Hayuki Sugimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2476930/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural and Thermodynamic Analyses of Solute-binding Protein from Bifidobacterium longum Specific for Core 1 Disaccharide and Lacto-N-biose I. Journal of Biological Chemistry, 2008, 283, 13165-13173.	3.4	111
2	Two-way traffic of glycoside hydrolase family 18 processive chitinases on crystalline chitin. Nature Communications, 2014, 5, 3975.	12.8	82
3	Rate constants, processivity, and productive binding ratio of chitinase A revealed by single-molecule analysis. Physical Chemistry Chemical Physics, 2018, 20, 3010-3018.	2.8	24
4	ldentification and characterization of chitinolytic bacteria isolated from a freshwater lake. Bioscience, Biotechnology and Biochemistry, 2018, 82, 343-355.	1.3	20
5	Chitinase system of <i>Aeromonas salmonicida</i> , and characterization of enzymes involved in chitin degradation. Bioscience, Biotechnology and Biochemistry, 2020, 84, 1936-1947.	1.3	14
6	ldentification of a Csr system in Serratia marcescens 2170. Journal of General and Applied Microbiology, 2014, 60, 79-88.	0.7	14
7	Involvement of Gln679, in addition to Trp687, in chitin-binding activity of the chitin-binding domain of chitinase A1 from Bacillus circulans WL-12. Journal of Biochemistry, 2013, 154, 185-193.	1.7	12
8	Differential Scanning Calorimetry of the Effects of Ca2+on the Thermal Unfolding ofPseudomonas cepaciaLipase. Bioscience, Biotechnology and Biochemistry, 2003, 67, 207-210.	1.3	11
9	Phosphocholine-Containing Glycosyl Inositol-Phosphoceramides from <i>Trichoderma viride</i> Induce Defense Responses in Cultured Rice Cells. Bioscience, Biotechnology and Biochemistry, 2009, 73, 74-78.	1.3	11
10	Construction and basic characterization of deletion mutants of the genes involved in chitin utilization by <i>Serratia marcescens</i> 2170. Bioscience, Biotechnology and Biochemistry, 2014, 78, 524-532.	1.3	11
11	Regulation of the chitin degradation and utilization system by the ChiX small RNA in <i>Serratia marcescens</i> 2170. Bioscience, Biotechnology and Biochemistry, 2016, 80, 376-385.	1.3	11
12	A novel chitinâ€binding mode of the chitinâ€binding domain of chitinase A1 from <i>Bacillus circulans </i> <scp>WL</scp> â€12 revealed by solidâ€state <scp>NMR</scp> . FEBS Letters, 2018, 592, 3173-3182.	2.8	11
13	Thermodynamic Effects of Disulfide Bond on Thermal Unfolding of the Starch-Binding Domain ofAspergillus nigerGlucoamylase. Bioscience, Biotechnology and Biochemistry, 2007, 71, 1535-1541.	1.3	9
14	Kinetically trapped metastable intermediate of a disulfideâ€deficient mutant of the starchâ€binding domain of glucoamylase. Protein Science, 2009, 18, 1715-1723.	7.6	6
15	Unfolding of CBP21, a lytic polysaccharide monooxygenase, without dissociation of its copper ion cofactor. Biopolymers, 2020, 111, e23339.	2.4	6
16	Regulation of Chitinase Production by the 5'-Untranslated Region of the <i>ybfM</i> in <i>Serratia marcescens</i> 2170. Bioscience, Biotechnology and Biochemistry, 2012, 76, 1920-1924.	1.3	5
17	Differences in the roles of the two surface-exposed tyrosine residues, Y240 and Y481, of <i>Serratia marcescens</i> chitinase B during processive degradation of crystalline chitin. Journal of General and Applied Microbiology, 2015, 61, 255-261.	0.7	2
18	NMR Analysis of a Kinetically Trapped Intermediate of a Disulfide-Deficient Mutant of the Starch-Binding Domain of Glucoamylase. Journal of Molecular Biology, 2011, 412, 304-315.	4.2	1