
Matthias Albrecht

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/247873/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparing floral resource maps and land cover maps to predict predators and aphid suppression on field bean. Landscape Ecology, 2022, 37, 431-441.	4.2	9
2	<scp>CropPol</scp> : A dynamic, open and global database on crop pollination. Ecology, 2022, 103, e3614.	3.2	19
3	Bee Tracker—an openâ€source machine learningâ€based video analysis software for the assessment of nesting and foraging performance of cavityâ€nesting solitary bees. Ecology and Evolution, 2022, 12, e8575.	1.9	3
4	Flowering resources modulate the sensitivity of bumblebees to a common fungicide. Science of the Total Environment, 2022, 829, 154450.	8.0	19
5	Effects of temporal floral resource availability and non-crop habitats on broad bean pollination. Landscape Ecology, 2022, 37, 1573-1586.	4.2	4
6	No evidence for impaired solitary bee fitness following pre-flowering sulfoxaflor application alone or in combination with a common fungicide in a semi-field experiment. Environment International, 2022, 164, 107252.	10.0	8
7	Do pesticide and pathogen interactions drive wild bee declines?. International Journal for Parasitology: Parasites and Wildlife, 2022, 18, 232-243.	1.5	10
8	Wildflower strips enhance wild bee reproductive success. Journal of Applied Ecology, 2021, 58, 486-495.	4.0	33
9	No impact of neonicotinoids on male solitary bees Osmia cornuta under semiâ€field conditions. Physiological Entomology, 2021, 46, 105-109.	1.5	8
10	Wild insect diversity increases inter-annual stability in global crop pollinator communities. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210212.	2.6	43
11	Sulfoxaflor insecticide and azoxystrobin fungicide have no major impact on honeybees in a realistic-exposure semi-field experiment. Science of the Total Environment, 2021, 778, 146084.	8.0	26
12	Pathways for Novel Epidemiology: Plant–Pollinator–Pathogen Networks and Global Change. Trends in Ecology and Evolution, 2021, 36, 623-636.	8.7	41
13	The neonicotinoid thiamethoxam impairs male fertility in solitary bees, Osmia cornuta. Environmental Pollution, 2021, 284, 117106.	7.5	16
14	Fungicide and insecticide exposure adversely impacts bumblebees and pollination services under semi-field conditions. Environment International, 2021, 157, 106813.	10.0	45
15	Time since establishment drives bee and hoverfly diversity, abundance of crop-pollinating bees and aphidophagous hoverflies in perennial wildflower strips. Basic and Applied Ecology, 2021, 57, 102-114.	2.7	23
16	Flower Mapping in Grasslands With Drones and Deep Learning. Frontiers in Plant Science, 2021, 12, 774965.	3.6	12
17	The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecology Letters, 2020, 23, 1488-1498.	6.4	319
18	Using Temporally Resolved Floral Resource Maps to Explain Bumblebee Colony Performance in Agricultural Landscapes. Agronomy, 2020, 10, 1993.	3.0	10

MATTHIAS ALBRECHT

#	Article	IF	CITATIONS
19	Insights into aphid prey consumption by ladybirds: Optimising field sampling methods and primer design for high throughput sequencing. PLoS ONE, 2020, 15, e0235054.	2.5	7
20	A critical analysis of the potential for EU Common Agricultural Policy measures to support wild pollinators on farmland. Journal of Applied Ecology, 2020, 57, 681-694.	4.0	77
21	A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 2019, 5, eaax0121.	10.3	524
22	Seasonal shifts and complementary use of pollen sources by two bees, a lacewing and a ladybeetle species in European agricultural landscapes. Journal of Applied Ecology, 2019, 56, 2431-2442.	4.0	65
23	A short note on extreme sex ratio in solitary bees <i>Osmia cornuta</i> in semi-field trials testing the impact of neonicotinoids. Journal of Apicultural Research, 2019, 58, 469-470.	1.5	7
24	Trypanosomatid parasites infecting managed honeybees and wild solitary bees. International Journal for Parasitology, 2019, 49, 605-613.	3.1	36
25	Evaluating nextâ€generation sequencing (NGS) methods for routine monitoring of wild bees: Metabarcoding, mitogenomics or NGS barcoding. Molecular Ecology Resources, 2019, 19, 847-862.	4.8	26
26	The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecology Letters, 2019, 22, 1083-1094.	6.4	364
27	The potential of different semi-natural habitats to sustain pollinators and natural enemies in European agricultural landscapes. Agriculture, Ecosystems and Environment, 2019, 279, 43-52.	5.3	71
28	Not every sperm counts: Male fertility in solitary bees, Osmia cornuta. PLoS ONE, 2019, 14, e0214597.	2.5	11
29	Sown wildflower strips as overwintering habitat for arthropods: Effective measure or ecological trap?. Agriculture, Ecosystems and Environment, 2019, 275, 123-131.	5.3	66
30	Pollinator size and its consequences: Robust estimates of body size in pollinating insects. Ecology and Evolution, 2019, 9, 1702-1714.	1.9	69
31	Restoring pollinator communities and pollination services in hedgerows in intensively managed agricultural landscapes. , 2019, , 163-185.		30
32	A pan-European model of landscape potential to support natural pest control services. Ecological Indicators, 2018, 90, 653-664.	6.3	44
33	Landscape complexity promotes hoverflies across different types of semiâ€natural habitats in farmland. Journal of Applied Ecology, 2018, 55, 1747-1758.	4.0	47
34	The worldwide importance of honey bees as pollinators in natural habitats. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172140.	2.6	364
35	Landscape greening and local creation of wildflower strips and hedgerows promote multiple ecosystem services. Journal of Applied Ecology, 2018, 55, 612-620.	4.0	80
36	Wildflower strips enhance pollination in adjacent strawberry crops at the small scale. Ecology and Evolution, 2018, 8, 11775-11784.	1.9	32

MATTHIAS ALBRECHT

#	Article	IF	CITATIONS
37	Both woody and herbaceous semi-natural habitats are essential for spider overwintering in European farmland. Agriculture, Ecosystems and Environment, 2018, 267, 141-146.	5.3	49
38	Overwintering of pollen beetles and their predators in oilseed rape and semi-natural habitats. Agriculture, Ecosystems and Environment, 2018, 265, 275-281.	5.3	21
39	Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7863-E7870.	7.1	401
40	Enhancing plant diversity in agricultural landscapes promotes both rare bees and dominant cropâ€pollinating bees through complementary increase in key floral resources. Journal of Applied Ecology, 2017, 54, 1856-1864.	4.0	113
41	Pollinator-mediated impacts of alien invasive plants on the pollination of native plants: the role of spatial scale and distinct behaviour among pollinator guilds. Biological Invasions, 2016, 18, 1801-1812.	2.4	40
42	Tailored flower strips promote natural enemy biodiversity and pest control in potato crops. Journal of Applied Ecology, 2016, 53, 1169-1176.	4.0	143
43	Perennial, species-rich wildflower strips enhance pest control and crop yield. Agriculture, Ecosystems and Environment, 2016, 220, 97-103.	5.3	155
44	Synergistic interactions of ecosystem services: florivorous pest control boosts crop yield increase through insect pollination. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152529.	2.6	60
45	High effectiveness of tailored flower strips in reducing pests and crop plant damage. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151369.	2.6	155
46	Consequences of plant invasions on compartmentalization and species' roles in plant–pollinator networks. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140773.	2.6	100
47	Does a giant tortoise taxon substitute enhance seed germination of exotic fleshy-fruited plants?. Journal of Plant Ecology, 2013, 6, 57-63.	2.3	10
48	Diverse pollinator communities enhance plant reproductive success. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4845-4852.	2.6	193
49	Specialization of Mutualistic Interaction Networks Decreases toward Tropical Latitudes. Current Biology, 2012, 22, 1925-1931.	3.9	290
50	Ingestion by an endemic frugivore enhances seed germination of endemic plant species but decreases seedling survival of exotics. Journal of Biogeography, 2012, 39, 2021-2030.	3.0	8
51	Plant-pollinator network assembly along the chronosequence of a glacier foreland. Oikos, 2010, 119, 1610-1624.	2.7	106
52	Effects of ecological compensation meadows on arthropod diversity in adjacent intensively managed grassland. Biological Conservation, 2010, 143, 642-649.	4.1	66
53	Interaction diversity within quantified insect food webs in restored and adjacent intensively managed meadows. Journal of Animal Ecology, 2007, 76, 1015-1025.	2.8	134
54	The Swiss agri-environment scheme enhances pollinator diversity and plant reproductive success in nearby intensively managed farmland. Journal of Applied Ecology, 2007, 44, 813-822.	4.0	179