
Caroline Goupille

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2479516/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Accumulation of Arachidonic Acid, Precursor of Pro-Inflammatory Eicosanoids, in Adipose Tissue of Obese Women: Association with Breast Cancer Aggressiveness Indicators. Biomedicines, 2022, 10, 995.	3.2	5
2	Identification of a Positive Association between Mammary Adipose Cholesterol Content and Indicators of Breast Cancer Aggressiveness in a French Population. Journal of Nutrition, 2021, 151, 1119-1127.	2.9	3
3	Total long-chain polyunsaturated n-3 fatty acids level is an independent predictive factor of breast cancer multifocality in women with positive hormone-receptors tumors. Surgical Oncology, 2021, 38, 101597.	1.6	2
4	A 1D High Performance Thin Layer Chromatography Method Validated to Quantify Phospholipids Including Cardiolipin and Monolysocardiolipin from Biological Samples. European Journal of Lipid Science and Technology, 2020, 122, 1900240.	1.5	10
5	EPA and DHA Fatty Acids Induce a Remodeling of Tumor Vasculature and Potentiate Docetaxel Activity. International Journal of Molecular Sciences, 2020, 21, 4965.	4.1	13
6	Potassium and Calcium Channel Complexes as Novel Targets for Cancer Research. Reviews of Physiology, Biochemistry and Pharmacology, 2020, , 157-176.	1.6	6
7	Low Levels of Omega-3 Long-Chain Polyunsaturated Fatty Acids Are Associated with Bone Metastasis Formation in Premenopausal Women with Breast Cancer: A Retrospective Study. Nutrients, 2020, 12, 3832.	4.1	8
8	The neonatal Fc receptor in cancer FcRn in cancer. Cancer Medicine, 2020, 9, 4736-4742.	2.8	19
9	Natural isotopic abundances as markers of compliance in clinical trials. American Journal of Clinical Nutrition, 2020, 111, 1109-1110.	4.7	0
10	Development of a Novel Highâ€Performance Thin Layer Chromatography–Based Method for the Simultaneous Quantification of Clinically Relevant Lipids from Cells and Tissue Extracts. Lipids, 2020, 55, 403-412.	1.7	5
11	Sulfated Glycoaminoglycans and Proteoglycan Syndecan-4 Are Involved in Membrane Fixation of LL-37 and Its Pro-Migratory Effect in Breast Cancer Cells. Biomolecules, 2019, 9, 481.	4.0	22
12	Lipid metabolism and Calcium signaling in epithelial ovarian cancer. Cell Calcium, 2019, 81, 38-50.	2.4	36
13	Low eicosapentaenoic acid and gamma-linolenic acid levels in breast adipose tissue are associated with inflammatory breast cancer. Breast, 2019, 45, 113-117.	2.2	17
14	Sodium Channel Nav1.5 Controls Epithelial-to-Mesenchymal Transition and Invasiveness in Breast Cancer Cells Through its Regulation by the Salt-Inducible Kinase-1. Scientific Reports, 2019, 9, 18652.	3.3	43
15	ATP-dependent activity and mitochondrial localization of drug efflux pumps in doxorubicin-resistant breast cancer cells. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1075-1084.	2.4	40
16	Activation of TRPV2 and BKCa channels by the LL-37 enantiomers stimulates calcium entry and migration of cancer cells. Oncotarget, 2016, 7, 23785-23800.	1.8	44
17	N-3 Polyunsaturated Fatty Acids of Marine Origin and Multifocality in Human Breast Cancer. PLoS ONE, 2016, 11, e0147148.	2.5	18
18	Long chain n-3 polyunsaturated fatty acids increase the efficacy of docetaxel in mammary cancer cells by downregulating Akt and PKCε∫Î-induced ERK pathways. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 380-390.	2.4	50

CAROLINE GOUPILLE

#	Article	IF	CITATIONS
19	NMR-Based Lipidomic Approach To Evaluate Controlled Dietary Intake of Lipids in Adipose Tissue of a Rat Mammary Tumor Model. Journal of Proteome Research, 2016, 15, 868-878.	3.7	12
20	Regulation of hepatic cardiolipin metabolism by TNFα: Implication in cancer cachexia. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 1490-1500.	2.4	28
21	Abstract 4100: Nutrition and breast cancer prevention: adipose tissue proton magnetic resonance spectroscopy (1H-NMR) as biomarker of past dietary intake of lipids. , 2014, , .		0
22	PPARβ mRNA expression, reduced by nâ^'3 PUFA diet in mammary tumor, controls breast cancer cell growth. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1618-1625.	2.4	26
23	Reducing endothelial NOS activation and interstitial fluid pressure with n –3 PUFA offset tumor chemoresistance. Carcinogenesis, 2012, 33, 260-267.	2.8	18
24	Non-invasive quantification of tumor vascular architecture during docetaxel-chemotherapy. Breast Cancer Research and Treatment, 2012, 134, 1013-1025.	2.5	13
25	Cancer cachexia is associated with a decrease in skeletal muscle mitochondrial oxidative capacities without alteration of ATP production efficiency. Journal of Cachexia, Sarcopenia and Muscle, 2012, 3, 265-275.	7.3	89
26	Efficiency of oxidative phosphorylation in liver mitochondria is decreased in a rat model of peritoneal carcinosis. Journal of Hepatology, 2011, 54, 320-327.	3.7	44
27	Dietary docosahexaenoic acid proposed to sensitize breast tumors to locally delivered drug. Clinical Lipidology, 2010, 5, 233-243.	0.4	5
28	N-3 PUFA-Enriched Diet Delays the Occurrence of Cancer Cachexia in Rat With Peritoneal Carcinosis. Nutrition and Cancer, 2010, 62, 343-350.	2.0	12
29	Sensitization by docosahexaenoic acid (DHA) of breast cancer cells to anthracyclines through loss of glutathione peroxidase (GPx1) response. Free Radical Biology and Medicine, 2008, 44, 1483-1491.	2.9	101
30	Increased BRCA1 protein in mammary tumours of rats fed marine ω-3 fatty acids. Oncology Reports, 2007, 17, 713.	2.6	11
31	Sensitization by Dietary Docosahexaenoic Acid of Rat Mammary Carcinoma to Anthracycline: A Role for Tumor Vascularization. Clinical Cancer Research, 2006, 12, 5879-5886.	7.0	67
32	CCL5-enhanced human immature dendritic cell migration through the basement membrane in vitro depends on matrix metalloproteinase-9. Journal of Leukocyte Biology, 2006, 79, 767-778.	3.3	60
33	α-Tocopherol Suppresses Mammary Tumor Sensitivity to Anthracyclines in Fish Oil-Fed Rats. Nutrition and Cancer, 2005, 51, 178-183.	2.0	28
34	IL-7 receptor is present on human microvascular endothelial cells. Immunology Letters, 2003, 86, 163-168.	2.5	30
35	Role forα1,2-fucosyltransferase and histo-blood group antigen H type 2 in resistance of rat colon carcinoma cells to 5-fluorouracil. International Journal of Cancer, 2000, 85, 142-148.	5.1	20
36	Susceptibility of rat colon carcinoma cells to lymphokine activated killer-mediated cytotoxicity is		12

decreased by ?1,2-fucosylation. , 2000, 86, 713-717.

12

CAROLINE GOUPILLE

#	Article	IF	CITATIONS
37	Â1,2Fucosyltransferase increases resistance to apoptosis of rat colon carcinoma cells. Glycobiology, 2000, 10, 375-382.	2.5	63
38	Role for $\hat{I}\pm 1,2$ -fucosyltransferase and histo-blood group antigen H type 2 in resistance of rat colon carcinoma cells to 5-fluorouracil. International Journal of Cancer, 2000, 85, 142.	5.1	18
39	A rat experimental model for the design of vaccines against tumor associated antigens Tn and Sialyl-Tn. Glycoconjugate Journal, 1999, 16, 681-684.	2.7	2
40	Increased tumorigenicity of rat colon carcinoma cells after ?1,2-fucosyltransferaseFTA anti-sense cDNA transfection. , 1999, 80, 606-611.		21
41	Detection of a potential receptor for the H-blood-group antigen on rat colon-carcinoma cells and normal tissues. , 1998, 76, 136-140.		9
42	Increase of rat colon carcinoma cells tumorigenicity by α(l–2) fucosyltransferase gene transfection. Glycobiology, 1997, 7, 221-229.	2.5	69
43	Expression of A and H blood-group and of CD44 antigens during chemical rat colonic carcinogenesis. Glycoconjugate Journal, 1997, 14, 801-808.	2.7	12
44	S12.11 Involvement of histo-blood group antigens in the susceptibility of colon carcinoma cells to natural killer-mediated cytotoxicity. Glycoconjugate Journal, 1993, 10, 298-298.	2.7	0