related Methods. , 2018, , 191-226.		21
176	Understanding the reactivity of frustrated Lewis pairs with the help of the activation strain model–energy decomposition analysis method. Chemical Communications, 2022, 58, 4931-4940.	4.1	21
177	The Noncarbonylative Photochemistry of Group 6 Fischer Carbene Complexes. European Journal of Inorganic Chemistry, 2008, 2008, 2454-2462.	2.0	20
178	Metalâ€Tuned Photochemistry of Metalloceneâ€Substituted Chromium(0)–Carbene Complexes. Chemistry - A European Journal, 2009, 15, 593-596.	3.3	20
179	Studying Double Group Transfer Reactions by Means of Computational Methods. Current Organic Chemistry, 2010, 14, 1578-1585.	1.6	20
180	Control over the Chemoselectivity of Pdâ€Catalyzed Cyclization Reactions of (2â€Iodoanilino)carbonyl Compounds. Chemistry - A European Journal, 2012, 18, 6950-6958.	3.3	20

#	Article	lF	CITATIONS
181	Redox Behaviour of Cymantrene Fischer Carbene Complexes in Designing Organometallic Multiâ€ŧags. Chemistry - A European Journal, 2014, 20, 4974-4985.	3.3	20
182	Interplay between aromaticity and strain in double group transfer reactions to 1,2-benzyne. Journal of Computational Chemistry, 2016, 37, 1265-1273.	3.3	20
183	Stereocontrolled Access to Enantiopure 7-Substituted <i>cis</i> - and <i>trans</i> -Octahydroindoles. Organic Letters, 2016, 18, 5836-5839.	4.6	20
184	Predicting and Understanding the Reactivity of Aza[60]fullerenes. Journal of Organic Chemistry, 2017, 82, 754-758.	3.2	20
185	Fine‶uning the Fluorescence Gain of FRET‶ype (Bodipy)(Bodipy′)â€NHC‶ridium Complexes for CO Detection with a Large Virtual Stokes Shift. Chemistry - A European Journal, 2017, 23, 711-719.	etjon 3.3	20
186	Understanding the Reactivity of Neutral Geminal Group 14 Element/Phosphorus Frustrated Lewis Pairs. Journal of Physical Chemistry A, 2019, 123, 10095-10101.	2.5	20
187	Wie Dihalogene Michaelâ€Additionsreaktionen katalysieren. Angewandte Chemie, 2019, 131, 9015-9020.	2.0	20
188	Iridium-Promoted B–B Bond Activation: Preparation and X-ray Diffraction Analysis of a mer-Tris(boryl) Complex. Inorganic Chemistry, 2019, 58, 4712-4717.	4.0	20
189	Double Group Transfer Reactions as Indicators of Aromatic Stabilization. European Journal of Organic Chemistry, 2007, 2007, 5410-5415.	2.4	19
190	Platinumâ€Catalyzed Divergent Reactivity of αâ€Hydroxyallenes: Synthesis of Dihydrofurans and α,βâ€Unsaturated Ketones. Advanced Synthesis and Catalysis, 2013, 355, 2681-2685.	4.3	19
191	Nucleophilic Substitution in Reactions between Partially Hydrated Superoxide Anions and Alkyl Halides. Journal of Organic Chemistry, 2015, 80, 6133-6142.	3.2	19
192	Remote Control by π-Conjugation of the Emissive Properties of Fischer Carbene-BODIPY Dyads. Inorganic Chemistry, 2016, 55, 2737-2747.	4.0	19
193	Enantiodivergent Synthesis of (+)―and (â^')â€Pyrrolidineâ€197B: Synthesis of <i>trans</i> è2,5â€Disubstitute Pyrrolidines by Intramolecular Hydroamination. Chemistry - A European Journal, 2016, 22, 15529-15535.	ed 3.3	19
194	Factors Controlling the Reactivity and Selectivity of the Diels–Alder Reactions Involving 1,2-Azaborines. Journal of Organic Chemistry, 2016, 81, 6554-6562.	3.2	18
195	Pt–M Complexes (M=Ag, Au) as Models for Intermediates in Transmetalation Processes. Chemistry - A European Journal, 2018, 24, 13879-13889.	3.3	18
196	Rationalizing the Al I â€Promoted Oxidative Addition of Câ^'C Versus Câ^'H Bonds in Arenes. Chemistry - A European Journal, 2020, 26, 11806-11813.	3.3	18
197	Reactivity of [Pt(P ^{<i>t</i>} Bu ₃) ₂] with Zinc(I/II) Compounds: Bimetallic Adducts, Zn–Zn Bond Cleavage, and Cooperative Reactivity. Organometallics, 2021, 40, 1113-1119.	2.3	18
198	The Gold(I)- and Silver(I)-Catalyzed Nicholas Reaction. Organometallics, 2013, 32, 951-956.	2.3	17

#	Article	IF	Citations
199	Unprecedented Addition of Tetrahydroborate to an Osmium–Carbon Triple Bond. Organometallics, 2014, 33, 2689-2692.	2.3	17
200	Ϊƒ-Holeâç ¯i€ and lone pairâç ¯i€ interactions in benzylic halides. Organic and Biomolecular Chemistry, 2015, 13, 6194-6202.	2.8	17
201	Synthesis of the Tetracyclic ABCD Ring Systems of Madangamines D–F. Organic Letters, 2015, 17, 568-571.	4.6	17
202	2,4,5-Trimethylimidazolium Scaffold for Anion Recognition Receptors Acting Through Charge-Assisted Aliphatic and Aromatic C–H Interactions. Journal of Organic Chemistry, 2016, 81, 3790-3798.	3.2	17
203	Pd-Catalyzed α-Arylation of Sulfones in a Three-Component Synthesis of 3-[2-(Phenyl/methylsulfonyl)ethyl]indoles. ACS Catalysis, 2016, 6, 1691-1700.	11.2	17
204	Access to Enantiopure 5-, 7-, and 5,7-Substituted <i>cis</i> -Decahydroquinolines: Enantioselective Synthesis of (â^²)-Cermizine B. Organic Letters, 2017, 19, 1714-1717.	4.6	17
205	Direct Access to 2,3,4,6-Tetrasubstituted Tetrahydro-2 <i>H</i> -pyrans via Tandem S _N 2′–Prins Cyclization. Organic Letters, 2017, 19, 4834-4837.	4.6	17
206	Highly Enantioselective Cobalt atalyzed (3+2) Cycloadditions of Alkynylidenecyclopropanes. Angewandte Chemie - International Edition, 2021, 60, 8182-8188.	13.8	17
207	New Rearrangement and Fragmentation Processes of Group 6 Alkoxyalkynyl (Fischer) Carbene Complexes Induced by Aromatic Diamines. Organometallics, 2003, 22, 384-386.	2.3	16
208	Synthesis, Structure and Electrochemistry of Macrocyclic Tetrametallic Group 6 (Fischer) Carbene Complexes. European Journal of Inorganic Chemistry, 2011, 2011, 842-849.	2.0	16
209	Computational insights on the mechanism of the catalytic hydrogenation with BINAP–diamine–Ru complexes: the role of base and origin of selectivity. Chemical Communications, 2013, 49, 4277-4279.	4.1	16
210	Synthesis of Isoquinolinâ€4â€ols by Palladiumâ€Catalysed Intramolecular Nucleophilic Addition of Aryl Iodides to Aldehydes. Advanced Synthesis and Catalysis, 2014, 356, 3237-3243.	4.3	16
211	Transition Metalâ€Catalysed Intramolecular Carbenoid Câ^'H Insertion for Pyrrolidine Formation by Decomposition of αâ€Diazoesters. Advanced Synthesis and Catalysis, 2017, 359, 3654-3664.	4.3	16
212	Barium as Honorary Transition Metal in Action: Experimental and Theoretical Study of Ba(CO) ⁺ and Ba(CO) ^{â°'} . Angewandte Chemie, 2018, 130, 4038-4044.	2.0	16
213	Dihydroboration of Alkyl Nitriles Catalyzed by an Osmium-Polyhydride: Scope, Kinetics, and Mechanism. Organometallics, 2020, 39, 3864-3872.	2.3	16
214	Reactions of Late Firstâ∈Row Transition Metal (Feâ∈Zn) Dichlorides with a PGeP Pincer Germylene. Chemistry - A European Journal, 2021, 27, 4985-4992.	3.3	16
215	Mono- and dinuclear osmium N,N′-di- and tetraphenylbipyridyls and extended bipyridyls. Synthesis, structure and electrochemistry. Dalton Transactions, 2013, 42, 3597.	3.3	15
216	Divergent Reactivity of Homologue <i>ortho</i> â€Allenylbenzaldehydes Controlled by the Tether Length: Chromone versus Chromene Formation. Chemistry - A European Journal, 2015, 21, 1533-1541.	3.3	15

#	Article	IF	Citations
217	Hydrogen bond–aromaticity cooperativity in selfâ€assembling 4â€pyridone chains. Journal of Computational Chemistry, 2016, 37, 59-63.	3.3	15
218	Palladium-catalysed intramolecular carbenoid insertion of \hat{l}_{\pm} -diazo- \hat{l}_{\pm} -(methoxycarbonyl)acetanilides for oxindole synthesis. Chemical Communications, 2017, 53, 3110-3113.	4.1	15
219	Organo-Aluminum and Zinc Acetamidinates: Preparation, Coordination Ability, and Ring-Opening Polymerization Processes of Cyclic Esters. Inorganic Chemistry, 2018, 57, 12132-12142.	4.0	15
220	Reduction of Benzonitriles via Osmium–Azavinylidene Intermediates Bearing Nucleophilic and Electrophilic Centers. Inorganic Chemistry, 2019, 58, 8673-8684.	4.0	15
221	The Photochemical Reaction of Vinylaziridines and Vinylazetidines with Chromium(0) and Molybdenum(0) (Fischer) Carbene Complexes. Chemistry - A European Journal, 2014, 20, 1359-1366.	3.3	14
222	Palladium atalyzed Intramolecular Carbene Insertion into C(sp ³)â^'H Bonds. Angewandte Chemie, 2016, 128, 6577-6580.	2.0	14
223	A DFT-Elucidated Comparison of the Solution-Phase and SAM Electrochemical Properties of Short-Chain Mercaptoalkylferrocenes: Synthetic and Spectroscopic Aspects, and the Structure of Fc–CH ₂ CH ₂ –Fc. Inorganic Chemist 2016, 55, 2584-2596.	4.0 :ry,	14
224	Unraveling the Nature of the Catalytic Power of Fluoroacetate Dehalogenase. ChemCatChem, 2018, 10, 1052-1063.	3.7	14
225	Palladium Catalysis in the Intramolecular Carbene C–H Insertion of αâ€Diazoâ€Î±â€(methoxycarbonyl)acetamides to Form βâ€Lactams. European Journal of Organic Chemistry, 201 2018, 4446-4455.	8,4	14
226	Redox-Assisted Osmium-Promoted C–C Bond Activation of Alkylnitriles. Organometallics, 2018, 37, 2014-2017.	2.3	14
227	Rh-Catalyzed Aziridine Ring Expansions to Dehydropiperazines. Organic Letters, 2020, 22, 3637-3641.	4.6	14
228	Cycloosmathioborane Compounds: Other Manifestations of the HÃ $\frac{1}{4}$ ckel Aromaticity. Inorganic Chemistry, 2019, 58, 2265-2269.	4.0	14
229	Siteâ€Specific Reductionâ€Induced Hydrogenation of a Helical Bilayer Nanographene with K and Rb Metals: Electron Multiaddition and Selective Rb ⁺ Complexation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	14
230	Study of the ESI-Mass Spectrometry Ionization Mechanism of Fischer Carbene Complexes. Journal of Organic Chemistry, 2005, 70, 5269-5277.	3.2	13
231	Cu-Catalyzed Synthesis of Symmetric Group 6 (Fischer) Bis-carbene Complexes. Organic Letters, 2008, 10, 365-368.	4.6	13
232	Behavior of Group 6 Fischer Aminocarbene Complexes in a Supercharged Medium: A Single Electron Transferâ ⁻ H Atom Transfer Process. Organometallics, 2009, 28, 2762-2772.	2.3	13
233	Electron Delocalization in Homoconjugated 7,7â€Diarylnorbornane Systems: A Computational and Experimental Study. Chemistry - A European Journal, 2011, 17, 7327-7335.	3.3	13
234	Cationic Au ^{III} versus Au ^I : Catalystâ€Controlled Divergent Reactivity of Alkyneâ€Tethered Lactams. Chemistry - A European Journal, 2017, 23, 3012-3015.	3.3	13

#	Article	IF	CITATIONS
235	Synthesis, antioxidant properties and neuroprotection of α-phenyl-tert-butylnitrone derived HomoBisNitrones in in vitro and in vivo ischemia models. Scientific Reports, 2020, 10, 14150.	3.3	13
236	Biomimetic 2-Imino-Nazarov Cyclizations via Eneallene Aziridination. Journal of the American Chemical Society, 2020, 142, 5568-5573.	13.7	13
237	Stereochemistry of the Tetrabutylammonium Cyanide-Catalyzed Cyanosylilation of Cyclic $\hat{l}\pm,\hat{l}^2$ -Epoxyketones $\hat{a}\in$ Dependence of the Diastereoselectivity on the Ring Size. European Journal of Organic Chemistry, 2006, 2006, 3969-3976.	2.4	12
238	Insight into the Mechanism of Quinoline Formation by the Chromium(0) Fischer Carbene Catalytic Transmetallation to Palladium and Rhodium: Application to the Synthesis of the Alkaloids of <i>Ruta chalepensis</i> i>. European Journal of Organic Chemistry, 2011, 2011, 3293-3300.	2.4	12
239	Functionalized arene–ruthenium(ii) complexes: dangling vs. tethering side chain. Dalton Transactions, 2013, 42, 5412.	3.3	12
240	Fischer-type gold(<scp>i</scp>) carbene complexes stabilized by aurophilic interactions. Dalton Transactions, 2014, 43, 398-401.	3.3	12
241	Iron(III)-Catalyzed Prins Cyclization towards the Synthesis of trans-Fused Bicyclic Tetrahydropyrans. Synthesis, 2015, 47, 1791-1798.	2.3	12
242	Systematic Modulation of the Fluorescence Brightness in Boronâ€Dipyrromethene (BODIPY)â€Tagged ⟨i>Nà€Heterocyclic Carbene (NHC)â€"Goldâ€"Thiolates. Chemistry - A European Journal, 2016, 22, 18066-18072.	3.3	12
243	Metalâ€Free Alleneâ€Based Synthesis of Enantiopure Fused Polycyclic Sultones. Chemistry - A European Journal, 2016, 22, 285-294.	3.3	12
244	Enhancement of anion recognition exhibited by a zinc-imidazole-based ion-pair receptor composed of C–H hydrogen- and halogen-bond donor groups. Dalton Transactions, 2018, 47, 15941-15947.	3.3	12
245	Unraveling the Selectivity Patterns in Phosphine-Catalyzed Annulations of Azomethine Imines and Allenoates. Journal of Organic Chemistry, 2020, 85, 9272-9280.	3.2	12
246	A dicoordinate gold(<scp>i</scp>)–ethylene complex. Chemical Communications, 2021, 57, 9280-9283.	4.1	12
247	Biological activity of Fe(iii) aquo-complexes towards ferric chelate reductase (FCR). Organic and Biomolecular Chemistry, 2012, 10, 2272.	2.8	11
248	Microwave-Promoted Synthesis of Bicyclic Azocine-β-Lactams from Bis(allenes). Journal of Organic Chemistry, 2014, 79, 7075-7083.	3.2	11
249	Breaking the Isolated Pentagon Rule by Encapsulating Xe ₂ in C ₆₀ : The Guest Defines the Shape of the Host. ChemistrySelect, 2016, 1, 2405-2408.	1.5	11
250	Fluorescence Quenching in BODIPYs Having Ir―and Rhâ€Tethered Complexes. European Journal of Inorganic Chemistry, 2016, 2016, 844-852.	2.0	11
251	Rationalizing the Regioselectivity of the Diels–Alder Biscycloaddition of Fullerenes. Journal of Organic Chemistry, 2018, 83, 3285-3292.	3.2	11
252	Influence of the charge on the reactivity of azafullerenes. Physical Chemistry Chemical Physics, 2018, 20, 28011-28018.	2.8	11

#	Article	IF	CITATIONS
253	Janus Face of the Steric Effect in a Lewis Acid Catalyst with Size-Exclusion Design: Steric Repulsion and Steric Attraction in the Catalytic Exo-Selective Diels–Alder Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 10869-10875.	6.7	11
254	Palladiumâ€and Rutheniumâ€Catalyzed Intramolecular Carbene C Ar â^'H Functionalization of γâ€Aminoâ€Î±â€diazoesters for the Synthesis of Tetrahydroquinolines. Chemistry - A European Journal, 2019, 25, 10239-10245.	3.3	11
255	Stepwise reduction of a corannulene-based helical molecular nanographene with Na metal. Chemical Communications, 2022, 58, 5574-5577.	4.1	11
256	Chromium Imidate Complexes from the Metathesis-Like Reaction of Phosphinimines and Chromium(0) Fischer Carbene Complexes. Organometallics, 2004, 23, 1851-1856.	2.3	10
257	On the Structure and Spin States of Fe(III)-EDDHA Complexes. Inorganic Chemistry, 2006, 45, 5321-5327.	4.0	10
258	Synthesis of Fused Cyclopentenones through Palladiumâ€Catalyzed Cyclization of 2â€Iodoaryl Allenols. Advanced Synthesis and Catalysis, 2014, 356, 1370-1374.	4.3	10
259	Discovering Mechanistic Insights by Application of <i>Tandem</i> Ultrafast Multidimensional NMR Techniques. Journal of Organic Chemistry, 2014, 79, 8086-8093.	3.2	10
260	The Diels–Alder Reaction from the EDAâ€NOCV Perspective: A Reâ€Examination of the Frontier Molecular Orbital Model. European Journal of Organic Chemistry, 2019, 2019, 478-485.	2.4	10
261	Understanding the role of frustrated Lewis pairs as ligands in transition metal-catalyzed reactions. Dalton Transactions, 2020, 49, 3129-3137.	3.3	10
262	Tunable Aziridinium Ylide Reactivity: Noncovalent Interactions Enable Divergent Product Outcomes. ACS Catalysis, 2022, 12, 1572-1580.	11.2	10
263	Further Shortening of the Câ^'C Single Bond in Substituted Tetrahedranyl Tetrahedrane Systems: An Energy Decomposition Analysis. Journal of Physical Chemistry A, 2008, 112, 12919-12924.	2.5	9
264	Response to the Comment on "The Interplay between Steric and Electronic Effects in S _N 2 Reactions― Chemistry - A European Journal, 2010, 16, 5542-5543.	3.3	9
265	Computational Study on the C–Heteroatom Bond Formation via Stille Cross-Coupling Reaction: Differences between Organoheterostannanes Me ₃ SnAsPh ₂ vs Me ₃ SnPPh ₂ . Organometallics, 2015, 34, 159-166.	2.3	9
266	Multifunctional Imidazobenzothiadiazole Probe Displaying Solvatofluorochromism and Ability To Form Ion-Pair Complexes in Solid State and in Solution. Organic Letters, 2015, 17, 2374-2377.	4.6	9
267	Unusual Metal–Metal Bonding in a Dinuclear Pt–Au Complex: Snapshot of a Transmetalation Process. Angewandte Chemie, 2016, 128, 7092-7096.	2.0	9
268	Factors Controlling the Reactivity of Strained-Alkyne Embedded Cycloparaphenylenes. Journal of Organic Chemistry, 2019, 84, 4330-4337.	3.2	9
269	Chemoselectivity Switching in the Rhodiumâ€Catalyzed Reactions of 4â€Substitutedâ€1â€sulfonylâ€1,2,3â€triazowith Allenols: Noticeable Differences between 4â€Acylâ€and 4â€Arylâ€Triazoles. Advanced Synthesis and Catalysis, 2019, 361, 1160-1165.	oles 4.3	9
270	Organoseleno-Catalyzed Synthesis of α,β-Unsaturated α′-Alkoxy Ketones from Allenes Enabled by Se···O Interactions. Organic Letters, 2020, 22, 3979-3984.	4.6	9

#	Article	IF	Citations
271	Characterization of a CholesteroNitrone (ISQ-201), a Novel Drug Candidate for the Treatment of Ischemic Stroke. Antioxidants, 2020, 9, 291.	5.1	9
272	Synthesis and electrochemical investigation of chromium(0) ferrocenyl-substituted carbene complexes. Inorganica Chimica Acta, 2014, 423, 184-192.	2.4	8
273	A Joint Experimental–Computational Comparative Study of the Pd ⁰ â€Catalysed Reactions of Aryl lodides and Aldehydes with N, O, and S Tethers. European Journal of Organic Chemistry, 2015, 2015, 3935-3942.	2.4	8
274	Factors Governing the Diels–Alder Reactivity of (2,7)Pyrenophanes. Journal of Organic Chemistry, 2017, 82, 8157-8164.	3.2	8
275	Exploring Partners for the Domino αâ€Arylation/Michael Addition Reaction Leading to Tetrahydroisoquinolines. European Journal of Organic Chemistry, 2017, 2017, 799-805.	2.4	8
276	Grubbs catalysts in intramolecular carbene C(sp ³)â€"H insertion reactions from α-diazoesters. Chemical Communications, 2019, 55, 1160-1163.	4.1	8
277	Reactivity of Stabilized Vinyldiazo Compounds toward Alkenyl- and Alkynylsilanes under Gold Catalysis: Regio- and Stereoselective Synthesis of Skipped Dienes and Enynes. Organic Letters, 2021, 23, 4452-4456.	4.6	8
278	Factors Controlling the Aluminum(I)―meta â€Selective Câ^'H Activation in Arenes. Chemistry - A European Journal, 2021, 27, 12422-12429.	3.3	8
279	Goldâ€Catalyzed Reaction of Propargyl Esters and Alkynylsilanes: Synthesis of Vinylallene Derivatives through a Twofold 1,2â€Rearrangement. Angewandte Chemie - International Edition, 2021, 60, 25258-25262.	13.8	8
280	Nature of Câ^lâ‹â‹â‹ï€ Halogen Bonding and its Role in Organocatalysis. European Journal of Organic Chemistry, 2021, 2021, 6102-6110.	2.4	8
281	Metalâ€Catalyzed Cyclization Reactions of 2,3,4â€Trienâ€1â€ols: A Joint Experimental–Computational Study. Chemistry - A European Journal, 2016, 22, 11667-11676.	3.3	7
282	Stereodivergentâ€atâ€Metal Synthesis of [60]Fullerene Hybrids. Angewandte Chemie, 2017, 129, 2168-2171.	2.0	7
283	Stereodiversified Modular Synthesis of Nonâ€planar Fiveâ€Membered Cyclic <i>N</i> à€Hydroxylamidines: Reactivity Study and Application to the Synthesis of Cyclic Amidines. Advanced Synthesis and Catalysis, 2018, 360, 4362-4371.	4.3	7
284	Understanding the Diels-Alder reactivity of 1,2-azaborine analogues. Tetrahedron, 2018, 74, 4289-4294.	1.9	7
285	Regioselectivity in Diels–Alder Cycloadditions of #6094C68 Fullerene with a Triplet Ground State. Journal of Organic Chemistry, 2019, 84, 9017-9024.	3.2	7
286	Impact of C=C/Bâ^'N Replacement on the Dielsâ€"Alder Reactivity of Curved Polycyclic Aromatic Hydrocarbons. Chemistry - A European Journal, 2019, 25, 9771-9779.	3.3	7
287	Catalytic conversion of alkynes to \hat{l}_{\pm} -vinyl sulfides mediated by carbene-linker-carbene (CXC) rhodium and iridium complexes. Catalysis Science and Technology, 2021, 11, 516-523.	4.1	7
288	Highly Enantioselective Cobaltâ€Catalyzed (3+2) Cycloadditions of Alkynylidenecyclopropanes. Angewandte Chemie, 2021, 133, 8263-8269.	2.0	7

#	Article	IF	CITATIONS
289	Stannylenes based on pyrrole-phosphane and dipyrromethane-diphosphane scaffolds: syntheses and behavior as precursors to PSnP pincer palladium(<scp>ii</scp>), palladium(0) and gold(<scp>i</scp>) complexes. Dalton Transactions, 2021, 50, 16122-16132.	3.3	7
290	Iron pentacarbonyl ligands on silver scorpionates. Chemical Communications, 2022, 58, 3222-3225.	4.1	7
291	Understanding the catalysis by bis-selenonium cations as bidentate chalcogen bond donors. , 2022, 1, 100008.		7
292	A Joint Experimental and Computational Investigation on Homoconjugated Pushâ€Pull Chromophores Derived from 7,7â€Diphenylnorbornane. European Journal of Organic Chemistry, 2012, 2012, 2643-2655.	2.4	6
293	Applied computational chemistry. Chemical Society Reviews, 2014, 43, 4906.	38.1	6
294	Stereoselective synthesis of strained cage compounds via gold-catalyzed allene functionalization. Chemical Communications, 2016, 52, 10265-10268.	4.1	6
295	Goldâ€Catalyzed Divergent Ringâ€Closing Modes of Indoleâ€Tethered Amino Allenynes. Chemistry - A European Journal, 2018, 24, 1448-1454.	3.3	6
296	Controlling Selectivities in Palladium-Catalyzed Cyclization Reactions Leading to Heterocycles. , 2018, , 311-337.		6
297	Comment on "Topological Analysis of the Electron Density in the Carbonyl Complexes M(CO) ₈ (M = Ca, Sr, Ba)― Organometallics, 2020, 39, 2956-2958.	2.3	6
298	AgNO3·SiO2: Convenient AgNPs source for the sustainable hydrofunctionalization of allenyl-indoles using heterogeneous catalysis. Journal of Catalysis, 2020, 389, 432-439.	6.2	6
299	Influence of the CH/B replacement on the Reactivity of Boranthrene and Related Compounds. ACS Organic & Inorganic Au, 0, , .	4.0	6
300	Aromaticity-enhanced reactivity of geminal frustrated Lewis pairs. Chemical Communications, 2022, 58, 6801-6804.	4.1	6
301	Rational Design of a Nonbasic Molecular Receptor for Selective NH ₄ ⁺ /K ⁺ Complexation in the Gas Phase. Chemistry - A European Journal, 2012, 18, 16884-16889.	3.3	5
302	Fischer-Type Carbene Complexes of Tris(1,4-phenylene)amines and Tri(2-furyl)phosphine. Organometallics, 2015, 34, 696-710.	2.3	5
303	The effect of the metal fragment on the aromaticity and synchronicity of the gold(<scp>i</scp>)-catalysed divinylcyclopropane–cycloheptadiene rearrangement. Physical Chemistry Chemical Physics, 2016, 18, 11677-11682.	2.8	5
304	De Novo Synthesis of αâ€Hydroxy Ketones by Gallic Acidâ€Promoted Aerobic Coupling of Terminal Alkynes with Diazonium Salts. Chemistry - A European Journal, 2017, 23, 17227-17230.	3.3	5
305	Site Selectivity in Pd-Catalyzed Reactions of \hat{l}_{\pm} -Diazo- \hat{l}_{\pm} -(methoxycarbonyl)acetamides: Effects of Catalysts and Substrate Substitution in the Synthesis of Oxindoles and \hat{l}_{\pm} -Lactams. Molecules, 2019, 24, 3551.	3.8	5
306	Nature of the Hydrogen Bond Enhanced Halogen Bond. Molecules, 2021, 26, 1885.	3.8	5

#	Article	IF	CITATIONS
307	7â€Arylnorbornanes: Model Compounds for the Study of CH···π and OH···π Interactions. European Journal of Organic Chemistry, 2012, 2012, 940-947.	2.4	4
308	Hydrogen Bond Controlled Antiâ€Azaâ€Michael Addition: Diastereoselective Synthesis of Cyclobuteneâ€Containing Amino Acid Derivatives. European Journal of Organic Chemistry, 2015, 2015, 3462-3469.	2.4	4
309	Is it possible to achieve a complete desaturation of cycloalkanes promoted by o-benzyne?. Chemical Communications, 2015, 51, 5302-5305.	4.1	4
310	Oxidation of NOË™ by small oxygen species HO2â^' and O2Ë™â^': the role of negative charge, electronic spin and water solvation. Physical Chemistry Chemical Physics, 2016, 18, 9524-9536.	2.8	4
311	Understanding exo-selective Diels–Alder reactions involving Fischer-type carbene complexes. Organic and Biomolecular Chemistry, 2019, 17, 2985-2991.	2.8	4
312	Origin of the Ir–Si bond shortening in Ir–NSiN complexes. Dalton Transactions, 2021, 50, 5951-5959.	3.3	4
313	Assembly of a Dihydrideborate and Two Aryl Nitriles to Form a C,N,N′-Pincer Ligand Coordinated to Osmium. Organometallics, 2021, 40, 635-642.	2.3	4
314	Scope and Mechanistic Investigations of Pd-Catalyzed Coupling/Cyclization and Cycloisomerization of Allenyl Malonates. ACS Catalysis, 2021, 11, 9485-9494.	11.2	4
315	Iron(II) and Copper(I) Control the Total Regioselectivity in the Hydrobromination of Alkenes. Organic Letters, 2021, 23, 6105-6109.	4.6	4
316	Siteâ€Specific Reductionâ€Induced Hydrogenation of a Helical Bilayer Nanographene with K and Rb Metals: Electron Multiaddition and Selective Rb ⁺ Complexation. Angewandte Chemie, 2022, 134, .	2.0	4
317	Reactions between microhydrated superoxide anions and formic acid. Physical Chemistry Chemical Physics, 2017, 19, 23176-23186.	2.8	3
318	Buckyball Difluoride F2â^'@C60+â€"A Singleâ€Molecule Crystal. Angewandte Chemie, 2018, 130, 14127-14130.	2.0	3
319	Rationalizing the influence of α-cationic phospholes on π-catalysis. Dalton Transactions, 2021, 50, 18036-18043.	3.3	3
320	A neutral, acyclic, borataalkene-like ligand for group 11 metals: L- and Z-type ligands side by side. Chemical Communications, 2022, 58, 3905-3908.	4.1	3
321	Bonding situation in isolable silver(I) carbonyl complexes of the Scorpionates. Journal of Computational Chemistry, 2022, 43, 796-803.	3.3	3
322	Origin of Catalysis and Selectivity in Lewis Acid-Promoted Diels–Alder Reactions Involving Vinylazaarenes as Dienophiles. Journal of Organic Chemistry, 2022, 87, 9307-9315.	3.2	3
323	Bent Phosphaallenes With "Hidden―Lone Pairs as Ligands. Chemistry - A European Journal, 2019, 25, 7912-7920.	3.3	2
324	Transition metal-free cyclobutene rearrangement in fused naphthalen-1-ones: controlled access to functionalized quinones. Chemical Communications, 2020, 56, 1290-1293.	4.1	2

#	Article	IF	CITATIONS
325	Chelated Fischer carbene complexes of annulated thiophenes: synthesis, structure and electrochemistry. Dalton Transactions, 2020, 49, 15339-15354.	3.3	2
326	Analysis of Reactivity from the Noncovalent Interactions Perspective. RSC Catalysis Series, 2019, , $628\text{-}643.$	0.1	2
327	Iron-promoted dealkylative carbene aminocyclization of \hat{l} -arylamino- \hat{l} ±-diazoesters. Dalton Transactions, 2021, 50, 2167-2176.	3.3	1
328	Quantifying aromaticity according to the energetic criterion., 2021,, 195-235.		1
329	Factors Controlling βâ€Elimination Reactions in Groupâ€10 Metal Complexes. Chemistry - A European Journal, 2015, 21, 14237-14237.	3.3	0
330	Frontispiz: Synthesis of a Helical Bilayer Nanographene. Angewandte Chemie, 2018, 130, .	2.0	0
331	Frontispiece: Synthesis of a Helical Bilayer Nanographene. Angewandte Chemie - International Edition, 2018, 57, .	13.8	0
332	Goldâ€Catalyzed Reaction of Propargyl Esters and Alkynylsilanes: Synthesis of Vinylallene Derivatives through a Twofold 1,2â€Rearrangement. Angewandte Chemie, 2021, 133, 25462.	2.0	0
333	A Quantitative Approach to Understanding Reactivity in Organometallic Chemistry. Topics in Organometallic Chemistry, 2020, , 107-130.	0.7	O

Rücktitelbild: Siteâ€Specific Reductionâ€Induced Hydrogenation of a Helical Bilayer Nanographene with K and Rb Metals: Electron Multiaddition and Selective Rb⁺ Complexation (Angew. Chem.) Tj ETQq0 0 0 æBT /Overbock 10 Tf