Laurent Itti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2475233/publications.pdf Version: 2024-02-01

		71102	85541
111	15,752	41	71
papers	citations	h-index	g-index
111	111	111	9408
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Computational modelling of visual attention. Nature Reviews Neuroscience, 2001, 2, 194-203.	10.2	3,766
2	A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 2000, 40, 1489-1506.	1.4	2,623
3	Bayesian surprise attracts human attention. Vision Research, 2009, 49, 1295-1306.	1.4	850
4	Automatic Foveation for Video Compression Using a Neurobiological Model of Visual Attention. IEEE Transactions on Image Processing, 2004, 13, 1304-1318.	9.8	637
5	Components of bottom-up gaze allocation in natural images. Vision Research, 2005, 45, 2397-2416.	1.4	591
6	Modeling the influence of task on attention. Vision Research, 2005, 45, 205-231.	1.4	543
7	Rapid Biologically-Inspired Scene Classification Using Features Shared with Visual Attention. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29, 300-312.	13.9	467
8	Feature combination strategies for saliency-based visual attention systems. Journal of Electronic Imaging, 2001, 10, 161.	0.9	375
9	Mechanisms of top-down attention. Trends in Neurosciences, 2011, 34, 210-224.	8.6	364
10	Search Goal Tunes Visual Features Optimally. Neuron, 2007, 53, 605-617.	8.1	279
11	Quantifying the contribution of low-level saliency to human eye movements in dynamic scenes. Visual Cognition, 2005, 12, 1093-1123.	1.6	263
12	Exploiting local and global patch rarities for saliency detection. , 2012, , .		259
13	Salient Object Detection: A Benchmark. Lecture Notes in Computer Science, 2012, , 414-429.	1.3	241
14	Of bits and wows: A Bayesian theory of surprise with applications to attention. Neural Networks, 2010, 23, 649-666.	5.9	223
15	Visual causes versus correlates of attentional selection in dynamic scenes. Vision Research, 2006, 46, 4333-4345.	1.4	197
16	Biologically Inspired Mobile Robot Vision Localization. IEEE Transactions on Robotics, 2009, 25, 861-873.	10.3	191
17	Visual attention guided bit allocation in video compression. Image and Vision Computing, 2011, 29, 1-14.	4.5	191
18	Defending Yarbus: Eye movements reveal observers' task. Journal of Vision, 2014, 14, 29-29.	0.3	180

#	Article	IF	CITATIONS
19	Saliency and Gist Features for Target Detection in Satellite Images. IEEE Transactions on Image Processing, 2011, 20, 2017-2029.	9.8	167
20	Beyond bottom-up: Incorporating task-dependent influences into a computational model of spatial attention. , 2007, , .		165
21	Analysis of Scores, Datasets, and Models in Visual Saliency Prediction. , 2013, , .		146
22	Realistic avatar eye and head animation using a neurobiological model of visual attention. , 2004, , .		141
23	Attentional Selection for Object Recognition — A Gentle Way. Lecture Notes in Computer Science, 2002, , 472-479.	1.3	136
24	shapeDTW: Shape Dynamic Time Warping. Pattern Recognition, 2018, 74, 171-184.	8.1	134
25	Superior colliculus neurons encode a visual saliency map during free viewing of natural dynamic video. Nature Communications, 2017, 8, 14263.	12.8	127
26	High-throughput classification of clinical populations from natural viewing eye movements. Journal of Neurology, 2013, 260, 275-284.	3.6	123
27	What stands out in a scene? A study of human explicit saliency judgment. Vision Research, 2013, 91, 62-77.	1.4	120
28	Adaptive object tracking by learning background context. , 2012, , .		113
29	Superior colliculus encodes visual saliency before the primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9451-9456.	7.1	102
30	A Bayesian model for efficient visual search and recognition. Vision Research, 2010, 50, 1338-1352.	1.4	98
31	Color-Related Signals in the Primate Superior Colliculus. Journal of Neuroscience, 2009, 29, 12159-12166.	3.6	91
32	Linking visual response properties in the superior colliculus to saccade behavior. European Journal of Neuroscience, 2012, 35, 1738-1752.	2.6	87
33	Transient Pupil Response Is Modulated by Contrast-Based Saliency. Journal of Neuroscience, 2014, 34, 408-417.	3.6	83
34	Effect of ecstasy [3,4-methylenedioxymethamphetamine (MDMA)] on cerebral blood flow: a co-registered SPECT and MRI study. Psychiatry Research - Neuroimaging, 2000, 98, 15-28.	1.8	81
35	What/Where to Look Next? Modeling Top-Down Visual Attention in Complex Interactive Environments. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2014, 44, 523-538.	9.3	80
36	Revisiting spatial vision: toward a unifying model. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2000, 17, 1899.	1.5	79

#	Article	IF	CITATIONS
37	Quantitative modelling of perceptual salience at human eye position. Visual Cognition, 2006, 14, 959-984.	1.6	79
38	A Goal Oriented Attention Guidance Model. Lecture Notes in Computer Science, 2002, , 453-461.	1.3	66
39	The role of memory in guiding attention during natural vision. Journal of Vision, 2006, 6, 4.	0.3	64
40	Residual Attention Guidance in Blindsight Monkeys Watching Complex Natural Scenes. Current Biology, 2012, 22, 1429-1434.	3.9	57
41	Finding planes in LiDAR point clouds for real-time registration. , 2013, , .		53
42	Visual adaptation and novelty responses in the superior colliculus. European Journal of Neuroscience, 2011, 34, 766-779.	2.6	51
43	Evidence for Arousal-Biased Competition in Perceptual Learning. Frontiers in Psychology, 2012, 3, 241.	2.1	50
44	Learning a Combined Model of Visual Saliency for Fixation Prediction. IEEE Transactions on Image Processing, 2016, 25, 1566-1579.	9.8	50
45	Changes in cerebral metabolism are detected prior to perfusion changes in early HIV-CMC: A coregistered1H MRS and SPECT study. Journal of Magnetic Resonance Imaging, 2000, 12, 859-865.	3.4	48
46	Robust multimodality registration for brain mapping. , 1997, 5, 3-17.		47
47	Complementary effects of gaze direction and early saliency in guiding fixations during free viewing. Journal of Vision, 2014, 14, 3-3.	0.3	45
48	New Eye-Tracking Techniques May Revolutionize Mental Health Screening. Neuron, 2015, 88, 442-444.	8.1	42
49	Top-down influences on visual attention during listening are modulated by observer sex. Vision Research, 2012, 65, 62-76.	1.4	38
50	Correlation of regional cerebral blood flow from perfusion MRI and SPECT in normal subjects. Magnetic Resonance Imaging, 1999, 17, 349-354.	1.8	37
51	Biologically-inspired robotics vision monte-carlo localization in the outdoor environment. , 2007, , .		35
52	Augmented saliency model using automatic 3D head pose detection and learned gaze following in natural scenes. Vision Research, 2015, 116, 113-126.	1.4	35
53	Computational modeling and exploration of contour integration for visual saliency. Biological Cybernetics, 2005, 93, 188-212.	1.3	32
54	Scene classification with a sparse set of salient regions. , 2011, , .		32

#	Article	IF	CITATIONS
55	Mobile robot monocular vision navigation based on road region and boundary estimation. , 2012, , .		32
56	Mobile robot vision navigation & localization using Gist and Saliency. , 2010, , .		31
57	Classifying Time Series Using Local Descriptors with Hybrid Sampling. IEEE Transactions on Knowledge and Data Engineering, 2016, 28, 623-637.	5.7	31
58	Efficient Velodyne SLAM with point and plane features. Autonomous Robots, 2019, 43, 1207-1224.	4.8	31
59	iLab-20M: A Large-Scale Controlled Object Dataset to Investigate Deep Learning. , 2016, , .		29
60	Human vs. Computer in Scene and Object Recognition. , 2014, , .		27
61	Detection of Children/Youth With Fetal Alcohol Spectrum Disorder Through Eye Movement, Psychometric, and Neuroimaging Data. Frontiers in Neurology, 2019, 10, 80.	2.4	26
62	Segmentation of Progressive Multifocal Leukoencephalopathy Lesions in Fluidâ€Attenuated Inversion Recovery Magnetic Resonance Imaging. Journal of Neuroimaging, 2001, 11, 412-417.	2.0	22
63	Mobile robot navigation system in outdoor pedestrian environment using vision-based road recognition. , 2013, , .		22
64	Attention and the minimal subscene. , 2006, , 289-346.		19
65	Attention and Scene Understanding. , 2005, , 197-203.		19
66	A Brief and Selective History of Attention. , 2005, , xxiii-xxxii.		17
67	Photorealistic Attention-Based Gaze Animation. , 2006, , .		17
68	Superior colliculus encodes visual saliency during smooth pursuit eye movements. European Journal of Neuroscience, 2021, 54, 4258-4268.	2.6	17
69	Training Top-Down Attention Improves Performance on a Triple-Conjunction Search Task. PLoS ONE, 2010, 5, e9127.	2.5	16
70	Multi-Scale Adversarial Feature Learning for Saliency Detection. Symmetry, 2018, 10, 457.	2.2	16
71	Multilayer real-time video image stabilization. , 2011, , .		15
72	Vision-Based Autonomous Path Following Using a Human Driver Control Model With Reliable Input-Feature Value Estimation. IEEE Transactions on Intelligent Vehicles, 2019, 4, 497-506.	12.7	15

#	Article	lF	CITATIONS
73	Rapid adaptation of brain–computer interfaces to new neuronal ensembles or participants via generative modelling. Nature Biomedical Engineering, 2023, 7, 546-558.	22.5	15
74	Autonomous Mobile Robot Localization and Navigation Using a Hierarchical Map Representation Primarily Guided by Vision. Journal of Field Robotics, 2014, 31, 408-440.	6.0	12
75	Automatic computation of an image's statistical surprise predicts performance of human observers on a natural image detection task. Vision Research, 2009, 49, 1620-1637.	1.4	11
76	Modelling Primate Visual Attention. Chapman & Hall/CRC Mathematical and Computational Biology Series, 2003, , .	0.1	11
77	Biologically plausible learning in neural networks with modulatory feedback. Neural Networks, 2017, 88, 32-48.	5.9	10
78	Beobot 2.0: Cluster architecture for mobile robotics. Journal of Field Robotics, 2011, 28, 278-302.	6.0	9
79	Optimal attentional modulation of a neural population. Frontiers in Computational Neuroscience, 2014, 8, 34.	2.1	9
80	Inertial Machine Monitoring System for Automated Failure Detection. , 2018, , .		9
81	Learning visual variation for object recognition. Image and Vision Computing, 2020, 98, 103912.	4.5	8
82	Storing and recalling information for vision localization. , 2008, , .		7
83	Image salient object detection with refined deep features via convolution neural network. Journal of Electronic Imaging, 2017, 26, 1.	0.9	7
84	Attention-aware rendering, mobile graphics and games. , 2014, , .		6
85	Eye tracking identifies biomarkers in α-synucleinopathies versus progressive supranuclear palsy. Journal of Neurology, 2022, 269, 4920-4938.	3.6	6
86	Multi-scale pulmonary nodule classification with deep feature fusion via residual network. Journal of Ambient Intelligence and Humanized Computing, 2023, 14, 14829-14840.	4.9	5
87	Biologically inspired feature-based categorization of objects. , 2004, , .		4
88	Distributed biologically based real time tracking in the absence of prior target information. , 2005, , .		4
89	Combining bottom-up and top-down attentional influences. , 2006, , .		4
90	Feature-based attention is independent of object appearance. Journal of Vision, 2014, 14, 3-3.	0.3	4

#	Article	lF	CITATIONS
91	A New Robotics Platform for Neuromorphic Vision: Beobots. Lecture Notes in Computer Science, 2002, , 558-566.	1.3	4
92	Pose Augmentation: Class-Agnostic Object Pose Transformation for Object Recognition. Lecture Notes in Computer Science, 2020, , 138-155.	1.3	4
93	Mining Videos for Features that Drive Attention. , 2015, , 311-326.		3
94	Learning to Recognize Objects by Retaining Other Factors of Variation. , 2017, , .		3
95	Utilization and viability of biologically-inspired algorithms in a dynamic multiagent camera surveillance system. , 2003, , .		2
96	<title>Teaching the computer subjective notions of feature connectedness in a visual scene for real-time vision</title> . , 2004, , .		2
97	Modeling the influence of action on spatial attention in visual interactive environments. , 2012, , .		2
98	Influence of the amount of context learned for improving object classification when simultaneously learning object and contextual cues. Visual Cognition, 2012, 20, 580-602.	1.6	2
99	Saliency prediction based on new deep multi-layer convolution neural network. , 2017, , .		2
100	Capturing spike train temporal pattern with wavelet average coefficient for brain machine interface. Scientific Reports, 2021, 11, 19020.	3.3	2
101	Deep Learning on Natural Viewing Behaviors to Differentiate Children with Fetal Alcohol Spectrum Disorder. Lecture Notes in Computer Science, 2013, , 178-185.	1.3	2
102	Pupillary responses to differences in luminance, color and set size. Experimental Brain Research, 2022, 240, 1873-1885.	1.5	2
103	Centralized server environment for educational robotics. , 2009, , .		1
104	Saliency mapping enhanced by symmetry from local phase. , 2012, , .		1
105	Neuromorphic Bayesian Surprise for Far-Range Event Detection. , 2012, , .		1
106	Integrating human context and occlusion reasoning to improve handheld object tracking. , 2014, , .		1
107	Learning Invariant Features in Modulatory Networks through Conflict and Ambiguity. Neural Computation, 2019, 31, 344-387.	2.2	1
108	Until the demise of the functional field of view. Behavioral and Brain Sciences, 2017, 40, e140.	0.7	0

#	Article	IF	CITATIONS
109	Impact of Neuroscience in Robotic Vision Localization and Navigation. Cognitive Science and Technology, 2017, , 235-276.	0.4	0
110	Laminar organization of the superior colliculus priority map. Journal of Vision, 2019, 19, 133a.	0.3	0
111	Multilayer control of skiing robot. , 2011, , .		Ο