David W Waite

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2482950/publications.pdf

Version: 2024-02-01

45 papers 6,257 citations

279798 23 h-index 254184 43 g-index

52 all docs 52 docs citations

52 times ranked 7789 citing authors

#	Article	IF	CITATIONS
1	A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nature Biotechnology, 2018, 36, 996-1004.	17.5	2,615
2	Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 5972-6016.	1.7	830
3	Comparative Genomic Analysis of the Class Epsilonproteobacteria and Proposed Reclassification to Epsilonbacteraeota (phyl. nov.). Frontiers in Microbiology, 2017, 8, 682.	3.5	409
4	Characterizing the avian gut microbiota: membership, driving influences, and potential function. Frontiers in Microbiology, 2014, 5, 223.	3 . 5	328
5	Exploring the avian gut microbiota: current trends and future directions. Frontiers in Microbiology, 2015, 6, 673.	3.5	216
6	A standardized archaeal taxonomy for the Genome Taxonomy Database. Nature Microbiology, 2021, 6, 946-959.	13.3	198
7	The microbiome in threatened species conservation. Biological Conservation, 2019, 229, 85-98.	4.1	185
8	Bacterial community collapse: a metaâ€enalysis of the sinonasal microbiota in chronic rhinosinusitis. Environmental Microbiology, 2017, 19, 381-392.	3.8	174
9	Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences. Frontiers in Microbiology, 2015, 6, 130.	3.5	152
10	Metabolic flexibility allows bacterial habitat generalists to become dominant in a frequently disturbed ecosystem. ISME Journal, 2021, 15, 2986-3004.	9.8	89
11	Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments. Nature Microbiology, 2019, 4, 1014-1023.	13.3	76
12	Gut Microbiome of the Critically Endangered New Zealand Parrot, the Kakapo (Strigops habroptilus). PLoS ONE, 2012, 7, e35803.	2.5	75
13	Active migration is associated with specific and consistent changes to gut microbiota in <i>Calidris</i> shorebirds. Journal of Animal Ecology, 2018, 87, 428-437.	2.8	73
14	Mechanisms of Persistence of the Ammonia-Oxidizing Bacteria <i>Nitrosomonas</i> to the Biocide Free Nitrous Acid. Environmental Science & Environmenta	10.0	52
15	Gut microbiota of a longâ€distance migrant demonstrates resistance against environmental microbe incursions. Molecular Ecology, 2017, 26, 5842-5854.	3.9	51
16	Chemosynthetic and photosynthetic bacteria contribute differentially to primary production across a steep desert aridity gradient. ISME Journal, 2021, 15, 3339-3356.	9.8	48
17	Influence of Hand Rearing and Bird Age on the Fecal Microbiota of the Critically Endangered Kakapo. Applied and Environmental Microbiology, 2014, 80, 4650-4658.	3.1	42
18	Application of Oxford Nanopore Technology to Plant Virus Detection. Viruses, 2021, 13, 1424.	3.3	42

#	Article	IF	Citations
19	Integrity of the Human Faecal Microbiota following Long-Term Sample Storage. PLoS ONE, 2016, 11, e0163666.	2.5	41
20	Tools for successful proliferation: diverse strategies of nutrient acquisition by a benthic cyanobacterium. ISME Journal, 2020, 14, 2164-2178.	9.8	33
21	Phylogeny and genomics of SAUL, an enigmatic bacterial lineage frequently associated with marine sponges. Environmental Microbiology, 2018, 20, 561-576.	3.8	32
22	Microbial river-to-sea continuum: gradients in benthic and planktonic diversity, osmoregulation and nutrient cycling. Microbiome, 2021, 9, 190.	11.1	29
23	Characterization of mid-intestinal microbiota of farmed Chinook salmon using 16S rRNA gene metabarcoding. Archives of Biological Sciences, 2019, 71, 577-587.	0.5	22
24	Termite mounds contain soil-derived methanotroph communities kinetically adapted to elevated methane concentrations. ISME Journal, 2020, 14, 2715-2731.	9.8	21
25	Broad spectrum antibiotic-degrading metallo- \hat{l}^2 -lactamases are phylogenetically diverse. Protein and Cell, 2020, 11, 613-617.	11.0	21
26	Quantifying the impact of storage procedures for faecal bacteriotherapy in the critically endangered New Zealand Parrot, the Kakapo (<i>Strigops habroptilus</i>). Zoo Biology, 2013, 32, 620-625.	1.2	19
27	Real-Time PCR Assay for the Identification of the Brown Marmorated Stink Bug (Halyomorpha halys). Frontiers in Molecular Biosciences, 2016, 3, 5.	3.5	18
28	Development and Validation of a Real-Time PCR Assay for Rapid Detection of Two-Spotted Spider Mite, Tetranychus urticae (Acari: Tetranychidae). PLoS ONE, 2015, 10, e0131887.	2.5	17
29	Microbial community structure in the gut of the New Zealand insect Auckland tree weta (Hemideina) Tj ETQq $1\ 1$	0.784314	rgBT /Overlo
30	Termite gas emissions select for hydrogenotrophic microbial communities in termite mounds. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
31	Bacterial communities associated with tail fan necrosis in spiny lobster, Jasus edwardsii. FEMS Microbiology Ecology, 2019, 95, .	2.7	14
32	Network-guided genomic and metagenomic analysis of the faecal microbiota of the critically endangered kakapo. Scientific Reports, 2018, 8, 8128.	3.3	11
33	Molecular detection of small hive beetle Aethina tumida Murray (Coleoptera: Nitidulidae): DNA barcoding and development of a real-time PCR assay. Scientific Reports, 2018, 8, 9623.	3.3	11
34	Assessment of microbial DNA enrichment techniques from sino-nasal swab samples for metagenomics. Rhinology, 2018, 1 , $160-193$.	0.3	11
35	A Novel Description of the Human Sinus Archaeome During Health and Chronic Rhinosinusitis. Frontiers in Cellular and Infection Microbiology, 2020, 10, 398.	3.9	8
36	Kinetic and Structural Characterization of the First B3 Metallo- \hat{l}^2 -Lactamase with an Active-Site Glutamic Acid. Antimicrobial Agents and Chemotherapy, 2021, 65, e0093621.	3.2	7

3

#	Article	IF	Citations
37	Characterising clinical Staphylococcus aureus isolates from the sinuses of patients with chronic rhinosinusitis. Scientific Reports, 2021, 11, 21940.	3.3	6
38	DNA barcoding and real-time PCR detection of <i> Bactrocera xanthodes < /i > (Tephritidae: Diptera) complex. Bulletin of Entomological Research, 2019, 109, 102-110.</i>	1.0	5
39	Probing the Chemical Transformation of Seawater-Soluble Crude Oil Components during Microbial Oxidation. ACS Earth and Space Chemistry, 2020, 4, 690-701.	2.7	5
40	Bacterial Signatures of Paediatric Respiratory Disease: An Individual Participant Data Meta-Analysis. Frontiers in Microbiology, 2021, 12, 711134.	3.5	5
41	Molecular identification of <i>Bactrocera passiflorae</i> (Diptera: Tephritidae): Challenge and solution for DNA barcoding. Journal of Applied Entomology, 2020, 144, 877-884.	1.8	2
42	Rapid and accurate identification of Xanthomonas citri subspecies citri by fluorescence inÂsitu hybridization. Letters in Applied Microbiology, 2016, 63, 315-321.	2.2	1
43	Development and validation of a real-time PCR assay for the glassy-winged sharpshooter Homalodisca vitripennis (Hemiptera: Cicadellidae). Bulletin of Entomological Research, 2017, 107, 332-339.	1.0	0
44	What Thrives Inside; The World Within the Gut. Frontiers for Young Minds, 2017, 5, .	0.8	0
45	Moving beyond descriptions of diversity: clinical and research implications of bacterial imbalance in chronic rhinosinusitis. Rhinology, 2017, 55, 291-297.	1.3	0