Claudio Cobelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2475913/publications.pdf

Version: 2024-02-01

389 papers 26,035 citations

79 h-index

6592

145 g-index

389 all docs 389 docs citations

times ranked

389

17434 citing authors

#	Article	IF	Citations
1	Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care, 2019, 42, 1593-1603.	4.3	2,101
2	International Consensus on Use of Continuous Glucose Monitoring. Diabetes Care, 2017, 40, 1631-1640.	4.3	1,376
3	Meal Simulation Model of the Glucose-Insulin System. IEEE Transactions on Biomedical Engineering, 2007, 54, 1740-1749.	2.5	745
4	<i>In Silico</i> Preclinical Trials: A Proof of Concept in Closed-Loop Control of Type 1 Diabetes. Journal of Diabetes Science and Technology, 2009, 3, 44-55.	1.3	621
5	The UVA/PADOVA Type 1 Diabetes Simulator. Journal of Diabetes Science and Technology, 2014, 8, 26-34.	1.3	587
6	DHEA in Elderly Women and DHEA or Testosterone in Elderly Men. New England Journal of Medicine, 2006, 355, 1647-1659.	13.9	527
7	Artificial Pancreas: Past, Present, Future. Diabetes, 2011, 60, 2672-2682.	0.3	487
8	Diabetes: Models, Signals, and Control. IEEE Reviews in Biomedical Engineering, 2009, 2, 54-96.	13.1	431
9	SAAM II: Simulation, analysis, and modeling software for tracer and pharmacokinetic studies. Metabolism: Clinical and Experimental, 1998, 47, 484-492.	1.5	401
10	Mechanisms of the Age-Associated Deterioration in Glucose Tolerance: Contribution of Alterations in Insulin Secretion, Action, and Clearance. Diabetes, 2003, 52, 1738-1748.	0.3	373
11	Increased prevalence of insulin resistance and nonalcoholic fatty liver disease in Asian-Indian men. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18273-18277.	3.3	354
12	Fully Integrated Artificial Pancreas in Type 1 Diabetes. Diabetes, 2012, 61, 2230-2237.	0.3	343
13	Glucose Concentration can be Predicted Ahead in Time From Continuous Glucose Monitoring Sensor Time-Series. IEEE Transactions on Biomedical Engineering, 2007, 54, 931-937.	2.5	285
14	Assessment of \hat{I}^2 -cell function in humans, simultaneously with insulin sensitivity and hepatic extraction, from intravenous and oral glucose tests. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1-E15.	1.8	276
15	Effects of Age and Sex on Postprandial Glucose Metabolism: Differences in Glucose Turnover, Insulin Secretion, Insulin Action, and Hepatic Insulin Extraction. Diabetes, 2006, 55, 2001-2014.	0.3	271
16	Downregulation of the Longevity-Associated Protein Sirtuin 1 in Insulin Resistance and Metabolic Syndrome: Potential Biochemical Mechanisms. Diabetes, 2010, 59, 1006-1015.	0.3	268
17	Alterations in Postprandial Hepatic Glycogen Metabolism in Type 2 Diabetes. Diabetes, 2004, 53, 3048-3056.	0.3	267
18	Model Predictive Control of Type 1 Diabetes: An <i>in Silico</i> Trial. Journal of Diabetes Science and Technology, 2007, 1, 804-812.	1.3	265

#	Article	IF	CITATIONS
19	A System Model of Oral Glucose Absorption: Validation on Gold Standard Data. IEEE Transactions on Biomedical Engineering, 2006, 53, 2472-2478.	2.5	228
20	GIM, Simulation Software of Meal Glucose—Insulin Model. Journal of Diabetes Science and Technology, 2007, 1, 323-330.	1.3	206
21	Diurnal Pattern to Insulin Secretion and Insulin Action in Healthy Individuals. Diabetes, 2012, 61, 2691-2700.	0.3	195
22	2 month evening and night closed-loop glucose control in patients with type 1 diabetes under free-living conditions: a randomised crossover trial. Lancet Diabetes and Endocrinology,the, 2015, 3, 939-947.	5.5	189
23	The oral glucose minimal model: Estimation of insulin sensitivity from a meal test. IEEE Transactions on Biomedical Engineering, 2002, 49, 419-429.	2.5	188
24	Multinational Study of Subcutaneous Model-Predictive Closed-Loop Control in Type 1 Diabetes Mellitus: Summary of the Results. Journal of Diabetes Science and Technology, 2010, 4, 1374-1381.	1.3	188
25	Evaluating the Efficacy of Closed-Loop Glucose Regulation via Control-Variability Grid Analysis. Journal of Diabetes Science and Technology, 2008, 2, 630-635.	1.3	185
26	Pathogenesis of Pre-Diabetes: Mechanisms of Fasting and Postprandial Hyperglycemia in People With Impaired Fasting Glucose and/or Impaired Glucose Tolerance. Diabetes, 2006, 55, 3536-3549.	0.3	182
27	Glucose Variability: Timing, Risk Analysis, and Relationship to Hypoglycemia in Diabetes. Diabetes Care, 2016, 39, 502-510.	4.3	180
28	Nonparametric input estimation in physiological systems: Problems, methods, and case studies. Automatica, 1997, 33, 851-870.	3.0	179
29	Insulin Sensitivity from Meal Tolerance Tests in Normal Subjects: A Minimal Model Index. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 4396-4402.	1.8	174
30	The Oral Minimal Model Method. Diabetes, 2014, 63, 1203-1213.	0.3	169
31	The UVA/Padova Type 1 Diabetes Simulator Goes From Single Meal to Single Day. Journal of Diabetes Science and Technology, 2018, 12, 273-281.	1.3	169
32	Safety of Outpatient Closed-Loop Control: First Randomized Crossover Trials of a Wearable Artificial Pancreas. Diabetes Care, 2014, 37, 1789-1796.	4.3	168
33	Feasibility of Outpatient Fully Integrated Closed-Loop Control. Diabetes Care, 2013, 36, 1851-1858.	4.3	166
34	Models of subcutaneous insulin kinetics. A critical review. Computer Methods and Programs in Biomedicine, 2000, 62, 249-257.	2.6	160
35	Minimal model estimation of glucose absorption and insulin sensitivity from oral test: validation with a tracer method. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E637-E643.	1.8	160
36	Use of a novel triple-tracer approach to assess postprandial glucose metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2003, 284, E55-E69.	1.8	158

3

#	Article	IF	Citations
37	Two-Hour Seven-Sample Oral Glucose Tolerance Test and Meal Protocol: Minimal Model Assessment of Â-Cell Responsivity and Insulin Sensitivity in Nondiabetic Individuals. Diabetes, 2005, 54, 3265-3273.	0.3	158
38	Role of Tissue-Specific Blood Flow and Tissue Recruitment in Insulin-Mediated Glucose Uptake of Human Skeletal Muscle. Circulation, 1998, 98, 234-241.	1.6	145
39	Pulsatile Portal Vein Insulin Delivery Enhances Hepatic Insulin Action and Signaling. Diabetes, 2012, 61, 2269-2279.	0.3	142
40	A model of glucose kinetics and their control by insulin, compartmental and noncompartmental approaches. Mathematical Biosciences, 1984, 72, 291-315.	0.9	140
41	Diabetic gait and posture abnormalities: A biomechanical investigation through three dimensional gait analysis. Clinical Biomechanics, 2009, 24, 722-728.	0.5	138
42	Time Lag of Glucose From Intravascular to Interstitial Compartment in Humans. Diabetes, 2013, 62, 4083-4087.	0.3	137
43	Neural Network Incorporating Meal Information Improves Accuracy of Short-Time Prediction of Glucose Concentration. IEEE Transactions on Biomedical Engineering, 2012, 59, 1550-1560.	2.5	130
44	Comparison of Markerless and Marker-Based Motion Capture Technologies through Simultaneous Data Collection during Gait: Proof of Concept. PLoS ONE, 2014, 9, e87640.	1.1	129
45	Closed-Loop Artificial Pancreas Using Subcutaneous Glucose Sensing and Insulin Delivery and a Model Predictive Control Algorithm: Preliminary Studies in Padova and Montpellier. Journal of Diabetes Science and Technology, 2009, 3, 1014-1021.	1.3	127
46	Contribution of Endogenous Glucagon-Like Peptide 1 to Glucose Metabolism After Roux-en-Y Gastric Bypass. Diabetes, 2014, 63, 483-493.	0.3	123
47	Feasibility of Long-Term Closed-Loop Control: A Multicenter 6-Month Trial of 24/7 Automated Insulin Delivery. Diabetes Technology and Therapeutics, 2017, 19, 18-24.	2.4	120
48	Contribution of Hepatic and Extrahepatic Insulin Resistance to the Pathogenesis of Impaired Fasting Glucose: Role of Increased Rates of Gluconeogenesis. Diabetes, 2007, 56, 1703-1711.	0.3	119
49	Primary Defects in \hat{I}^2 -Cell Function Further Exacerbated by Worsening of Insulin Resistance Mark the Development of Impaired Glucose Tolerance in Obese Adolescents. Diabetes Care, 2009, 32, 456-461.	4.3	115
50	Time Lag of Glucose From Intravascular to Interstitial Compartment in Type 1 Diabetes. Journal of Diabetes Science and Technology, 2015, 9, 63-68.	1.3	115
51	Measurements of Islet Function and Glucose Metabolism with the Dipeptidyl Peptidase 4 Inhibitor Vildagliptin in Patients with Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 459-464.	1.8	113
52	Effects of Type 2 Diabetes on Insulin Secretion, Insulin Action, Glucose Effectiveness, and Postprandial Glucose Metabolism. Diabetes Care, 2009, 32, 866-872.	4.3	109
53	MOtoNMS: A MATLAB toolbox to process motion data for neuromusculoskeletal modeling and simulation. Source Code for Biology and Medicine, 2015, 10, 12.	1.7	109
54	Pilot Studies of Wearable Outpatient Artificial Pancreas in Type 1 Diabetes. Diabetes Care, 2012, 35, e65-e67.	4.3	108

#	Article	IF	Citations
55	A minimal model of insulin secretion and kinetics to assess hepatic insulin extraction. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E169-E176.	1.8	107
56	Common Genetic Variation in $\langle i \rangle$ GLP1R $\langle i \rangle$ and Insulin Secretion in Response to Exogenous GLP-1 in Nondiabetic Subjects. Diabetes Care, 2010, 33, 2074-2076.	4.3	106
57	Pubertal Adolescent Male-Female Differences in Insulin Sensitivity and Glucose Effectiveness Determined by the One Compartment Minimal Model. Pediatric Research, 2000, 48, 384-388.	1.1	105
58	Splanchnic Cortisol Production Occurs in Humans: Evidence for Conversion of Cortisone to Cortisol Via the 11-Â Hydroxysteroid Dehydrogenase (11Â-HSD) Type 1 Pathway. Diabetes, 2004, 53, 2051-2059.	0.3	102
59	Abnormal muscle activation during gait in diabetes patients with and without neuropathy. Gait and Posture, 2012, 35, 101-105.	0.6	101
60	The Genetic Landscape of Renal Complications in Type 1 Diabetes. Journal of the American Society of Nephrology: JASN, 2017, 28, 557-574.	3.0	101
61	Insulin sensitivity by oral glucose minimal models: validation against clamp. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E954-E959.	1.8	101
62	The kinetics of insulin in man. II. Role of the liver. Diabetes/metabolism Reviews, 1987, 3, 365-397.	0.2	98
63	Day-and-Night Closed-Loop Glucose Control in Patients With Type 1 Diabetes Under Free-Living Conditions: Results of a Single-Arm 1-Month Experience Compared With a Previously Reported Feasibility Study of Evening and Night at Home. Diabetes Care, 2016, 39, 1151-1160.	4.3	98
64	Physical Activity into the Meal Glucoseâ€"Insulin Model of Type 1 Diabetes: <i>In Silico</i> Studies. Journal of Diabetes Science and Technology, 2009, 3, 56-67.	1.3	95
65	Run-to-Run Tuning of Model Predictive Control for Type 1 Diabetes Subjects: In Silico Trial. Journal of Diabetes Science and Technology, 2009, 3, 1091-1098.	1.3	95
66	Day and Night Closed-Loop Control in Adults With Type 1 Diabetes. Diabetes Care, 2013, 36, 3882-3887.	4.3	95
67	First Use of Model Predictive Control in Outpatient Wearable Artificial Pancreas. Diabetes Care, 2014, 37, 1212-1215.	4.3	95
68	Multinational Home Use of Closed-Loop Control Is Safe and Effective. Diabetes Care, 2016, 39, 1143-1150.	4.3	95
69	Generalized Sensitivity Functions in Physiological System Identification. Annals of Biomedical Engineering, 1999, 27, 607-616.	1.3	94
70	Diurnal Pattern of Insulin Action in Type 1 Diabetes. Diabetes, 2013, 62, 2223-2229.	0.3	94
71	Artificial Pancreas: Model Predictive Control Design from Clinical Experience. Journal of Diabetes Science and Technology, 2013, 7, 1470-1483.	1.3	94
72	In vivo glucose metabolism in the awake rat: Tracer and insulin clamp studies. Metabolism: Clinical and Experimental, 1987, 36, 1167-1174.	1.5	93

#	Article	IF	Citations
73	Defects in Mitochondrial Efficiency and H2O2 Emissions in Obese Women Are Restored to a Lean Phenotype With Aerobic Exercise Training. Diabetes, 2015, 64, 2104-2115.	0.3	89
74	Muscle blood flow and flow heterogeneity during exercise studied with positron emission tomography in humans. European Journal of Applied Physiology, 2000, 83, 395-401.	1.2	86
75	Real-Time Improvement of Continuous Glucose Monitoring Accuracy: The smart sensor concept. Diabetes Care, 2013, 36, 793-800.	4.3	86
76	Effect of 2 Years of Testosterone Replacement on Insulin Secretion, Insulin Action, Glucose Effectiveness, Hepatic Insulin Clearance, and Postprandial Glucose Turnover in Elderly Men. Diabetes Care, 2007, 30, 1972-1978.	4.3	85
77	Differential effects of the circadian system and circadian misalignment on insulin sensitivity and insulin secretion in humans. Diabetes, Obesity and Metabolism, 2018, 20, 2481-2485.	2.2	85
78	Circadian Variability of Insulin Sensitivity: Physiological Input for In Silico Artificial Pancreas. Diabetes Technology and Therapeutics, 2015, 17, 1-7.	2.4	84
79	Toward a Run-to-Run Adaptive Artificial Pancreas: In Silico Results. IEEE Transactions on Biomedical Engineering, 2018, 65, 479-488.	2.5	84
80	Ethnic Differences in Insulin Sensitivity, \hat{I}^2 -Cell Function, and Hepatic Extraction Between Japanese and Caucasians: A Minimal Model Analysis. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 4273-4280.	1.8	83
81	Application of functional principal component analysis in race walking: An emerging methodology. Sports Biomechanics, 2009, 8, 284-301.	0.8	82
82	Novel Reference Region Model Reveals Increased Microglial and Reduced Vascular Binding of ¹¹ C-(<i>R</i>)-PK11195 in Patients with Alzheimer's Disease. Journal of Nuclear Medicine, 2008, 49, 1249-1256.	2.8	81
83	Randomized Summer Camp Crossover Trial in 5- to 9-Year-Old Children: Outpatient Wearable Artificial Pancreas Is Feasible and Safe. Diabetes Care, 2016, 39, 1180-1185.	4.3	79
84	Effects of Dietary Macronutrient Content on Glucose Metabolism in Children. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 5168-5178.	1.8	78
85	"Smart―Continuous Glucose Monitoring Sensors: On-Line Signal Processing Issues. Sensors, 2010, 10, 6751-6772.	2.1	78
86	The Effect of a Bile Acid Sequestrant on Glucose Metabolism in Subjects With Type 2 Diabetes. Diabetes, 2013, 62, 1094-1101.	0.3	78
87	Numerical non-identifiability regions of the minimal model of glucose kinetics: superiority of Bayesian estimation. Mathematical Biosciences, 2003, 184, 53-67.	0.9	77
88	The Artificial Pancreas in 2016: A Digital Treatment Ecosystem for Diabetes. Diabetes Care, 2016, 39, 1123-1126.	4.3	77
89	Integrated kinematics–kinetics–plantar pressure data analysis: A useful tool for characterizing diabetic foot biomechanics. Gait and Posture, 2012, 36, 20-26.	0.6	76
90	Glucose metabolism during rotational shift-work in healthcare workers. Diabetologia, 2017, 60, 1483-1490.	2.9	76

#	Article	IF	CITATIONS
91	The kinetics of insulin in man. I. General aspects. Diabetes/metabolism Reviews, 1987, 3, 335-363.	0.2	7 5
92	The Effect of Walking on Postprandial Glycemic Excursion in Patients With Type 1 Diabetes and Healthy People. Diabetes Care, 2012, 35, 2493-2499.	4.3	75
93	The University of Virginia/Padova Type 1 Diabetes Simulator Matches the Glucose Traces of a Clinical Trial. Diabetes Technology and Therapeutics, 2014, 16, 428-434.	2.4	74
94	Resistance exercise and growth hormone administration in older men: Effects on insulin sensitivity and secretion during a stable-label intravenous glucose tolerance test. Metabolism: Clinical and Experimental, 1996, 45, 254-260.	1.5	73
95	Type-1 Diabetes Patient Decision Simulator for In Silico Testing Safety and Effectiveness of Insulin Treatments. IEEE Transactions on Biomedical Engineering, 2018, 65, 1281-1290.	2.5	73
96	Evaluation of Portal/Peripheral Route and of Algorithms for Insulin Delivery in the Closed-Loop Control of Glucose in Diabetes - A Modeling Study. IEEE Transactions on Biomedical Engineering, 1983, BME-30, 93-103.	2.5	72
97	Muscle glucose transport and phosphorylation in type 2 diabetic, obese nondiabetic, and genetically predisposed individuals. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E92-E100.	1.8	72
98	Control to Range for Diabetes: Functionality and Modular Architecture. Journal of Diabetes Science and Technology, 2009, 3, 1058-1065.	1.3	72
99	Closed-Loop Artificial Pancreas Systems: Physiological Input to Enhance Next-Generation Devices. Diabetes Care, 2014, 37, 1184-1190.	4.3	72
100	Interstitial Fluid Glucose Is Not Just a Shifted-in-Time but a Distorted Mirror of Blood Glucose: Insight from an In Silico Study. Diabetes Technology and Therapeutics, 2016, 18, 505-511.	2.4	71
101	Twelve-Week 24/7 Ambulatory Artificial Pancreas With Weekly Adaptation of Insulin Delivery Settings: Effect on Hemoglobin A1c and Hypoglycemia. Diabetes Care, 2017, 40, 1719-1726.	4.3	68
102	Adjustment of Open-Loop Settings to Improve Closed-Loop Results in Type 1 Diabetes: A Multicenter Randomized Trial. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 3878-3886.	1.8	67
103	Model of glucose sensor error components: identification and assessment for new Dexcom G4 generation devices. Medical and Biological Engineering and Computing, 2015, 53, 1259-1269.	1.6	65
104	One-Day Bayesian Cloning of Type 1 Diabetes Subjects: Toward a Single-Day UVA/Padova Type 1 Diabetes Simulator. IEEE Transactions on Biomedical Engineering, 2016, 63, 2416-2424.	2.5	63
105	Compartmental modeling of glucagon kinetics in the conscious dog. Metabolism: Clinical and Experimental, 1995, 44, 452-459.	1.5	62
106	Pioglitazone Decreases Fasting and Postprandial Endogenous Glucose Production in Proportion to Decrease in Hepatic Triglyceride Content. Diabetes, 2008, 57, 2288-2295.	0.3	62
107	Glucose Production, Gluconeogenesis, and Insulin Sensitivity in Children and Adolescents: An Evaluation of Their Reproducibility. Pediatric Research, 2001, 50, 115-123.	1.1	61
108	Randomized Controlled Trial of a MUFA or Fiber-Rich Diet on Hepatic Fat in Prediabetes. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 1765-1774.	1.8	61

#	Article	IF	Citations
109	L-Arginine-Nitric Oxide Kinetics in Normal and Type 2 Diabetic Subjects: A Stable-Labelled 15N Arginine Approach. Diabetes, 2003, 52, 795-802.	0.3	60
110	Two Years of Treatment With Dehydroepiandrosterone Does Not Improve Insulin Secretion, Insulin Action, or Postprandial Glucose Turnover in Elderly Men or Women. Diabetes, 2007, 56, 753-766.	0.3	60
111	Modeling the Error of Continuous Glucose Monitoring Sensor Data: Critical Aspects Discussed through Simulation Studies. Journal of Diabetes Science and Technology, 2010, 4, 4-14.	1.3	60
112	Oxytocin Improves Î ² -Cell Responsivity and Glucose Tolerance in Healthy Men. Diabetes, 2017, 66, 264-271.	0.3	60
113	Exercise effects on postprandial glucose metabolism in type 1 diabetes: a triple-tracer approach. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E1106-E1115.	1.8	59
114	Design, Methods, and Evaluation Directions of a Multi-Access Service for the Management of Diabetes Mellitus Patients. Diabetes Technology and Therapeutics, 2003, 5, 621-629.	2.4	58
115	Dipeptidyl Peptidase-4 Inhibition by Vildagliptin and the Effect on Insulin Secretion and Action in Response to Meal Ingestion in Type 2 Diabetes. Diabetes Care, 2009, 32, 14-18.	4.3	58
116	Enhanced Accuracy of Continuous Glucose Monitoring by Online Extended Kalman Filtering. Diabetes Technology and Therapeutics, 2010, 12, 353-363.	2.4	58
117	Using what is accessible to measure that which is not: Necessity of model of system. Metabolism: Clinical and Experimental, 1998, 47, 1009-1035.	1.5	57
118	Individually Adaptive Artificial Pancreas in Subjects with Type 1 Diabetes: A One-Month Proof-of-Concept Trial in Free-Living Conditions. Diabetes Technology and Therapeutics, 2017, 19, 560-571.	2.4	56
119	Enhancing the Accuracy of Subcutaneous Glucose Sensors: A Real-Time Deconvolution-Based Approach. IEEE Transactions on Biomedical Engineering, 2012, 59, 1658-1669.	2.5	55
120	Multinight "Bedside―Closed-Loop Control for Patients with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2015, 17, 203-209.	2.4	55
121	Measurement of selective effect of insulin on glucose disposal from labeled glucose oral test minimal model. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E909-E914.	1.8	54
122	The effect of DPPâ€4 inhibition with sitagliptin on incretin secretion and on fasting and postprandial glucose turnover in subjects with impaired fasting glucose. Clinical Endocrinology, 2010, 73, 189-196.	1.2	54
123	Obesity and Type 2 Diabetes Do Not Alter Splanchnic Cortisol Production in Humans. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 3919-3926.	1.8	53
124	Reconstruction of Glucose in Plasma from Interstitial Fluid Continuous Glucose Monitoring Data: Role of Sensor Calibration. Journal of Diabetes Science and Technology, 2007, 1, 617-623.	1.3	52
125	Markerless analysis of front crawl swimming. Journal of Biomechanics, 2011, 44, 2236-2242.	0.9	51
126	Automatic selection of arterial input function on dynamic contrast-enhanced MR images. Computer Methods and Programs in Biomedicine, 2011, 104, e148-e157.	2.6	51

#	Article	IF	Citations
127	"Learning―Can Improve the Blood Glucose Control Performance for Type 1 Diabetes Mellitus. Diabetes Technology and Therapeutics, 2017, 19, 41-48.	2.4	51
128	Interactions Between Delivery, Transport, and Phosphorylation of Glucose in Governing Uptake Into Human Skeletal Muscle. Diabetes, 2006, 55, 3028-3037.	0.3	50
129	A New Classification of Diabetic Gait Pattern Based on Cluster Analysis of Biomechanical Data. Journal of Diabetes Science and Technology, 2010, 4, 1127-1138.	1.3	50
130	Online Denoising Method to Handle Intraindividual Variability of Signal-to-Noise Ratio in Continuous Glucose Monitoring. IEEE Transactions on Biomedical Engineering, 2011, 58, 2664-2671.	2.5	50
131	Hyperglucagonemia Mitigates the Effect of Metformin on Glucose Production in Prediabetes. Cell Reports, 2016, 15, 1394-1400.	2.9	50
132	The rs7903146 Variant in the $\langle i \rangle$ TCF7L2 $\langle i \rangle$ Gene Increases the Risk of Prediabetes/Type 2 Diabetes in Obese Adolescents by Impairing \hat{I}^2 -Cell Function and Hepatic Insulin Sensitivity. Diabetes Care, 2017, 40, 1082-1089.	4.3	50
133	How Much Is Short-Term Glucose Prediction in Type 1 Diabetes Improved by Adding Insulin Delivery and Meal Content Information to CGM Data? A Proof-of-Concept Study. Journal of Diabetes Science and Technology, 2016, 10, 1149-1160.	1.3	48
134	Standardized Mixed-Meal Tolerance and Arginine Stimulation Tests Provide Reproducible and Complementary Measures of \hat{I}^2 -Cell Function: Results From the Foundation for the National Institutes of Health Biomarkers Consortium Investigative Series. Diabetes Care, 2016, 39, 1602-1613.	4.3	47
135	Assessment of postprandial glucose metabolism: conventional dual- vs. triple-tracer method. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E800-E806.	1.8	46
136	Impaired gait in ankylosing spondylitis. Medical and Biological Engineering and Computing, 2011, 49, 801-809.	1.6	46
137	A Dynamic Bayesian Network model for long-term simulation of clinical complications in type 1 diabetes. Journal of Biomedical Informatics, 2015, 57, 369-376.	2.5	46
138	Model predictive control with integral action for artificial pancreas. Control Engineering Practice, 2018, 77, 86-94.	3.2	46
139	A subcellular model of glucose-stimulated pancreatic insulin secretion. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 3525-3543.	1.6	45
140	Insulin Infusion Set Use: European Perspectives and Recommendations. Diabetes Technology and Therapeutics, 2016, 18, 517-524.	2.4	45
141	In silico assessment of biomedical products: The conundrum of rare but not so rare events in two case studies. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2017, 231, 455-466.	1.0	45
142	Multicenter Closed-Loop Insulin Delivery Study Points to Challenges for Keeping Blood Glucose in a Safe Range by a Control Algorithm in Adults and Adolescents with Type 1 Diabetes from Various Sites. Diabetes Technology and Therapeutics, 2014, 16, 613-622.	2.4	43
143	Quantitative Estimation of Insulin Sensitivity in Type 1 Diabetic Subjects Wearing a Sensor-Augmented Insulin Pump. Diabetes Care, 2014, 37, 1216-1223.	4.3	43
144	<i>TCF7L2</i> Genotype and <i>\hat{l}±</i> -Cell Function in Humans Without Diabetes. Diabetes, 2016, 65, 371-380.	0.3	43

#	Article	IF	Citations
145	Glucose Prediction Algorithms from Continuous Monitoring Data: Assessment of Accuracy via Continuous Glucose Error-Grid Analysis. Journal of Diabetes Science and Technology, 2007, 1, 645-651.	1.3	42
146	Dexcom G4AP: An Advanced Continuous Glucose Monitor for the Artificial Pancreas. Journal of Diabetes Science and Technology, 2013, 7, 1436-1445.	1.3	42
147	Three hours of intermittent hypoxia increases circulating glucose levels in healthy adults. Physiological Reports, 2017, 5, e13106.	0.7	42
148	The effects of hormonal replacement therapy on insulin sensitivity in surgically postmenopausal cynomolgus monkeys (Macaca fascicularis). American Journal of Obstetrics and Gynecology, 1994, 171, 440-445.	0.7	41
149	3D finite element model of the diabetic neuropathic foot: A gait analysis driven approach. Journal of Biomechanics, 2014, 47, 3064-3071.	0.9	41
150	Six and 12 Weeks of Caloric Restriction Increases \hat{l}^2 Cell Function and Lowers Fasting and Postprandial Glucose Concentrations in People with Type 2 Diabetes. Journal of Nutrition, 2015, 145, 2046-2051.	1.3	40
151	Effects of Nonglucose Nutrients on Insulin Secretion and Action in People With Pre-Diabetes. Diabetes, 2007, 56, 1113-1119.	0.3	39
152	A Gene Network Simulator to Assess Reverse Engineering Algorithms. Annals of the New York Academy of Sciences, 2009, 1158, 125-142.	1.8	39
153	Interactions Among Glucose Delivery, Transport, and Phosphorylation That Underlie Skeletal Muscle Insulin Resistance in Obesity and Type 2 Diabetes: Studies With Dynamic PET Imaging. Diabetes, 2014, 63, 1058-1068.	0.3	39
154	Model individualization for artificial pancreas. Computer Methods and Programs in Biomedicine, 2019, 171, 133-140.	2.6	39
155	Estimation of \hat{l}^2 -cell secretion and insulin hepatic extraction by the minimal modelling technique. Computer Methods and Programs in Biomedicine, 1990, 32, 241-248.	2.6	38
156	The role of foot morphology on foot function in diabetic subjects with or without neuropathy. Gait and Posture, 2013, 37, 603-610.	0.6	38
157	Reduction of Number and Duration of Hypoglycemic Events by Glucose Prediction Methods: A Proof-of-Concept In Silico Study. Diabetes Technology and Therapeutics, 2013, 15, 66-77.	2.4	38
158	Advancing Our Understanding of the Glucose System via Modeling: A Perspective. IEEE Transactions on Biomedical Engineering, 2014, 61, 1577-1592.	2.5	38
159	Multicenter Closed-Loop/Hybrid Meal Bolus Insulin Delivery with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2014, 16, 623-632.	2.4	38
160	Modeling Subcutaneous Absorption of Fast-Acting Insulin in Type 1 Diabetes. IEEE Transactions on Biomedical Engineering, 2018, 65, 2079-2086.	2.5	38
161	A New Index to Optimally Design and Compare Continuous Glucose Monitoring Glucose Prediction Algorithms. Diabetes Technology and Therapeutics, 2011, 13, 111-119.	2.4	37
162	A concerted decline in insulin secretion and action occurs across the spectrum of fasting and postchallenge glucose concentrations. Clinical Endocrinology, 2012, 76, 212-219.	1.2	37

#	Article	IF	Citations
163	Glucose Variability Indices in Type 1 Diabetes: Parsimonious Set of Indices Revealed by Sparse Principal Component Analysis. Diabetes Technology and Therapeutics, 2014, 16, 644-652.	2.4	37
164	Remote Blood Glucose Monitoring in mHealth Scenarios: A Review. Sensors, 2016, 16, 1983.	2.1	37
165	Effects of the BET-inhibitor, RVX-208 on the HDL lipidome and glucose metabolism in individuals with prediabetes: A randomized controlled trial. Metabolism: Clinical and Experimental, 2016, 65, 904-914.	1.5	37
166	Accurate Measurement of Postprandial Glucose Turnover: Why Is It Difficult and How Can It Be Done (Relatively) Simply?. Diabetes, 2016, 65, 1133-1145.	0.3	37
167	Modeling Transient Disconnections and Compression Artifacts of Continuous Glucose Sensors. Diabetes Technology and Therapeutics, 2016, 18, 264-272.	2.4	37
168	Glucose Transport and Phosphorylation in Skeletal Muscle in Obesity: Insight from a Muscle-Specific Positron Emission Tomography Model. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 1271-1279.	1.8	36
169	A model of GLP-1 action on insulin secretion in nondiabetic subjects. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E1115-E1121.	1.8	36
170	Diabetes-Associated Common Genetic Variation and Its Association With GLP-1 Concentrations and Response to Exogenous GLP-1. Diabetes, 2012, 61, 1082-1089.	0.3	36
171	Postprandial glucose fluxes and insulin sensitivity during exercise: A study in healthy individuals. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E557-E566.	1.8	36
172	Cholecalciferol Supplementation Does Not Influence β-Cell Function and Insulin Action in Obese Adolescents: A Prospective Double-Blind Randomized Trial,. Journal of Nutrition, 2015, 145, 284-290.	1.3	36
173	Ongoing \hat{l}^2 -Cell Turnover in Adult Nonhuman Primates Is Not Adaptively Increased in Streptozotocin-Induced Diabetes. Diabetes, 2011, 60, 848-856.	0.3	35
174	Closed loop developments to improve glucose control at home. Diabetes Research and Clinical Practice, 2013, 102, 79-85.	1.1	35
175	Data-Driven Anomaly Recognition for Unsupervised Model-Free Fault Detection in Artificial Pancreas. IEEE Transactions on Control Systems Technology, 2020, 28, 33-47.	3.2	35
176	Estimation of Hemoglobin A1c from Continuous Glucose Monitoring Data in Individuals with Type 1 Diabetes: Is Time In Range All We Need?. Diabetes Technology and Therapeutics, 2020, 22, 501-508.	2.4	35
177	Continuous Glucose Monitoring Time Series and Hypo/Hyperglycemia Prevention: Requirements, Methods, Open Problems. Current Diabetes Reviews, 2008, 4, 181-192.	0.6	35
178	winstodec: a stochastic deconvolution interactive program for physiological and pharmacokinetic systems. Computer Methods and Programs in Biomedicine, 2002, 67, 67-77.	2.6	34
179	Weight Loss-Induced Plasticity of Glucose Transport and Phosphorylation in the Insulin Resistance of Obesity and Type 2 Diabetes. Diabetes, 2003, 52, 1619-1626.	0.3	34
180	Adiposity and β ell Function: Relationships Differ With Ethnicity and Age. Obesity, 2010, 18, 2086-2092.	1.5	34

#	Article	IF	Citations
181	Cellular modeling: insight into oral minimal models of insulin secretion. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E597-E601.	1.8	34
182	A methodological framework for detecting ulcers' risk in diabetic foot subjects by combining gait analysis, a new musculoskeletal foot model and a foot finite element model. Gait and Posture, 2018, 60, 279-285.	0.6	34
183	Glycemic Outcomes of Use of CLC Versus PLGS in Type 1 Diabetes: A Randomized Controlled Trial. Diabetes Care, 2020, 43, 1822-1828.	4.3	34
184	Incretin effect potentiates \hat{I}^2 -cell responsivity to glucose as well as to its rate of change: OGTT and matched intravenous study. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E54-E60.	1.8	33
185	Impaired insulin signaling in unaffected siblings and patients with first-episode psychosis. Molecular Psychiatry, 2019, 24, 1513-1522.	4.1	32
186	In Silico Trials of an Open-Source Android-Based Artificial Pancreas: A New Paradigm to Test Safety and Efficacy of Do-It-Yourself Systems. Diabetes Technology and Therapeutics, 2020, 22, 112-120.	2.4	32
187	Italian Contributions to the Development of Continuous Glucose Monitoring Sensors for Diabetes Management. Sensors, 2012, 12, 13753-13780.	2.1	31
188	A Glucose-Specific Metric to Assess Predictors and Identify Models. IEEE Transactions on Biomedical Engineering, 2012, 59, 1281-1290.	2.5	31
189	Modeling Plasma-to-Interstitium Glucose Kinetics from Multitracer Plasma and Microdialysis Data. Diabetes Technology and Therapeutics, 2015, 17, 825-831.	2.4	31
190	Co-occurrence of Risk Alleles in or Near Genes Modulating Insulin Secretion Predisposes Obese Youth to Prediabetes. Diabetes Care, 2014, 37, 475-482.	4.3	30
191	Evaluating the Experience of Children With Type 1 Diabetes and Their Parents Taking Part in an Artificial Pancreas Clinical Trial Over Multiple Days in a Diabetes Camp Setting. Diabetes Care, 2016, 39, 2158-2164.	4.3	30
192	Automatic adaptation of basal therapy for Type 1 diabetic patients: A Run-to-Run approach. Biomedical Signal Processing and Control, 2017, 31, 539-549.	3.5	30
193	Prospective evaluation of insulin and incretin dynamics in obese adults with and without diabetes for 2Âyears after Roux-en-Y gastric bypass. Diabetologia, 2018, 61, 1142-1154.	2.9	30
194	Estimation of blood flow heterogeneity distribution in human skeletal muscle from positron emission tomography data. Annals of Biomedical Engineering, 1997, 25, 906-910.	1.3	29
195	\hat{l}^2 -cell function during insulin-modified intravenous glucose tolerance test successfully assessed by the C-peptide minimal model. Metabolism: Clinical and Experimental, 1999, 48, 1162-1166.	1.5	29
196	Defects in GLP-1 Response to an Oral Challenge Do Not Play a Significant Role in the Pathogenesis of Prediabetes. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 589-598.	1.8	29
197	<i>In Silico</i> Optimization of Basal Insulin Infusion Rate during Exercise: Implication for Artificial Pancreas. Journal of Diabetes Science and Technology, 2013, 7, 1461-1469.	1.3	29
198	Improving Efficacy of Inhaled Technosphere Insulin (Afrezza) by Postmeal Dosing: In-silico Clinical Trial with the University of Virginia/Padova Type 1 Diabetes Simulator. Diabetes Technology and Therapeutics, 2016, 18, 574-585.	2.4	29

#	Article	lF	Citations
199	Diabetes and Prediabetes Classification Using Glycemic Variability Indices From Continuous Glucose Monitoring Data. Journal of Diabetes Science and Technology, 2018, 12, 105-113.	1.3	29
200	Preserved Relative Dispersion but Blunted Stimulation of Mean Flow, Absolute Dispersion, and Blood Volume by Insulin in Skeletal Muscle of Patients With Essential Hypertension. Circulation, 1998, 97, 2146-2153.	1.6	28
201	A Dynamic Risk Measure from Continuous Glucose Monitoring Data. Diabetes Technology and Therapeutics, 2011, 13, 843-852.	2.4	28
202	Non-invasive continuous glucose monitoring: improved accuracy of point and trend estimates of the Multisensor system. Medical and Biological Engineering and Computing, 2012, 50, 1047-1057.	1.6	28
203	Motion analysis of front crawl swimming applying CAST technique by means of automatic tracking. Journal of Sports Sciences, 2013, 31, 276-287.	1.0	28
204	Accuracy of a CGM Sensor in Pediatric Subjects With Type 1 Diabetes. Comparison of Three Insertion Sites: Arm, Abdomen, and Gluteus. Journal of Diabetes Science and Technology, 2017, 11, 1147-1154.	1.3	27
205	Dual glucagonâ€like peptideâ€1 receptor/glucagon receptor agonist SAR425899 improves betaâ€cell function in type 2 diabetes. Diabetes, Obesity and Metabolism, 2020, 22, 640-647.	2.2	27
206	A Bayesian approach to estimate evoked potentials. Computer Methods and Programs in Biomedicine, 2002, 68, 233-248.	2.6	26
207	A Morphometric Model of Lung Mechanics for Time-Domain Analysis of Alveolar Pressures during Mechanical Ventilation. Annals of Biomedical Engineering, 2002, 30, 537-545.	1.3	26
208	"Population―Approach Improves Parameter Estimation of Kinetic Models From Dynamic PET Data. IEEE Transactions on Medical Imaging, 2004, 23, 297-306.	5. 4	26
209	Assessment of Blood Glucose Predictors: The Prediction-Error Grid Analysis. Diabetes Technology and Therapeutics, 2011, 13, 787-796.	2.4	26
210	Effects of delayed gastric emptying on postprandial glucose kinetics, insulin sensitivity, and β-cell function. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E494-E502.	1.8	26
211	Effect of Slow Wave Sleep Disruption on Metabolic Parameters in Adolescents. Sleep, 2016, 39, 1591-1599.	0.6	26
212	Parsimonious Description of Glucose Variability in Type 2 Diabetes by Sparse Principal Component Analysis. Journal of Diabetes Science and Technology, 2016, 10, 119-124.	1.3	26
213	Impaired Insulin Action Is Associated With Increased Glucagon Concentrations in Nondiabetic Humans. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 314-319.	1.8	26
214	Improved postprandial glucose metabolism in type 2 diabetes by the dual glucagonâ€like peptideâ€1/glucagon receptor agonist SAR425899 in comparison with liraglutide. Diabetes, Obesity and Metabolism, 2021, 23, 1795-1805.	2.2	26
215	Modeling, identification and parameter estimation of bilirubin kinetics in normal, hemolytic and Gilbert's states. Journal of Biomedical Informatics, 1975, 8, 522-537.	0.7	25
216	The minimal model of glucose disappearance: optimal input studies. Mathematical Biosciences, 1987, 83, 127-155.	0.9	24

#	Article	IF	Citations
217	Continuous Glucose Monitoring Accuracy Results Vary between Assessment at Home and Assessment at the Clinical Research Center. Journal of Diabetes Science and Technology, 2012, 6, 1103-1106.	1.3	24
218	Direct Effects of Exendin-(9,39) and GLP-1-(9,36) amide on Insulin Action, \hat{l}^2 -Cell Function, and Glucose Metabolism in Nondiabetic Subjects. Diabetes, 2013, 62, 2752-2756.	0.3	24
219	Modeling hepatic insulin sensitivity during a meal: validation against the euglycemic hyperinsulinemic clamp. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E819-E825.	1.8	24
220	A common variant in the <i>MTNR1b</i> gene is associated with increased risk of impaired fasting glucose (IFG) in youth with obesity. Obesity, 2015, 23, 1022-9.	1.5	24
221	Effect of Pramlintide on Postprandial Glucose Fluxes in Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 1954-1962.	1.8	24
222	Reduction of Blood Glucose Measurements to Calibrate Subcutaneous Glucose Sensors: A Bayesian Multiday Framework. IEEE Transactions on Biomedical Engineering, 2018, 65, 587-595.	2.5	24
223	Estimation of endogenous glucose production after a glucose perturbation by nonparametric stochastic deconvolution. Computer Methods and Programs in Biomedicine, 1997, 52, 147-156.	2.6	23
224	A New Dynamic Index of Insulin Sensitivity. IEEE Transactions on Biomedical Engineering, 2006, 53, 369-379.	2.5	23
225	Effect of Size and Heterogeneity of Samples on Biomarker Discovery: Synthetic and Real Data Assessment. PLoS ONE, 2012, 7, e32200.	1.1	23
226	Physical Activity Measured by Physical Activity Monitoring System Correlates with Glucose Trends Reconstructed from Continuous Glucose Monitoring. Diabetes Technology and Therapeutics, 2013, 15, 836-844.	2.4	23
227	Postprandial Glucose Regulation via KNN Meal Classification in Type 1 Diabetes. , 2019, 3, 230-235.		23
228	The disposition index: from individual to population approach. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E576-E586.	1.8	22
229	Postprandial improvement in insulin sensitivity after a single exercise session in adolescents with low aerobic fitness and physical activity. Pediatric Diabetes, 2013, 14, 129-137.	1.2	22
230	Hypoglycemia-Related Electroencephalogram Changes Assessed by Multiscale Entropy. Diabetes Technology and Therapeutics, 2014, 16, 688-694.	2.4	22
231	Overnight Closed-Loop Control Improves Glycemic Control in a Multicenter Study of Adults With Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3674-3682.	1.8	22
232	Quantitative Assessment of Glucose Transport in Human Skeletal Muscle: Dynamic Positron Emission Tomography Imaging of [O-Methyl-11C]3-O-Methyl-d-Glucose. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 1752-1759.	1.8	21
233	Is Psychological Stress a Factor for Incorporation Into Future Closed-Loop Systems?. Journal of Diabetes Science and Technology, 2016, 10, 640-646.	1.3	21
234	Comparison of lower limb muscle strength between diabetic neuropathic and healthy subjects using OpenSim. Gait and Posture, 2017, 58, 194-200.	0.6	21

#	Article	IF	Citations
235	Continuous glucose monitoring and hypo/hyperglycaemia prediction. Diabetes Research and Clinical Practice, 2006, 74, S160-S163.	1.1	20
236	Progress in Development of an Artificial Pancreas. Journal of Diabetes Science and Technology, 2009, 3, 1002-1004.	1.3	20
237	Insulin Secretion Rate During Glucose Stimuli: Alternative Analyses of C-Peptide Data. Annals of Biomedical Engineering, 2001, 29, 692-700.	1.3	19
238	Use of labeled oral minimal model to measure hepatic insulin sensitivity. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E1152-E1159.	1.8	19
239	Incretin action maintains insulin secretion, but not hepatic insulin action, in people with impaired fasting glucose. Diabetes Research and Clinical Practice, 2010, 90, 87-94.	1.1	19
240	In Silico Design of Optimal Ratio for Co-Administration of Pramlintide and Insulin in Type 1 Diabetes. Diabetes Technology and Therapeutics, 2013, 15, 802-809.	2.4	19
241	Novel genetic susceptibility loci for diabetic end-stage renal disease identified through robust naive Bayes classification. Diabetologia, 2014, 57, 1611-1622.	2.9	19
242	Association Between Thyrotropin Levels and Insulin Sensitivity in Euthyroid Obese Adolescents. Thyroid, 2015, 25, 478-484.	2.4	19
243	Improved postprandial glucose control with a customized Model Predictive Controller. , 2015, , .		19
244	A Model for the Estimation of Hepatic Insulin Extraction After a Meal. IEEE Transactions on Biomedical Engineering, 2016, 63, 1925-1932.	2.5	19
245	Bayesian two-compartment and classic single-compartment minimal models: comparison on insulin modified IVCTT and effect of experiment reduction. IEEE Transactions on Biomedical Engineering, 2003, 50, 1301-1309.	2.5	18
246	Pubertal changes in HOMA and QUICKI: relationship to hepatic and peripheral insulin sensitivity. Pediatric Diabetes, 2004, 5, 122-125.	1.2	18
247	Multiscale Modeling of Insulin Secretion. IEEE Transactions on Biomedical Engineering, 2011, 58, 3020-3023.	2.5	18
248	Dynamic PET Imaging Reveals Heterogeneity of Skeletal Muscle Insulin Resistance. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E102-E106.	1.8	18
249	Model-Based Quantification of Glucagon-Like Peptide-1–Induced Potentiation of Insulin Secretion in Response to a Mixed Meal Challenge. Diabetes Technology and Therapeutics, 2016, 18, 39-46.	2.4	18
250	Identifiability from parameter bounds. Structural and numerical aspects. Mathematical Biosciences, 1984, 71, 237-243.	0.9	17
251	Surfactant disaturated phosphatidylcholine kinetics in infants with bronchopulmonary dysplasia measured with stable isotopes and a two-compartment model. Journal of Applied Physiology, 2005, 99, 323-329.	1.2	17
252	Glucose Fluxes During OGTT in Adolescents Assessed by a Stable Isotope Triple Tracer Method. Journal of Pediatric Endocrinology and Metabolism, 2008, 21, 31-45.	0.4	17

#	Article	IF	CITATIONS
253	Non-Invasive Continuous Glucose Monitoring with Multi-Sensor Systems: A Monte Carlo-Based Methodology for Assessing Calibration Robustness. Sensors, 2013, 13, 7279-7295.	2.1	17
254	Hepatic insulin sensitivity in healthy and prediabetic subjects: from a dual- to a single-tracer oral minimal model. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E161-E167.	1.8	17
255	REGULATION OF GLUCOSE TOLERANCE IN PATIENTS AFTER LIVER TRANSPLANTATION. Transplantation, 2000, 69, 2072-2078.	0.5	17
256	β ell Function and Insulin Sensitivity in Adolescents From an OGTT. Obesity, 2009, 17, 233-239.	1.5	16
257	Nocturnal Glucose Metabolism in Type 1 Diabetes: A Study Comparing Single Versus Dual Tracer Approaches. Diabetes Technology and Therapeutics, 2015, 17, 587-595.	2.4	16
258	From Two to One Per Day Calibration of Dexcom G4 Platinum by a Time-Varying Day-Specific Bayesian Prior. Diabetes Technology and Therapeutics, 2016, 18, 472-479.	2.4	16
259	Contribution of endogenous glucagon-like peptide-1 to changes in glucose metabolism and islet function in people with type 2 diabetes four weeks after Roux-en-Y gastric bypass (RYGB). Metabolism: Clinical and Experimental, 2019, 93, 10-17.	1.5	16
260	The Padova Type 2 Diabetes Simulator from Triple-Tracer Single-Meal Studies: <i>In Silico</i> Trials Also Possible in Rare but Not-So-Rare Individuals. Diabetes Technology and Therapeutics, 2020, 22, 892-903.	2.4	16
261	4 In vivo glucose transport in human skeletal muscle: tools, problems and perspectives. Bailliere's Clinical Endocrinology and Metabolism, 1993, 7, 929-960.	1.0	15
262	Insulin Minimal Model Indexes and Secretion: Proper Handling of Uncertainty by a Bayesian Approach. Annals of Biomedical Engineering, 2004, 32, 1027-1037.	1.3	15
263	Regularised Model Identification Improves Accuracy of Multisensor Systems for Noninvasive Continuous Glucose Monitoring in Diabetes Management. Journal of Applied Mathematics, 2013, 2013, 1-10.	0.4	15
264	Glucagon sensitivity and clearance in type 1 diabetes: insights from in vivo and in silico experiments. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E474-E486.	1.8	15
265	A Model of Self-Monitoring Blood Glucose Measurement Error. Journal of Diabetes Science and Technology, 2017, 11, 724-735.	1.3	15
266	Insulin Sensitivity Index-Based Optimization of Insulin to Carbohydrate Ratio: In Silico Study Shows Efficacious Protection Against Hypoglycemic Events Caused by Suboptimal Therapy. Diabetes Technology and Therapeutics, 2018, 20, 98-105.	2.4	15
267	Yet Another Glucose Variability Index: Time for a Paradigm Change?. Diabetes Technology and Therapeutics, 2018, 20, 1-3.	2.4	15
268	Mixed Meal and Intravenous L-Arginine Tests Both Stimulate Incretin Release Across Glucose Tolerance in Man: Lack of Correlation with \hat{l}^2 Cell Function. Metabolic Syndrome and Related Disorders, 2018, 16, 406-415.	0.5	15
269	Artificial Pancreas: <i>In Silico</i> Study Shows No Need of Meal Announcement and Improved Time in Range of Glucose With Intraperitoneal vs. Subcutaneous Insulin Delivery. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 306-314.	2.1	15
270	Estimation of Blood Flow Heterogeneity in Human Skeletal Muscle Using Intravascular Tracer Data: Importance for Modeling Transcapillary Exchange. Annals of Biomedical Engineering, 1998, 26, 764-774.	1.3	14

#	Article	IF	CITATIONS
271	Generalization of Map Estimation in SAAM II: Validation Against ADAPT II in a Glucose Model Case Study. Annals of Biomedical Engineering, 2002, 30, 961-968.	1.3	14
272	Nonlinear Mixed Effects to Improve Glucose Minimal Model Parameter Estimation: A Simulation Study in Intensive and Sparse Sampling. IEEE Transactions on Biomedical Engineering, 2009, 56, 2156-2166.	2.5	14
273	Empirical Bayesian estimation in graphical analysis: a voxel-based approach for the determination of the volume of distribution in PET studies. Nuclear Medicine and Biology, 2010, 37, 443-451.	0.3	14
274	The artificial pancreas: a digital-age treatment for diabetes. Lancet Diabetes and Endocrinology,the, 2014, 2, 679-681.	5.5	14
275	Effects of Liraglutide Monotherapy on Beta Cell Function and Pancreatic Enzymes Compared with Metformin in Japanese Overweight/Obese Patients with Type 2 Diabetes Mellitus: A Subpopulation Analysis of the KIND-LM Randomized Trial. Clinical Drug Investigation, 2015, 35, 675-684.	1.1	14
276	Incorporating Long-Acting Insulin Glargine Into the UVA/Padova Type 1 Diabetes Simulator for <i>In Silico </i> Iv) Testing of MDI Therapies. IEEE Transactions on Biomedical Engineering, 2019, 66, 2889-2896.	2.5	14
277	Diabetes-associated genetic variation in TCF7L2 alters pulsatile insulin secretion in humans. JCI Insight, 2020, 5, .	2.3	14
278	<i>In Silico</i> Head-to-Head Comparison of Insulin Glargine 300 U/mL and Insulin Degludec 100 U/mL in Type 1 Diabetes. Diabetes Technology and Therapeutics, 2020, 22, 553-561.	2.4	14
279	Fasting glucagon concentrations are associated with longitudinal decline of \hat{l}^2 -cell function in non-diabetic humans. Metabolism: Clinical and Experimental, 2020, 105, 154175.	1.5	14
280	On optimality of the impulse input for linear system identification. Mathematical Biosciences, 1988, 89, 127-133.	0.9	13
281	Bayesian Identification of a Population Compartmental Model of C-Peptide Kinetics. Annals of Biomedical Engineering, 2000, 28, 812-823.	1.3	13
282	DHEA in Elderly Women and DHEA or Testosterone in Elderly Men. Obstetrical and Gynecological Survey, 2007, 62, 113-114.	0.2	13
283	Retrofitting of Continuous Glucose Monitoring Traces Allows More Accurate Assessment of Glucose Control in Outpatient Studies. Diabetes Technology and Therapeutics, 2015, 17, 355-363.	2.4	13
284	Altered EMG patterns in diabetic neuropathic and not neuropathic patients during step ascending and descending. Journal of Electromyography and Kinesiology, 2016, 31, 32-39.	0.7	13
285	Hypoglycemia-Induced Decrease of EEG Coherence in Patients with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2016, 18, 178-184.	2.4	13
286	Performance of individually measured vs populationâ€based <scp>C</scp> â€peptide kinetics to assess βâ€cell function in the presence and absence of acute insulin resistance. Diabetes, Obesity and Metabolism, 2018, 20, 549-555.	2.2	13
287	The International Diabetes Closed-Loop Study: Testing Artificial Pancreas Component Interoperability. Diabetes Technology and Therapeutics, 2019, 21, 73-80.	2.4	13
288	Optimal input design for identification of compartmental models. Theory and application to a model of glucose kinetics. Mathematical Biosciences, 1985, 77, 267-286.	0.9	12

#	Article	IF	Citations
289	Rates of glucagon activation and deactivation of hepatic glucose production in conscious dogs. Metabolism: Clinical and Experimental, 1998, 47, 135-142.	1.5	12
290	Fast algorithms for nonparametric population modeling of large data sets. Automatica, 2009, 45, 173-179.	3.0	12
291	A data gathering framework to collect Type 2 diabetes patients data. , 2014, , .		12
292	Predicting Insulin Treatment Scenarios with the Net Effect Method: Domain of Validity. Diabetes Technology and Therapeutics, 2016, 18, 694-704.	2.4	12
293	Exploring the Frequency Domain of Continuous Glucose Monitoring Signals to Improve Characterization of Glucose Variability and of Diabetic Profiles. Journal of Diabetes Science and Technology, 2017, 11, 773-779.	1.3	12
294	Liver triacylglycerol content and gestational diabetes: effects of moderate energy restriction. Diabetologia, 2017, 60, 306-313.	2.9	12
295	HAPT2D: high accuracy of prediction of T2D with a model combining basic and advanced data depending on availability. European Journal of Endocrinology, 2018, 178, 331-341.	1.9	12
296	Hypoglycemia Prevention via Personalized Glucose-Insulin Models Identified in Free-Living Conditions. Journal of Diabetes Science and Technology, 2019, 13, 1008-1016.	1.3	12
297	Exercise Effect on Insulin-Dependent and Insulin-Independent Glucose Utilization in Healthy and Type 1 Diabetes Individuals. A Modeling Study American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E122-E129.	1.8	12
298	Dexamethasone Therapy in Preterm Infants Developing Bronchopulmonary Dysplasia: Effect on Pulmonary Surfactant Disaturated-Phosphatidylcholine Kinetics. Pediatric Research, 2008, 63, 433-437.	1.1	11
299	Function-Based Discovery of Significant Transcriptional Temporal Patterns in Insulin Stimulated Muscle Cells. PLoS ONE, 2012, 7, e32391.	1.1	11
300	Modeling Subcutaneous Absorption of Long-Acting Insulin Glargine in Type 1 Diabetes. IEEE Transactions on Biomedical Engineering, 2020, 67, 624-631.	2.5	11
301	Hyperglycemia But Not Hyperinsulinemia Is Favorable for Exercise in Type 1 Diabetes: A Pilot Study. Diabetes Care, 2020, 43, 2176-2182.	4.3	11
302	Modeling and identification of endocrine-metabolic systems. theoretical aspects and their importance in practice. Mathematical Biosciences, 1984, 72, 263-289.	0.9	10
303	Estimation of Organ Transport Function from Recirculating Indicator Dilution Curves. Annals of Biomedical Engineering, 1998, 26, 128-137.	1.3	10
304	Handling Non-Negativity in Deconvolution of Physiological Signals: A Nonlinear Stochastic Approach. Annals of Biomedical Engineering, 2002, 30, 1077-1087.	1.3	10
305	Prediabetes: Evaluation of \hat{I}^2 -Cell Function. Diabetes, 2012, 61, 270-271.	0.3	10
306	Â-Cell Function Improvements in Grade I/II Obese Subjects With Type 2 Diabetes 1 Month After Biliopancreatic Diversion: Results from modeling analyses of oral glucose tolerance tests and hyperglycemic clamp studies. Diabetes Care, 2013, 36, 4117-4124.	4.3	10

#	Article	IF	CITATIONS
307	Signal Processing Algorithms Implementing the "Smart Sensor―Concept to Improve Continuous Glucose Monitoring in Diabetes. Journal of Diabetes Science and Technology, 2013, 7, 1308-1318.	1.3	10
308	Artificial Pancreas Goes Outpatient: A New Diabetes Ecosystem. Journal of Diabetes Science and Technology, 2013, 7, 1411-1415.	1.3	10
309	Epicardial and Pericardial Fat in Type 2 Diabetes: Favourable Effects of Biliopancreatic Diversion. Obesity Surgery, 2015, 25, 477-485.	1.1	10
310	Mechanisms Underlying the Pathogenesis of Isolated Impaired Glucose Tolerance in Humans. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 4816-4824.	1.8	10
311	Intranasal oxytocin fails to acutely improve glucose metabolism in obese men. Diabetes, Obesity and Metabolism, 2019, 21, 424-428.	2.2	10
312	Impulse response model in reconstruction of insulin secretion by deconvolution: Role of input design in the identification experiment. Annals of Biomedical Engineering, 1997, 25, 398-416.	1.3	9
313	Effect of repaglinide and gliclazide on postprandial control of endogenous glucose production. Metabolism: Clinical and Experimental, 2005, 54, 79-84.	1.5	9
314	Identifiability of the stochastic semi-blind deconvolution problem for a class of time-invariant linear systems. Automatica, 2007, 43, 647-654.	3.0	9
315	The effect of vagal nerve blockade using electrical impulses on glucose metabolism in nondiabetic subjects. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2014, 7, 305.	1.1	9
316	Long-term continuous monitoring of the preterm brain with diffuse optical tomography and electroencephalography: a technical note on cap manufacturing. Neurophotonics, 2016, 3, 045009.	1.7	9
317	Leucine Metabolism in Man: Lessons from Modeling. Journal of Parenteral and Enteral Nutrition, 1991, 15, 86S-89S.	1.3	8
318	A Priori Identifiability of Distributed Models of Blood–Tissue Exchange. Annals of Biomedical Engineering, 1999, 27, 200-207.	1.3	8
319	PET Parametric Imaging Improved by Global-Two-Stage Method. Annals of Biomedical Engineering, 2009, 37, 419-427.	1.3	8
320	The Transcriptional Response in Human Umbilical Vein Endothelial Cells Exposed to Insulin: A Dynamic Gene Expression Approach. PLoS ONE, 2010, 5, e14390.	1.1	8
321	Global-two-stage filtering of clinical PET parametric maps: Application to [11C]-(R)-PK11195. NeuroImage, 2011, 55, 942-953.	2.1	8
322	Metabolic and Genetic Determinants of Glucose Shape After Oral Challenge in Obese Youths: A Longitudinal Study. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 534-542.	1.8	8
323	Limitations of the fasting proinsulin to insulin ratio as a measure of βâ€cell health in people with and without impaired glucose tolerance. European Journal of Clinical Investigation, 2021, 51, e13469.	1.7	8
324	Early Impairment of Insulin Sensitivity, \hat{l}^2 -Cell Responsiveness, and Insulin Clearance in Youth with Stage 1 Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 2660-2669.	1.8	8

#	Article	IF	CITATIONS
325	Impaired hemodynamic response to meal intake in insulin-resistant subjects: an impedance cardiography approach. American Journal of Clinical Nutrition, 2011, 93, 926-933.	2.2	7
326	Multiscale modelling of insulin secretion during an intravenous glucose tolerance test. Interface Focus, 2013, 3, 20120085.	1.5	7
327	Retrofitting Real-Life Dexcom G5 Data. Diabetes Technology and Therapeutics, 2017, 19, 237-245.	2.4	7
328	A novel natural tracer method to measure complex carbohydrate metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E483-E493.	1.8	7
329	Continuous Glucose Monitoring Linked to an Artificial Intelligence Risk Index: Early Footprints of Intraventricular Hemorrhage in Preterm Neonates. Diabetes Technology and Therapeutics, 2019, 21, 146-153.	2.4	7
330	Minimal and Maximal Models to Quantitate Glucose Metabolism: Tools to Measure, to Simulate and to Run in Silico Clinical Trials. Journal of Diabetes Science and Technology, 2021, , 193229682110152.	1.3	7
331	An innovative ski-boot: design, numerical simulations and testing. Journal of Sports Science and Medicine, 2005, 4, 229-38.	0.7	7
332	Optimal equidose inputs and role of measurement error for estimating the parameters of a compartmental model of glucose kinetics from continuous- and discrete-time optimal samples. Mathematical Biosciences, 1988, 89, 135-147.	0.9	6
333	Parameter estimation in distributed models of blood-tissue Exchange: A monte carlo strategy to assess precision. Annals of Biomedical Engineering, 1997, 25, 815-821.	1.3	6
334	Approximate Entropy Studies of Hormone Pulsatility from Plasma Concentration Time Series: Influence of the Kinetics Assessed by Simulation. Annals of Biomedical Engineering, 2000, 28, 665-676.	1.3	6
335	Assessment of clinical data of nonlinear stochastic deconvolution versus block-circulant singular value decomposition for quantitative dynamic susceptibility contrast magnetic resonance imaging. Magnetic Resonance Imaging, 2011, 29, 927-936.	1.0	6
336	Defective Glucagon-Like Peptide 1 Secretion in Prediabetes and Type 2 Diabetes Is Influenced by Weight and Sex. Chicken, Egg, or None of the Above?. Diabetes, 2015, 64, 2324-2325.	0.3	6
337	Towards the generation of a parametric foot model using principal component analysis: A pilot study. Medical Engineering and Physics, 2016, 38, 547-559.	0.8	6
338	Impaired Muscle Mitochondrial Function in Familial Partial Lipodystrophy. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 346-362.	1.8	6
339	Transfer function matrix of a compartmental model. Computer Programs in Biomedicine, 1980, 12, 141-155.	0.8	5
340	Prediction of Postprandial Glycemic Exposure: Utility of fasting and 2-h glucose measurements alone and in combination with assessment of body composition, fitness, and strength. Diabetes Care, 2006, 29, 2708-2713.	4.3	5
341	Sensitivity Analysis of Retrovirus HTLV-1 Transactivation. Journal of Computational Biology, 2011, 18, 183-193.	0.8	5
342	Compression and fast retrieval of SNP data. Bioinformatics, 2014, 30, 3078-3085.	1.8	5

#	Article	IF	CITATIONS
343	Long-Term Outcomes of Biliopancreatic Diversion on Glycemic Control, Insulin Sensitivity and Beta Cell Function. Obesity Surgery, 2016, 26, 2572-2580.	1.1	5
344	Artificial Pancreas: from Control-to-Range to Control-to-Target * *Corresponding author: Gian Paolo Incremona, Dipartimento di Ingegneria Industriale e dell'Informazione, University of Pavia, Via Ferrata 5, 27100 Pavia, Italy. IFAC-PapersOnLine, 2017, 50, 7737-7742.	0.5	5
345	Assessment of pulsatile insulin secretion derived from peripheral plasma C-peptide concentrations by nonparametric stochastic deconvolution. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E687-E694.	1.8	5
346	Visual food cues decrease blood glucose and glucoregulatory hormones following an oral glucose tolerance test in normal-weight and obese men. Physiology and Behavior, 2020, 226, 113071.	1.0	5
347	Insulin Pulse Characteristics and Insulin Action in Non-diabetic Humans. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 1702-1709.	1.8	5
348	An expanded schematic for compartmental systems. Mathematical Biosciences, 1986, 79, 97-106.	0.9	4
349	The dual tracer time-varying volume method for measuring hepatic glucose release on nonsteady state: theoretical and simulation results. Computer Methods and Programs in Biomedicine, 1994, 41, 243-267.	2.6	4
350	Identification of IVGTT minimal glucose model by nonlinear mixed-effects approaches. , 2006, 2006, 5049-52.		4
351	Intraperitoneal Insulin Delivery: Evidence of a Physiological Route for Artificial Pancreas From Compartmental Modeling. Journal of Diabetes Science and Technology, 2023, 17, 751-756.	1.3	4
352	Closed-form expressions and nonparametric estimation of COVID-19 infection rate. Automatica, 2022, 140, 110265.	3.0	4
353	Evidence for impaired glucose effectiveness in cirrhotic patients after liver transplantation. Metabolism: Clinical and Experimental, 2000, 49, 367-372.	1.5	3
354	Visual Predictive Check in Models with Time-Varying Input Function. AAPS Journal, 2015, 17, 1455-1463.	2.2	3
355	A telemonitoring service supporting preterm newborns care in a neonatal intensive care unit. , 2017, , .		3
356	Modeling Intraperitoneal Insulin Absorption in Patients with Type 1 Diabetes. Metabolites, 2021, 11, 600.	1.3	3
357	Domain of validity of classical models of leucine metabolism assessed by compartmental modeling. Mathematical Biosciences, 1991, 107, 3-20.	0.9	2
358	Accessible Pool and System Parameters: Assumptions and Models. Journal of Parenteral and Enteral Nutrition, 1991, 15, 45S-50S.	1.3	2
359	Draft Genome Sequences of Two Neisseria meningitidis Serogroup C Clinical Isolates. Journal of Bacteriology, 2010, 192, 5270-5271.	1.0	2
360	An index of parameter reproducibility accounting for estimation uncertainty: theory and case study on \hat{i}^2 -cell responsivity and insulin sensitivity. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E971-E977.	1.8	2

#	Article	IF	Citations
361	Exocrine and Endocrine Interactions in Cystic Fibrosis: A Potential Key to Understanding Insulin Secretion in Health and Disease?. Diabetes, 2017, 66, 20-22.	0.3	2
362	Long-acting Insulin in Diabetes Therapy: In Silico Clinical Trials with the UVA/Padova Type 1 Diabetes Simulator., 2018, 2018, 4905-4908.		2
363	Physiological models for artificial pancreas development. , 2019, , 123-152.		2
364	Deployment of modular MPC for type 1 diabetes control: the Italian experience 2008–2016. , 2019, , 153-182.		2
365	Improving Diabetes Conventional Therapy via Machine Learning Modeling. , 2019, , .		2
366	Increased Rates of Meal Absorption Do Not Explain Elevated 1-Hour Glucose in Subjects With Normal Glucose Tolerance. Journal of the Endocrine Society, 2019, 3, 135-145.	0.1	2
367	Physiology-Based Run-to-Run Adaptation of Insulin to Carbohydrate Ratio Improves Type 1 Diabetes Therapy: Results from an In Silico Study. , 2019, , .		2
368	Diabetes Technology Meeting 2021. Journal of Diabetes Science and Technology, 2022, , 193229682210902.	1.3	2
369	Adaptive and Individualized Artificial Pancreas for Precision Management of Type 1 Diabetes. , 2022, , 305-313.		2
370	Compartmental graphs accounting for smoothing, integration and differentiation. Journal of the Franklin Institute, 1986, 321, 179-188.	1.9	1
371	Can continuous glucose monitoring identify risk factors in type 1 and type 2 diabetes? A literature review. , 2014, , .		1
372	A Model Approach: Mathematical modeling provides an increasingly clear picture of glucose and neural systems IEEE Pulse, 2015, 6, 33-38.	0.1	1
373	Response to Comment on Kovatchev and Cobelli. Glucose Variability: Timing, Risk Analysis, and Relationship to Hypoglycemia in Diabetes. Diabetes Care 2016;39:502–510. Diabetes Care, 2016, 39, e157-e158.	4.3	1
374	GAIT ANALYSIS DRIVEN 2D FINITE ELEMENT MODEL OF THE NEUROPATHIC HINDFOOT. Journal of Mechanics in Medicine and Biology, 2016, 16, 1650012.	0.3	1
375	A software interface for in silico testing of type 2 diabetes treatments. Computer Methods and Programs in Biomedicine, 2022, 223, 106973.	2.6	1
376	The relationship between insulin and glucagon concentrations in <scp>nonâ€diabetic</scp> humans. Physiological Reports, 2022, 10, .	0.7	1
377	Quantitative approaches to metabolism: the role of tracers and models in clinical medicine. Mathematical Biosciences, 1983, 67, 261-262.	0.9	0
378	A modeling approach to quantify the direct ketogenic effect of ethanol in humans. Nutrition Research, 1998, 18, 1521-1532.	1.3	0

#	Article	IF	CITATIONS
379	Predictive power of indices derived from models of biological dynamic systems. , 2008, , .		0
380	Use of the global-two-stage algorithm to improve parametric maps in PET imaging: Application to $[11C](R)$ -PK11195. Neurolmage, 2010, 52, S215.	2.1	0
381	T248. Insulin Action and Cognition in Patients With First-Episode Psychosis. Biological Psychiatry, 2018, 83, S225-S226.	0.7	0
382	Outpatient versus inpatient mixed meal tolerance and arginine stimulation testing yields comparable measures of variability for assessment of beta cell function. Contemporary Clinical Trials Communications, 2018, 10, 94-99.	0.5	0
383	Letter to the Editor: "Defects in GLP-1 Response to an Oral Challenge Do Not Play a Significant Role in the Pathogenesis of Prediabetes― Journal of Clinical Endocrinology and Metabolism, 2019, 104, 5106-5107.	1.8	0
384	Impact of unmetabolized tracer function modeling on quantification of [carbonyl-11C]WAY-100635 PET images. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S630-S630.	2.4	0
385	Binding potential underestimation with reference tissue models: Insight from [carbonyl-11C]WAY-100635 simulation studies. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S641-S641.	2.4	0
386	Response to Comment on "Minimal and Maximal Models to Quantitate Glucose Metabolism: Tools to Measure, to Simulate and to Run in Silico Clinical Trials― Journal of Diabetes Science and Technology, 2021, , 193229682110600.	1.3	0
387	Mixed Meal Simulation Model of Glucose-Insulin System. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0
388	Glucose Production by Deconvolution in Intravenous and Oral Glucose Tolerance Tests: Role of Output Variable. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	0
389	Identification of IVGTT minimal glucose model by nonlinear mixed-effects approaches. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .	0.5	O