
Uttiya Basu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2483665/publications.pdf Version: 2024-02-01

ΠΤΤΙΧΑ ΒΛΟΙΙ

#	Article	IF	CITATIONS
1	RNA exosome drives early B cell development via noncoding RNA processing mechanisms. Science Immunology, 2022, 7, .	11.9	11
2	Purification of Murine + B Cells for Analyses of Biological Functions and Transcriptomics. Methods in Molecular Biology, 2021, 2270, 307-321.	0.9	2
3	Post-transcriptional regulation by the exosome complex is required for cell survival and forebrain development via repression of P53 signaling. Development (Cambridge), 2021, 148, .	2.5	14
4	Noncoding RNA processing by DIS3 regulates chromosomal architecture and somatic hypermutation in B cells. Nature Genetics, 2021, 53, 230-242.	21.4	56
5	Proteasomal Regulation of Mammalian SPT16 in Controlling Transcription. Molecular and Cellular Biology, 2021, 41, .	2.3	6
6	A ChIP-exo screen of 887 Protein Capture Reagents Program transcription factor antibodies in human cells. Genome Research, 2021, 31, 1663-1679.	5.5	9
7	Mechanism of noncoding RNA-associated N6-methyladenosine recognition by an RNA processing complex during IgH DNA recombination. Molecular Cell, 2021, 81, 3949-3964.e7.	9.7	28
8	ERK1/2 phosphorylation predicts survival following anti-PD-1 immunotherapy in recurrent glioblastoma. Nature Cancer, 2021, 2, 1372-1386.	13.2	39
9	CD8+ T-cell–Mediated Immunoediting Influences Genomic Evolution and Immune Evasion in Murine Gliomas. Clinical Cancer Research, 2020, 26, 4390-4401.	7.0	36
10	Effects of senataxin and RNA exosome on B-cell chromosomal integrity. Heliyon, 2020, 6, e03442.	3.2	7
11	Noncoding RNA transcription alters chromosomal topology to promote isotype-specific class switch recombination. Science Immunology, 2020, 5, .	11.9	28
12	Regulation of long non-coding RNAs and genome dynamics by the RNA surveillance machinery. Nature Reviews Molecular Cell Biology, 2020, 21, 123-136.	37.0	132
13	Biology of RNA Surveillance in Development and Disease. Trends in Cell Biology, 2019, 29, 428-445.	7.9	17
14	The Common Key to Class-Switch Recombination and Somatic Hypermutation: Discovery of AID and Its Role in Antibody Gene Diversification. Journal of Immunology, 2018, 201, 2527-2529.	0.8	5
15	Expression and Function of Tetraspanins and Their Interacting Partners in B Cells. Frontiers in Immunology, 2018, 9, 1606.	4.8	54
16	Lingering Questions about Enhancer RNA and Enhancer Transcription-Coupled Genomic Instability. Trends in Genetics, 2017, 33, 143-154.	6.7	41
17	RNA Exosome and Non-coding RNA-Coupled Mechanisms in AID-Mediated Genomic Alterations. Journal of Molecular Biology, 2017, 429, 3230-3241.	4.2	14
18	Nuclear Proximity of Mtr4 to RNA Exosome Restricts DNA Mutational Asymmetry. Cell, 2017, 169, 523-537.e15.	28.9	56

Uttiya Basu

#	Article	IF	CITATIONS
19	The RNA Exosome Syncs IAV-RNAPII Transcription to Promote Viral Ribogenesis and Infectivity. Cell, 2017, 169, 679-692.e14.	28.9	48
20	RNA Exosome Complex-Mediated Control of Redox Status in Pluripotent Stem Cells. Stem Cell Reports, 2017, 9, 1053-1061.	4.8	12
21	Mutations, kataegis and translocations in B cells: understanding AID promiscuous activity. Nature Reviews Immunology, 2016, 16, 164-176.	22.7	153
22	Transcriptomics Identify CD9 as a Marker of Murine IL-10-Competent Regulatory B Cells. Cell Reports, 2015, 13, 1110-1117.	6.4	95
23	RNA Exosome Regulates AID DNA Mutator Activity in the B Cell Genome. Advances in Immunology, 2015, 127, 257-308.	2.2	29
24	RNA Exosome-Regulated Long Non-Coding RNA Transcription Controls Super-Enhancer Activity. Cell, 2015, 161, 774-789.	28.9	370
25	Malaria-Induced B Cell Genomic Instability. Cell, 2015, 162, 697-698.	28.9	3
26	Ubiquitination Events That Regulate Recombination of Immunoglobulin Loci Gene Segments. Frontiers in Immunology, 2014, 5, 100.	4.8	5
27	Noncoding RNA transcription targets AID to divergently transcribed loci in B cells. Nature, 2014, 514, 389-393.	27.8	159
28	Regulation of AID, the B-cell genome mutator. Genes and Development, 2013, 27, 1-17.	5.9	120
29	Transcriptional stalling in B-lymphocytes. Transcription, 2013, 4, 127-135.	3.1	19
30	E3-ubiquitin ligase Nedd4 determines the fate of AID-associated RNA polymerase II in B cells. Genes and Development, 2013, 27, 1821-1833.	5.9	32
31	The RNA Exosome Targets the AID Cytidine Deaminase to Both Strands of Transcribed Duplex DNA Substrates. Cell, 2011, 144, 353-363.	28.9	275
32	Post-translational regulation of activation-induced cytidine deaminase. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 667-673.	4.0	13
33	Regulation of activation-induced cytidine deaminase DNA deamination activity in B-cells by Ser38 phosphorylation. Biochemical Society Transactions, 2009, 37, 561-568.	3.4	15
34	Evolution of Phosphorylation-Dependent Regulation of Activation-Induced Cytidine Deaminase. Molecular Cell, 2008, 32, 285-291.	9.7	43
35	Regulation of Activation Induced Deaminase via Phosphorylation. , 2007, 596, 129-137.		21
36	The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation. Nature, 2005, 438, 508-511.	27.8	240