
Najoua Lalaoui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2473728/publications.pdf Version: 2024-02-01

ΝλιομΑΙΑΙΑΟΙΗ

#	Article	IF	CITATIONS
1	Tankyrase-mediated ADP-ribosylation is a regulator of TNF-induced death. Science Advances, 2022, 8, eabh2332.	10.3	9
2	Ubiquitylation of RIPK3 beyond-the-RHIM can limit RIPK3 activity and cell death. IScience, 2022, 25, 104632.	4.1	3
3	25 years of research put RIPK1 in the clinic. Seminars in Cell and Developmental Biology, 2021, 109, 86-95.	5.0	27
4	The necroptotic cell death pathway operates in megakaryocytes, but not in platelet synthesis. Cell Death and Disease, 2021, 12, 133.	6.3	8
5	Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature, 2020, 577, 103-108.	27.8	198
6	MLKL trafficking and accumulation at the plasma membrane control the kinetics and threshold for necroptosis. Nature Communications, 2020, 11, 3151.	12.8	194
7	MK2 Inhibition Induces p53-Dependent Senescence in Glioblastoma Cells. Cancers, 2020, 12, 654.	3.7	5
8	Targeting triple-negative breast cancers with the Smac-mimetic birinapant. Cell Death and Differentiation, 2020, 27, 2768-2780.	11.2	31
9	Viral MLKL Homologs Subvert Necroptotic Cell Death by Sequestering Cellular RIPK3. Cell Reports, 2019, 28, 3309-3319.e5.	6.4	83
10	Antagonism of IAPs Enhances CAR T-cell Efficacy. Cancer Immunology Research, 2019, 7, 183-192.	3.4	68
11	Recent advances in understanding inhibitor of apoptosis proteins. F1000Research, 2018, 7, 1889.	1.6	57
12	Tumor immune evasion arises through loss of TNF sensitivity. Science Immunology, 2018, 3, .	11.9	244
13	Combination of IAP antagonist and IFNÎ ³ activates novel caspase-10- and RIPK1-dependent cell death pathways. Cell Death and Differentiation, 2017, 24, 481-491.	11.2	43
14	Jekyll & Hyde: The Other Life of the Death Ligand TRAIL. Molecular Cell, 2017, 65, 585-587.	9.7	1
15	â€ [~] Did He Who Made the Lamb Make Thee?' New Developments in Treating the â€ [~] Fearful Symmetry' of Myeloid Leukemia. Trends in Molecular Medicine, 2017, 23, 264-281.	Acute	4
16	MK2 Phosphorylates RIPK1 to Prevent TNF-Induced Cell Death. Molecular Cell, 2017, 66, 698-710.e5.	9.7	242
17	Relevance of necroptosis in cancer. Immunology and Cell Biology, 2017, 95, 137-145.	2.3	40
18	Synergistic action of the MCL-1 inhibitor S63845 with current therapies in preclinical models of triple-negative and HER2-amplified breast cancer. Science Translational Medicine, 2017, 9, .	12.4	148

Najoua Lalaoui

#	Article	IF	CITATIONS
19	The TNF Receptor Superfamily-NF-κB Axis Is Critical to Maintain Effector Regulatory T Cells in Lymphoid and Non-lymphoid Tissues. Cell Reports, 2017, 20, 2906-2920.	6.4	115
20	Inhibitor of Apoptosis Proteins (IAPs) Limit RIPK1-Mediated Skin Inflammation. Journal of Investigative Dermatology, 2017, 137, 2371-2379.	0.7	32
21	PD-L1 and IAPs co-operate to protect tumors from cytotoxic lymphocyte-derived TNF. Cell Death and Differentiation, 2017, 24, 1705-1716.	11.2	64
22	Functionally distinct roles for different miR-155 expression levels through contrasting effects on gene expression, in acute myeloid leukaemia. Leukemia, 2017, 31, 808-820.	7.2	46
23	The Pseudokinase MLKL and the Kinase RIPK3 Have Distinct Roles in Autoimmune Disease Caused by Loss of Death-Receptor-Induced Apoptosis. Immunity, 2016, 45, 513-526.	14.3	191
24	Linear ubiquitin chain assembly complex coordinates late thymic T-cell differentiation and regulatory T-cell homeostasis. Nature Communications, 2016, 7, 13353.	12.8	47
25	The caspase-8 inhibitor emricasan combines with the SMAC mimetic birinapant to induce necroptosis and treat acute myeloid leukemia. Science Translational Medicine, 2016, 8, 339ra69.	12.4	140
26	Targeting p38 or MK2 Enhances the Anti-Leukemic Activity of Smac-Mimetics. Cancer Cell, 2016, 29, 145-158.	16.8	93
27	Autophagy and AML—food for thought. Cell Death and Differentiation, 2016, 23, 5-6.	11.2	9
28	Death Receptor-Induced Apoptosis Signalling Regulation by Ezrin Is Cell Type Dependent and Occurs in a DISC-Independent Manner in Colon Cancer Cells. PLoS ONE, 2015, 10, e0126526.	2.5	10
29	The molecular relationships between apoptosis, autophagy and necroptosis. Seminars in Cell and Developmental Biology, 2015, 39, 63-69.	5.0	142
30	TNFR1-dependent cell death drives inflammation in Sharpin-deficient mice. ELife, 2014, 3, .	6.0	232
31	cIAPs and XIAP regulate myelopoiesis through cytokine production in an RIPK1- and RIPK3-dependent manner. Blood, 2014, 123, 2562-2572.	1.4	145
32	RIPK1 Regulates RIPK3-MLKL-Driven Systemic Inflammation and Emergency Hematopoiesis. Cell, 2014, 157, 1175-1188.	28.9	492
33	The Pseudokinase MLKL Mediates Necroptosis via a Molecular Switch Mechanism. Immunity, 2013, 39, 443-453.	14.3	958
34	dsRNA induces apoptosis through an atypical death complex associating TLR3 to caspase-8. Cell Death and Differentiation, 2012, 19, 1482-1494.	11.2	142
35	Quercetin-mediated Mcl-1 and survivin downregulation restores TRAIL-induced apoptosis in non-Hodgkin's lymphoma B cells. Haematologica, 2012, 97, 38-46.	3.5	79
36	TRAIL-R4 Promotes Tumor Growth and Resistance to Apoptosis in Cervical Carcinoma HeLa Cells through AKT. PLoS ONE, 2011, 6, e19679.	2.5	57

Najoua Lalaoui

#	Article	IF	CITATIONS
37	Chemotherapy overcomes TRAIL-R4-mediated TRAIL resistance at the DISC level. Cell Death and Differentiation, 2011, 18, 700-711.	11.2	75
38	Colony-stimulating factor-1–induced oscillations in phosphatidylinositol-3 kinase/AKT are required for caspase activation in monocytes undergoing differentiation into macrophages. Blood, 2009, 114, 3633-3641.	1.4	51
39	p53-Mediated upregulation of DcR1 impairs oxaliplatin/TRAIL-induced synergistic anti-tumour potential in colon cancer cells. Oncogene, 2008, 27, 4161-4171.	5.9	37
40	TRAIL in cancer therapy: present and future challenges. Expert Opinion on Therapeutic Targets, 2007, 11, 1299-1314.	3.4	148
41	Dynamics of HPV16 DNA load reflect the natural history of cervical HPV-associated lesions. Journal of Clinical Virology, 2006, 35, 270-277.	3.1	60
42	Differential Inhibition of TRAIL-Mediated DR5-DISC Formation by Decoy Receptors 1 and 2. Molecular and Cellular Biology, 2006, 26, 7046-7055.	2.3	288