

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2479511/publications.pdf Version: 2024-02-01

<u>୵</u>⊑TM"∠r⊑ rÉTM^

#	Article	IF	CITATIONS
1	The 12 May Wenchuan earthquake-induced landslide lakes: distribution and preliminary risk evaluation. Landslides, 2009, 6, 209-223.	5.4	312
2	The Wenchuan Earthquake (May 12, 2008), Sichuan Province, China, and resulting geohazards. Natural Hazards, 2011, 56, 19-36.	3.4	304
3	Glacial change and hydrological implications in the Himalaya and Karakoram. Nature Reviews Earth & Environment, 2021, 2, 91-106.	29.7	182
4	Engineering measures for debris flow hazard mitigation in the Wenchuan earthquake area. Engineering Geology, 2015, 194, 73-85.	6.3	111
5	Jiangjia Ravine debris flows in south-western China. , 2005, , 565-594.		70
6	Characteristics and hazard prediction of large-scale debris flow of Xiaojia Gully in Yingxiu Town, Sichuan Province, China. Engineering Geology, 2014, 180, 55-67.	6.3	48
7	Assessment of prospective hazards resulting from the 2017 earthquake at the world heritage site Jiuzhaigou Valley, Sichuan, China. Journal of Mountain Science, 2018, 15, 779-792.	2.0	45
8	Experimental study on a debris-flow drainage channel with different types of energy dissipation baffles. Engineering Geology, 2017, 220, 43-51.	6.3	43
9	Dam-break risk analysis of the Attabad landslide dam in Pakistan and emergency countermeasures. Landslides, 2017, 14, 675-683.	5.4	35
10	Emergency response to the Tangjiashan landslide-dammed lake resulting from the 2008 Wenchuan Earthquake, China. Landslides, 2011, 8, 91-98.	5.4	32
11	Impact dynamics of debris flow against rigid obstacle in laboratory experiments. Engineering Geology, 2021, 291, 106211.	6.3	32
12	An experimental study of dilute debris flow characteristics in a drainage channel with an energy dissipation structure. Engineering Geology, 2015, 193, 224-230.	6.3	25
13	Techniques of Debris Flow Prevention in National Parks. Earth Science Frontiers, 2007, 14, 172-177.	0.6	24
14	General equations for landslide-debris impact and their application to debris-flow flexible barrier. Engineering Geology, 2021, 288, 106154.	6.3	22
15	Rock glacier inventory, permafrost probability distribution modeling and associated hazards in the Hunza River Basin, Western Karakoram, Pakistan. Science of the Total Environment, 2021, 782, 146833.	8.0	22
16	Case study on debris-flow hazard mitigation at a world natural heritage site, Jiuzhaigou Valley, Western China. Geomatics, Natural Hazards and Risk, 2020, 11, 1782-1804.	4.3	20
17	Activity and distribution of geohazards induced by the Lushan earthquake, April 20, 2013. Natural Hazards, 2014, 73, 711-726.	3.4	17
18	Mitigation planning based on the prediction of river blocking by a typical large-scale debris flow in the Wenchuan earthquake area. Landslides, 2016, 13, 1231-1242.	5.4	17

Æ™"Æ,… É™^

#	Article	IF	CITATIONS
19	Debris Flow Drainage Channel with Energy Dissipation Structures: Experimental Study and Engineering Application. Journal of Hydraulic Engineering, 2018, 144, .	1.5	17
20	Early identification of river blocking induced by tributary debris flow based on dimensionless volume index. Landslides, 2019, 16, 2335-2352.	5.4	17
21	Characteristics of a Debris Flow Disaster and Its Mitigation Countermeasures in Zechawa Gully, Jiuzhaigou Valley, China. Water (Switzerland), 2020, 12, 1256.	2.7	17
22	Assessment of debris flow multiple-surge load model based on the physical process of debris-barrier interaction. Landslides, 2022, 19, 1165-1177.	5.4	15
23	An Assessment Method for Debris Flow Dam Formation in Taiwan. Earth Sciences Research Journal, 2018, 22, 37-43.	0.6	14
24	Laboratory study on the characteristics of large wood and debris flow processes at slit-check dams. Landslides, 2020, 17, 1703-1711.	5.4	14
25	Regulation effectiveness of a window-check dam on debris flows. Engineering Geology, 2019, 253, 205-213.	6.3	13
26	The influence of temporal and spatial variations on phase separation in debris flow deposition. Landslides, 2019, 16, 497-514.	5.4	13
27	Dimensionless Assessment Method of Landslide Dam Formation Caused by Tributary Debris Flow Events. Geofluids, 2019, 2019, 1-14.	0.7	11
28	Early and mid-Holocene hydroclimate change recorded in tufa deposits in the Jiuzhaigou gully, eastern Tibetan Plateau. Catena, 2021, 196, 104834.	5.0	11
29	Deformation mechanism and collapse treatment of the rock surrounding a shallow tunnel based on on-site monitoring. Journal of Mountain Science, 2020, 17, 2897-2914.	2.0	11
30	Experimental study on the energy dissipation characteristics of debris flow deceleration baffles. Journal of Mountain Science, 2017, 14, 1951-1960.	2.0	10
31	Characteristics of a Debris-Flow Drainage Channel with a Step-Pool Configuration. Journal of Hydraulic Engineering, 2017, 143, .	1.5	8
32	Investigation of vertical velocity distribution in debris flows by PIV measurement. Geomatics, Natural Hazards and Risk, 2017, 8, 1631-1642.	4.3	8
33	Experimental study on debris-flow velocity control mechanism with baffles in a drainage channel. Bulletin of Engineering Geology and the Environment, 2021, 80, 5203-5217.	3.5	7
34	Effects of river flow velocity on the formation of landslide dams. Journal of Mountain Science, 2019, 16, 2502-2518.	2.0	6
35	Debris flow overflowing flexible barrier: physical process and drag load characteristics. Landslides, 2022, 19, 1881-1896.	5.4	6
36	Multi-model assessment of glacio-hydrological changes in central Karakoram, Pakistan. Journal of Mountain Science, 2021, 18, 1995-2011.	2.0	5

Æ[™]"Æ"…É^{™^}

#	Article	IF	CITATIONS
37	Engineering Planning Method and Control Modes for Debris Flow Disasters in Scenic Areas. Frontiers in Earth Science, 2021, 9, .	1.8	5
38	An experimental determination of the relationship between the minimum height of landslide dams and the run-out distance of landslides. Landslides, 2021, 18, 2111.	5.4	5
39	Magnitude amplification of flash floods caused by large woody in Keze gully in Jiuzhaigou National Park, China. Geomatics, Natural Hazards and Risk, 2021, 12, 2277-2299.	4.3	4
40	Analysis of factors influencing the large wood transport and block-outburst in debris flow based on physical model experiment. Geomorphology, 2022, 398, 108054.	2.6	4
41	Impact failure models and application condition of trees in debris-flow hazard mitigation. Journal of Mountain Science, 2021, 18, 1874-1885.	2.0	3
42	Air concentration and velocity downstream of an expanding chute aerator. Journal of Hydraulic Research/De Recherches Hydrauliques, 2018, 56, 412-423.	1.7	2
43	Erosion Process of Multiple Debris Flow Surges Caused by Check Dam Removal: An Experimental Study. Water Resources Research, 2022, 58, .	4.2	1
44	Three-Dimensional Aerators: Characteristics of the Air Bubbles. Water (Switzerland), 2018, 10, 1430.	2.7	0