Paul Devlin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2475273/publications.pdf

Version: 2024-02-01

42 papers

4,192 citations

279798 23 h-index 34 g-index

48 all docs 48 docs citations

48 times ranked

3265 citing authors

#	Article	IF	CITATIONS
1	Salicylic Acid-Mediated Disturbance Increases Bacterial Diversity in the Phyllosphere but Is Overcome by a Dominant Core Community. Frontiers in Microbiology, 2022, 13, 809940.	3.5	9
2	Jasmonates and Histone deacetylase 6 activate Arabidopsis genome-wide histone acetylation and methylation during the early acute stress response. BMC Biology, 2022, 20, 83.	3.8	5
3	Mutations in the chloroplast inner envelope protein TIC100 impair and repair chloroplast protein import and impact retrograde signaling. Plant Cell, 2022, 34, 3028-3046.	6.6	11
4	Transcription Factors FHY3 and FAR1 Regulate Light-Induced <i>CIRCADIAN CLOCK ASSOCIATED1</i> Gene Expression in Arabidopsis. Plant Cell, 2020, 32, 1464-1478.	6.6	50
5	Circadian leaf movements facilitate overtopping of neighbors. Progress in Biophysics and Molecular Biology, 2019, 146, 104-111.	2.9	7
6	Soil Inoculation with Bacillus spp. Modifies Root Endophytic Bacterial Diversity, Evenness, and Community Composition in a Context-Specific Manner. Microbial Ecology, 2018, 76, 741-750.	2.8	88
7	FHY3 and FAR1 Act Downstream of Light Stable Phytochromes. Frontiers in Plant Science, 2016, 7, 175.	3.6	25
8	Plants wait for the lights to change to red. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7301-7303.	7.1	21
9	DRACULA2, a dynamic nucleoporin with a role in the regulation of the shade avoidance syndrome in Arabidopsis. Development (Cambridge), 2016, 143, 1623-31.	2.5	25
10	Progressive promoter element combinations classify conserved orthogonal plant circadian gene expression modules. Journal of the Royal Society Interface, 2014, 11, 20140535.	3.4	4
11	Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nature Cell Biology, 2011, 13, 616-622.	10.3	245
12	Timing in plants – A rhythmic arrangement. FEBS Letters, 2011, 585, 1474-1484.	2.8	85
13	A novel high-throughput in vivo molecular screen for shade avoidance mutants identifies a novel phyA mutation. Journal of Experimental Botany, 2011, 62, 2973-2987.	4.8	20
14	Leaf movements and Darwin — A novel adaptive perspective on an old conundrum. Comparative Biochemistry and Physiology Part A, Molecular & Discretive Physiology, 2009, 153, S47-S48.	1.8	0
15	The role of FHY3 in red light input to the Arabidopsis clock. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2008, 150, S152.	1.8	0
16	Light and the Control of Plant Growth. , 2008, , 223-242.		2
17	Conservation, Convergence, and Divergence of Light-Responsive, Circadian-Regulated, and Tissue-Specific Expression Patterns during Evolution of the Arabidopsis GATA Gene Family. Plant Physiology, 2007, 143, 941-958.	4.8	87
18	Many hands make light work. Journal of Experimental Botany, 2007, 58, 3071-3077.	4.8	85

#	Article	IF	CITATIONS
19	Characterisation of dracula (no avoidance of shade) and icarus (extreme avoidance of shade) mutants in Arabido. Comparative Biochemistry and Physiology Part A, Molecular & Egrative Physiology, 2007, 146, S230.	1.8	0
20	Identification of Primary Target Genes of Phytochrome Signaling. Early Transcriptional Control during Shade Avoidance Responses in Arabidopsis. Plant Physiology, 2006, 141, 85-96.	4.8	127
21	Arabidopsis FHY3 Specifically Gates Phytochrome Signaling to the Circadian Clock. Plant Cell, 2006, 18, 2506-2516.	6.6	79
22	CIRCADIAN REGULATION OF PHOTOMORPHOGENESIS., 2006,, 567-604.		1
23	A Genomic Analysis of the Shade Avoidance Response in Arabidopsis Â. Plant Physiology, 2003, 133, 1617-1629.	4.8	243
24	Signs of the time: environmental input to the circadian clock. Journal of Experimental Botany, 2002, 53, 1535-1550.	4.8	74
25	Circadian Photoperception. Annual Review of Physiology, 2001, 63, 677-694.	13.1	169
26	Functional interaction of phytochrome B and cryptochrome 2. Nature, 2000, 408, 207-211.	27.8	433
27	Cryptochromes Are Required for Phytochrome Signaling to the Circadian Clock but Not for Rhythmicity. Plant Cell, 2000, 12, 2499-2509.	6.6	315
28	PLANT BIOLOGY:Flower Arranging in Arabidopsis. Science, 2000, 288, 1600-1602.	12.6	22
29	Phytochrome D Acts in the Shade-Avoidance Syndrome in Arabidopsis by Controlling Elongation Growth and Flowering Time1. Plant Physiology, 1999, 119, 909-916.	4.8	247
30	Cryptochromes – bringing the blues to circadian rhythms. Trends in Cell Biology, 1999, 9, 295-298.	7.9	34
31	Light signalling in Arabidopsis. Plant Physiology and Biochemistry, 1998, 36, 125-133.	5.8	37
32	Fluorescence spectroscopy and photochemistry of phytochromes A and B in wild-type, mutant and transgenic strains of Arabidopsis thaliana. Journal of Photochemistry and Photobiology B: Biology, 1998, 42, 133-142.	3.8	29
33	Phytochromes and photomorphogenesis in Arabidopsis. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353, 1445-1453.	4.0	86
34	Phytochromes and Cryptochromes in the Entrainment of the Arabidopsis Circadian Clock., 1998, 282, 1488-1490.		714
35	Phytochrome E Influences Internode Elongation and Flowering Time in Arabidopsis. Plant Cell, 1998, 10, 1479-1487.	6.6	312
36	The Brassica rapa elongated internode (EIN) gene encodes phytochrome B. Plant Molecular Biology, 1997, 34, 537-547.	3.9	18

#	Article	IF	CITATIONS
37	Roles of different phytochromes in Arabidopsis photomorphogenesis. Plant, Cell and Environment, 1997, 20, 752-758.	5.7	197
38	The ELONGATED gene of Arabidopsis acts independently of light and gibberellins in the control of elongation growth. Plant Journal, 1996, 9, 305-312.	5.7	38
39	The rosette habit of Arabidopsis thaliana is dependent upon phytochrome action: novel phytochromes control internode elongation and flowering time. Plant Journal, 1996, 10, 1127-1134.	5.7	115
40	Photophysiology of the Elongated Internode (ein) Mutant of Brassica rapa. Plant Physiology, 1992, 100, 1442-1447.	4.8	131
41	Photocontrol of Flowering. , 0, , 185-210.		1
42	Photoreceptors resetting the circadian clock. Comprehensive Series in Photochemical and Photobiological Sciences, 0, , 343-368.	0.3	0