
Jens Friedland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2478032/publications.pdf Version: 2024-02-01

IENS EDIEDIAND

#	Article	IF	CITATIONS
1	Cobalt@Silica Coreâ€Shell Catalysts for Hydrogenation of CO/CO ₂ Mixtures to Methane. ChemCatChem, 2019, 11, 4884-4893.	3.7	29
2	Dynamic Methanation of CO 2 – Effect of Concentration Forcing. Chemie-Ingenieur-Technik, 2019, 91, 576-582.	0.8	22
3	Hydrogenation of CO/CO2 Mixtures on Nickel Catalysts: Kinetics and Flexibility for Nickel Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 14668-14678.	3.7	13
4	The periodic transient kinetics method for investigation of kinetic process dynamics under realistic conditions: Methanation as an example. Chemical Engineering Research and Design, 2021, 173, 253-266.	5.6	12
5	Measuring Adsorption Capacity of Supported Catalysts with a Novel Quasiâ€Continuous Pulse Chemisorption Method. ChemCatChem, 2020, 12, 4373-4386.	3.7	10
6	Investigations on the Low Temperature Methanation with Pulse Reaction of CO. Chemie-Ingenieur-Technik, 2016, 88, 1833-1838.	0.8	9
7	Transfer Functions for Periodic Reactor Operation: Fundamental Methodology for Simple Reaction Networks. Chemical Engineering and Technology, 2017, 40, 2096-2103.	1.5	9
8	Hydrogenation of CO/CO2 mixtures under unsteady-state conditions: Effect of the carbon oxides on the dynamic methanation process. Chemical Engineering Science, 2022, 250, 117405.	3.8	8
9	Sustainable and reagent-free mercury trace determination in natural waters using nanogold dipsticks. Microchemical Journal, 2019, 147, 253-262.	4.5	6
10	Cobaltâ€based Nanoreactors in Combined Fischerâ€Tropsch Synthesis and Hydroprocessing: Effects on Methane and CO ₂ Selectivity. ChemCatChem, 2021, 13, 5216-5227.	3.7	6
11	Study on the tolerance of low-temperature CO methanation with single pulse experiments. Chemical Engineering Journal, 2022, 443, 136262.	12.7	6
12	Determination of activation energies for atomization of gold nanoparticles in graphite furnace atomic absorption spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 173, 105976.	2.9	5
13	Atomization of gold nanoparticles in graphite furnace AAS: Modelling and simulative exploration of experimental results. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 182, 106249.	2.9	4
14	Frequency Response Analysis of the Unsteady-State CO/CO2 Methanation Reaction: An Experimental Study. Industrial & Engineering Chemistry Research, 2022, 61, 2045-2054.	3.7	4
15	Evaluation of the application of different diffusion models for the methanation of CO/CO2 mixtures. Results in Engineering, 2022, 13, 100355.	5.1	2
16	Challenges in transfer of gas-liquid reactions from batch to continuous operation: dimensional analysis and simulations for aerobic oxidation. Journal of Flow Chemistry, 2021, 11, 625-640.	1.9	1
17	NaWuReT Colloquium: From PhD Student to Assistant Professor – Early Career Chemical Engineers in Academia. Chemie-Ingenieur-Technik, 0, , .	0.8	1