Changcheng Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2480890/publications.pdf

Version: 2024-02-01

47 papers 5,158 citations

30 h-index 223800 46 g-index

48 all docs

48 docs citations

48 times ranked

5067 citing authors

#	Article	IF	CITATIONS
1	Links between autophagy and lipid droplet dynamics. Journal of Experimental Botany, 2022, 73, 2848-2858.	4.8	18
2	Using 14C-acetate Pulse-chase Labeling to Study Fatty Acid and Glycerolipid Metabolism in Plant Leaves. Bio-protocol, 2021, 11, e3900.	0.4	1
3	The Role of Sugar Signaling in Regulating Plant Fatty Acid Synthesis. Frontiers in Plant Science, 2021, 12, 643843.	3.6	15
4	Mechanisms and functions of membrane lipid remodeling in plants. Plant Journal, 2021, 107, 37-53.	5.7	78
5	Sterols are required for the coordinated assembly of lipid droplets in developing seeds. Nature Communications, 2021, 12, 5598.	12.8	21
6	Chloroplast lipid biosynthesis is fine-tuned to thylakoid membrane remodeling during light acclimation. Plant Physiology, 2021, 185, 94-107.	4.8	20
7	Metabolic and functional connections between cytoplasmic and chloroplast triacylglycerol storage. Progress in Lipid Research, 2020, 80, 101069.	11.6	32
8	Diversion of Carbon Flux from Sugars to Lipids Improves the Growth of an Arabidopsis Starchless Mutant. Plants, 2019, 8, 229.	3.5	14
9	Peroxisomal fatty acid \hat{l}^2 -oxidation negatively impacts plant survival under salt stress. Plant Signaling and Behavior, 2019, 14, 1561121.	2.4	22
10	Dual Role for Autophagy in Lipid Metabolism in Arabidopsis. Plant Cell, 2019, 31, 1598-1613.	6.6	82
11	Starch Deficiency Enhances Lipid Biosynthesis and Turnover in Leaves. Plant Physiology, 2018, 178, 118-129.	4.8	44
12	Cytokinin Signaling in Mycobacterium tuberculosis. MBio, 2018, 9, .	4.1	28
13	A Central Role for Triacylglycerol in Membrane Lipid Breakdown, Fatty Acid $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Oxidation, and Plant Survival under Extended Darkness. Plant Physiology, 2017, 174, 1517-1530.	4.8	108
14	Sugar Potentiation of Fatty Acid and Triacylglycerol Accumulation. Plant Physiology, 2017, 175, 696-707.	4.8	38
15	Cellular Organization of Triacylglycerol Biosynthesis in Microalgae. Sub-Cellular Biochemistry, 2016, 86, 207-221.	2.4	14
16	Fatty Acid and Lipid Transport in Plant Cells. Trends in Plant Science, 2016, 21, 145-158.	8.8	227
17	Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues. Annual Review of Plant Biology, 2016, 67, 179-206.	18.7	220
18	Arabidopsis TRIGALACTOSYLDIACYLGLYCEROL5 Interacts with TGD1, TGD2, and TGD4 to Facilitate Lipid Transfer from the Endoplasmic Reticulum to Plastids. Plant Cell, 2015, 27, tpc.15.00394.	6.6	79

#	Article	IF	CITATIONS
19	<i>Arabidopsis</i> Lipins, PDAT1 Acyltransferase, and SDP1 Triacylglycerol Lipase Synergistically Direct Fatty Acids toward β-Oxidation, Thereby Maintaining Membrane Lipid Homeostasis. Plant Cell, 2014, 26, 4119-4134.	6.6	148
20	Dual Role for Phospholipid:Diacylglycerol Acyltransferase: Enhancing Fatty Acid Synthesis and Diverting Fatty Acids from Membrane Lipids to Triacylglycerol in <i>Arabidopsis</i> Leaves. Plant Cell, 2013, 25, 3506-3518.	6.6	145
21	Phospholipid:diacylglycerol acyltransferaseâ€mediated triacylglycerol biosynthesis is crucial for protection against fatty acidâ€induced cell death in growing tissues of <scp>A</scp> rabidopsis. Plant Journal, 2013, 76, 930-942.	5.7	108
22	Analysis of Oil Droplets in Microalgae. Methods in Cell Biology, 2013, 116, 71-82.	1.1	13
23	Acyl-Lipid Metabolism. The Arabidopsis Book, 2013, 11, e0161.	0.5	974
24	Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii. Plant and Cell Physiology, 2012, 53, 1380-1390.	3.1	210
25	TGD4 involved in endoplasmic reticulumâ€toâ€chloroplast lipid trafficking is a phosphatidic acid binding protein. Plant Journal, 2012, 70, 614-623.	5.7	94
26	Arabidopsis chloroplast lipid transport protein TGD2 disrupts membranes and is part of a large complex. Plant Journal, 2011, 66, 759-769.	5.7	51
27	A chloroplast pathway for the de novo biosynthesis of triacylglycerol in <i>Chlamydomonas reinhardtii</i> . FEBS Letters, 2011, 585, 1985-1991.	2.8	291
28	Corrigendum to "A chloroplast pathway for the de novo biosynthesis of triacylglycerol inChlamydomonas reinhardtii―[FEBS Lett. 585 (2011) 1985-1991]. FEBS Letters, 2011, 585, 4029-4029.	2.8	2
29	Genetic analysis of Arabidopsis mutants impaired in plastid lipid import reveals a role of membrane lipids in chloroplast division. Plant Signaling and Behavior, 2011, 6, 458-460.	2.4	11
30	The <i>glossyhead1</i> Allele of <i>ACC1</i> Reveals a Principal Role for Multidomain Acetyl-Coenzyme A Carboxylase in the Biosynthesis of Cuticular Waxes by Arabidopsis Â. Plant Physiology, 2011, 157, 1079-1092.	4.8	62
31	Lipid Transport Mediated by Arabidopsis TGD Proteins is Unidirectional from the Endoplasmic Reticulum to the Plastid. Plant and Cell Physiology, 2010, 51, 1019-1028.	3.1	58
32	FATTY ACID DESATURASE4 of Arabidopsis encodes a protein distinct from characterized fatty acid desaturases. Plant Journal, 2009, 60, 832-839.	5.7	84
33	Mutation of a mitochondrial outer membrane protein affects chloroplast lipid biosynthesis. Plant Journal, 2008, 54, 163-175.	5.7	30
34	Lipid Trafficking between the Endoplasmic Reticulum and the Plastid in <i>Arabidopsis</i> Requires the Extraplastidic TGD4 Protein. Plant Cell, 2008, 20, 2190-2204.	6.6	125
35	A Small ATPase Protein of Arabidopsis, TGD3, Involved in Chloroplast Lipid Import. Journal of Biological Chemistry, 2007, 282, 35945-35953.	3.4	127
36	TGD3, an ATPase Protein of Arabidopsis, Functions in ERâ€ŧoâ€Plastid Lipid Trafficking. FASEB Journal, 2007, 21, A236.	0.5	2

#	Article	IF	CITATIONS
37	Lipid trafficking between the endoplasmic reticulum and the chloroplast in the model plant Arabidopsis. FASEB Journal, 2007, 21, A37.	0.5	2
38	Characterization of the Arabidopsis thermosensitive mutant atts02 reveals an important role for galactolipids in thermotolerance. Plant, Cell and Environment, 2006, 29, 1437-1448.	5.7	115
39	Phosphatidylglycerol biosynthesis in chloroplasts of Arabidopsis mutants deficient in acyl-ACP glycerol-3- phosphate acyltransferase. Plant Journal, 2006, 47, 296-309.	5.7	95
40	Non-vesicular and vesicular lipid trafficking involving plastids. Current Opinion in Plant Biology, 2006, 9, 241-247.	7.1	77
41	A phosphatidic acid-binding protein of the chloroplast inner envelope membrane involved in lipid trafficking. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10817-10822.	7.1	206
42	DGS1, a membraneâ€ŧethered transcriptional regulator of chloroplast lipid biosynthesis in Arabidopsis. FASEB Journal, 2006, 20, A87.	0.5	0
43	Mutation of the TGD1 Chloroplast Envelope Protein Affects Phosphatidate Metabolism in Arabidopsis Â. Plant Cell, 2005, 17, 3094-3110.	6.6	179
44	A permease-like protein involved in ER to thylakoid lipid transfer in Arabidopsis. EMBO Journal, 2003, 22, 2370-2379.	7.8	206
45	The Tomato Suppressor of prosystemin-mediated responses2 Gene Encodes a Fatty Acid Desaturase Required for the Biosynthesis of Jasmonic Acid and the Production of a Systemic Wound Signal for Defense Gene Expression. Plant Cell, 2003, 15, 1646-1661.	6.6	245
46	Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5732-5737.	7.1	306
47	The pgp1 Mutant Locus of Arabidopsis Encodes a Phosphatidylglycerolphosphate Synthase with Impaired Activity. Plant Physiology, 2002, 129, 594-604.	4.8	131