
## Huayan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2475099/publications.pdf Version: 2024-02-01



HUAVAN WANC

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | RNA-dependent chromatin targeting of TET2 for endogenous retrovirus control in pluripotent stem cells. Nature Genetics, 2018, 50, 443-451.                                                                         | 21.4 | 122       |
| 2  | DUX-miR-344-ZMYM2-Mediated Activation of MERVL LTRs Induces a Totipotent 2C-like State. Cell Stem Cell, 2020, 26, 234-250.e7.                                                                                      | 11.1 | 99        |
| 3  | Porcine Induced Pluripotent Stem Cells Require LIF and Maintain Their Developmental Potential in<br>Early Stage of Embryos. PLoS ONE, 2012, 7, e51778.                                                             | 2.5  | 65        |
| 4  | Isolation and Characterization of Porcine Amniotic Fluid-Derived Multipotent Stem Cells. PLoS ONE, 2011, 6, e19964.                                                                                                | 2.5  | 61        |
| 5  | Generation of Intermediate Porcine iPS Cells Under Culture Condition Favorable for<br>Mesenchymal-to-Epithelial Transition. Stem Cell Reviews and Reports, 2015, 11, 24-38.                                        | 5.6  | 42        |
| 6  | Preserving self-renewal of porcine pluripotent stem cells in serum-free 3i culture condition and independent of LIF and b-FGF cytokines. Cell Death Discovery, 2018, 4, 21.                                        | 4.7  | 40        |
| 7  | Human Amniotic Fluid Stem Cells Possess the Potential to Differentiate into Primordial Follicle<br>Oocytes In Vitro1. Biology of Reproduction, 2014, 90, 73.                                                       | 2.7  | 39        |
| 8  | Comparative Gene Expression Signature of Pig, Human and Mouse Induced Pluripotent Stem Cell Lines<br>Reveals Insight into Pig Pluripotency Gene Networks. Stem Cell Reviews and Reports, 2014, 10, 162-176.        | 5.6  | 35        |
| 9  | <i>BMP15</i> Gene Is Activated During Human Amniotic Fluid Stem Cell Differentiation into Oocyte-Like<br>Cells. DNA and Cell Biology, 2012, 31, 1198-1204.                                                         | 1.9  | 29        |
| 10 | Histone demethylase complexes KDM3A and KDM3B cooperate with OCT4/SOX2 to define a pluripotency gene regulatory network. FASEB Journal, 2021, 35, e21664.                                                          | 0.5  | 19        |
| 11 | The virtual element in proximal promoter of porcine myostatin is regulated by myocyte enhancer factor 2C. Biochemical and Biophysical Research Communications, 2012, 419, 175-181.                                 | 2.1  | 18        |
| 12 | Kinetic Analysis of Porcine Fibroblast Reprogramming Toward Pluripotency by Defined Factors.<br>Cellular Reprogramming, 2012, 14, 312-323.                                                                         | 0.9  | 16        |
| 13 | EpCAM Intracellular Domain Promotes Porcine Cell Reprogramming by Upregulation of Pluripotent<br>Gene Expression via Beta-catenin Signaling. Scientific Reports, 2017, 7, 46315.                                   | 3.3  | 16        |
| 14 | Translationally controlled tumor protein (TCTP) downregulates Oct4 expression in mouse pluripotent cells. BMB Reports, 2012, 45, 20-25.                                                                            | 2.4  | 12        |
| 15 | Monitoring bovine fetal fibroblast reprogramming utilizing a bovine <i>NANOG</i> promoterâ€driven<br>EGFP reporter system. Molecular Reproduction and Development, 2013, 80, 193-203.                              | 2.0  | 11        |
| 16 | Structure and functional evaluation of porcine NANOG that is a single-exon gene and has two pseudogenes. International Journal of Biochemistry and Cell Biology, 2015, 59, 142-152.                                | 2.8  | 11        |
| 17 | Activinâ€5MAD signaling is required for maintenance of porcine iPS cell selfâ€renewal through<br>upregulation of <i>NANOG</i> and <i>OCT4</i> expression. Journal of Cellular Physiology, 2017, 232,<br>2253-2262. | 4.1  | 11        |
| 18 | The oncogene Etv5 promotes MET in somatic reprogramming and orchestrates epiblast/primitive endoderm specification during mESCs differentiation. Cell Death and Disease, 2018, 9, 224.                             | 6.3  | 11        |

HUAYAN WANG

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Methanol fixed fibroblasts serve as feeder cells to maintain stem cells in the pluripotent state in vitro. Scientific Reports, 2018, 8, 7780.                                                      | 3.3 | 9         |
| 20 | Identification and Analysis of Regulatory Elements in Porcine Bone Morphogenetic Protein 15 Gene<br>Promoter. International Journal of Molecular Sciences, 2015, 16, 25759-25772.                  | 4.1 | 8         |
| 21 | Common microRNA–mRNA interactions exist among distinct porcine iPSC lines independent of their metastable pluripotent states. Cell Death and Disease, 2017, 8, e3027-e3027.                        | 6.3 | 8         |
| 22 | ESRRB plays a crucial role in the promotion of porcine cell reprograming. Journal of Cellular<br>Physiology, 2018, 233, 1601-1611.                                                                 | 4.1 | 6         |
| 23 | Molecular network of miR-1343 regulates the pluripotency of porcine pluripotent stem cells via repressing OTX2 expression. RNA Biology, 2019, 16, 82-92.                                           | 3.1 | 6         |
| 24 | Conversion of Goat Fibroblasts into Lineageâ€ <del>S</del> pecific Cells Using a Direct Reprogramming Strategy.<br>Animal Science Journal, 2017, 88, 745-754.                                      | 1.4 | 5         |
| 25 | Characterization of the proximal region of the goat NANOG promoter that is used for monitoring cell reprogramming and early embryo development. Veterinary Journal, 2014, 199, 80-87.              | 1.7 | 4         |
| 26 | OTX2 impedes self–renewal of porcine iPS cells through downregulation of NANOG expression. Cell<br>Death Discovery, 2016, 2, 16090.                                                                | 4.7 | 4         |
| 27 | Characterization and functional analysis of porcine estrogen-related receptors and their alternative splicing variants1. Journal of Animal Science, 2015, 93, 4258-4266.                           | 0.5 | 3         |
| 28 | Characterization of novel alternative splicing variants of Oct4 gene expressed in mouse pluripotent stem cells. Journal of Cellular Physiology, 2018, 233, 5468-5477.                              | 4.1 | 3         |
| 29 | Functional analysis of bovine Nramp1 and production of transgenic cloned embryosin vitro. Zygote, 2015, 23, 83-92.                                                                                 | 1.1 | 2         |
| 30 | Identification and functional analysis of porcine basic helix–loop–helix transcriptional factor 3<br>(TCF3) and its alternative splicing isoforms. Research in Veterinary Science, 2016, 105, 1-4. | 1.9 | 2         |
| 31 | Etv5 safeguards trophoblast stem cells differentiation from mouse EPSCs by regulating fibroblast growth factor receptor 2. Molecular Biology Reports, 2020, 47, 9259-9269.                         | 2.3 | 2         |