Katherine O'Brien

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2473299/publications.pdf

Version: 2024-02-01

239 papers

26,677 citations

14655 66 h-index 156 g-index

245 all docs

245 docs citations

times ranked

245

19547 citing authors

#	Article	IF	CITATIONS
1	Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet, The, 2010, 375, 1545-1555.	13.7	2,308
2	Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet, The, 2009, 374, 893-902.	13.7	2,086
3	Safety and Efficacy of a Pentavalent Human–Bovine (WC3) Reassortant Rotavirus Vaccine. New England Journal of Medicine, 2006, 354, 23-33.	27.0	1,730
4	Global burden of childhood pneumonia and diarrhoea. Lancet, The, 2013, 381, 1405-1416.	13.7	1,701
5	Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study. Lancet, The, 2017, 390, 946-958.	13.7	1,634
6	Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: global, regional, and national estimates for 2000–15. The Lancet Global Health, 2018, 6, e744-e757.	6.3	736
7	Causes of severe pneumonia requiring hospital admission in children without HIV infection from Africa and Asia: the PERCH multi-country case-control study. Lancet, The, 2019, 394, 757-779.	13.7	569
8	The fundamental link between pneumococcal carriage and disease. Expert Review of Vaccines, 2012, 11, 841-855.	4.4	519
9	Systematic Evaluation of Serotypes Causing Invasive Pneumococcal Disease among Children Under Five: The Pneumococcal Global Serotype Project. PLoS Medicine, 2010, 7, e1000348.	8.4	440
10	Burden of disease caused by Haemophilus influenzae type b in children younger than 5 years: global estimates. Lancet, The, 2009, 374, 903-911.	13.7	427
11	Standardized interpretation of paediatric chest radiographs for the diagnosis of pneumonia in epidemiological studies. Bulletin of the World Health Organization, 2005, 83, 353-9.	3.3	406
12	Serotype-Specific Changes in Invasive Pneumococcal Disease after Pneumococcal Conjugate Vaccine Introduction: A Pooled Analysis of Multiple Surveillance Sites. PLoS Medicine, 2013, 10, e1001517.	8.4	393
13	Standard method for detecting upper respiratory carriage of Streptococcus pneumoniae: Updated recommendations from the World Health Organization Pneumococcal Carriage Working Group. Vaccine, 2013, 32, 165-179.	3.8	374
14	Efficacy and safety of seven-valent conjugate pneumococcal vaccine in American Indian children: group randomised trial. Lancet, The, 2003, 362, 355-361.	13.7	351
15	The Influence of Maternally Derived Antibody and Infant Age at Vaccination on Infant Vaccine Responses. JAMA Pediatrics, 2017, 171, 637.	6.2	332
16	Estimating the Burden of Pneumococcal Pneumonia among Adults: A Systematic Review and Meta-Analysis of Diagnostic Techniques. PLoS ONE, 2013, 8, e60273.	2.5	329
17	Epidemiology of Invasive Group AStreptococcusDisease in the United States, 1995–1999. Clinical Infectious Diseases, 2002, 35, 268-276.	5.8	316
18	Effects of Vaccination on Invasive Pneumococcal Disease in South Africa. New England Journal of Medicine, 2014, 371, 1889-1899.	27.0	308

#	Article	IF	Citations
19	Epidemiology and etiology of childhood pneumonia in 2010: estimates of incidence, severe morbidity, mortality, underlying risk factors and causative pathogens for 192 countries. Journal of Global Health, 2013, 3, 010401.	2.7	300
20	Association of Serotype with Risk of Death Due to Pneumococcal Pneumonia: A Metaâ€Analysis. Clinical Infectious Diseases, 2010, 51, 692-699.	5.8	297
21	Estimating the protective concentration of anti-pneumococcal capsular polysaccharide antibodies. Vaccine, 2007, 25, 3816-3826.	3.8	296
22	Report from a WHO Working Group: standard method for detecting upper respiratory carriage of Streptococcus pneumoniae. Pediatric Infectious Disease Journal, 2003, 22, e1-e11.	2.0	290
23	Effect of vaccines on bacterial meningitis worldwide. Lancet, The, 2012, 380, 1703-1711.	13.7	268
24	Maternal Influenza Vaccination and Effect on Influenza Virus Infection in Young Infants. JAMA Pediatrics, 2011, 165, 104.	3.0	267
25	Severe Pneumococcal Pneumonia in Previously Healthy Children: The Role of Preceding Influenza Infection. Clinical Infectious Diseases, 2000, 30, 784-789.	5.8	259
26	Global burden of respiratory infections associated with seasonal influenza in children under 5 years in 2018: a systematic review and modelling study. The Lancet Global Health, 2020, 8, e497-e510.	6.3	235
27	Revisiting Pneumococcal Carriage by Use of Broth Enrichment and PCR Techniques for Enhanced Detection of Carriage and Serotypes. Journal of Clinical Microbiology, 2010, 48, 1611-1618.	3.9	234
28	Effect of Pneumococcal Conjugate Vaccine on Nasopharyngeal Colonization among Immunized and Unimmunized Children in a Communityâ€Randomized Trial. Journal of Infectious Diseases, 2007, 196, 1211-1220.	4.0	232
29	Combined schedules of pneumococcal conjugate and polysaccharide vaccines: is hyporesponsiveness an issue?. Lancet Infectious Diseases, The, 2007, 7, 597-606.	9.1	197
30	Global respiratory syncytial virus-associated mortality in young children (RSV GOLD): a retrospective case series. The Lancet Global Health, 2017, 5, e984-e991.	6.3	180
31	Evaluation of a Medium (STGG) for Transport and Optimal Recovery of Streptococcus pneumoniae from Nasopharyngeal Secretions Collected during Field Studies. Journal of Clinical Microbiology, 2001, 39, 1021-1024.	3.9	179
32	The Pneumonia Etiology Research for Child Health Project: A 21st Century Childhood Pneumonia Etiology Study. Clinical Infectious Diseases, 2012, 54, S93-S101.	5.8	164
33	Trends in Incidence and Antimicrobial Resistance of Early-Onset Sepsis: Population-Based Surveillance in San Francisco and Atlanta. Pediatrics, 2002, 110, 690-695.	2.1	163
34	Pneumococcal vaccination in developing countries. Lancet, The, 2006, 367, 1880-1882.	13.7	158
35	Impact of pneumococcal conjugate vaccines on nasopharyngeal carriage and invasive disease among unvaccinated people: Review of evidence on indirect effects. Vaccine, 2013, 32, 133-145.	3.8	158
36	The Definition of Pneumonia, the Assessment of Severity, and Clinical Standardization in the Pneumonia Etiology Research for Child Health Study. Clinical Infectious Diseases, 2012, 54, S109-S116.	5.8	157

#	Article	IF	Citations
37	Efficacy of motavizumab for the prevention of respiratory syncytial virus disease in healthy Native American infants: a phase 3 randomised double-blind placebo-controlled trial. Lancet Infectious Diseases, The, 2015, 15, 1398-1408.	9.1	157
38	Epidemic of Pediatric Deaths From Acute Renal Failure Caused by Diethylene Glycol Poisoning. JAMA - Journal of the American Medical Association, 1998, 279, 1175.	7.4	154
39	Randomized trial of presumptive sexually transmitted disease therapy during pregnancy in Rakai, Uganda. American Journal of Obstetrics and Gynecology, 2001, 185, 1209-1217.	1.3	153
40	The potential indirect effect of conjugate pneumococcal vaccines. Vaccine, 2003, 21, 1815-1825.	3.8	143
41	Invasive pneumococcal infections in children with sickle cell disease in the era of penicillin prophylaxis, antibiotic resistance, and 23-valent pneumococcal polysaccharide vaccination. Journal of Pediatrics, 2003, 143, 438-444.	1.8	133
42	Indirect Effect of 7â€Valent Pneumococcal Conjugate Vaccine on Pneumococcal Colonization among Unvaccinated Household Members. Clinical Infectious Diseases, 2008, 47, 989-996.	5.8	133
43	Mobile phone-delivered reminders and incentives to improve childhood immunisation coverage and timeliness in Kenya (M-SIMU): a cluster randomised controlled trial. The Lancet Global Health, 2017, 5, e428-e438.	6.3	126
44	Report from a WHO working group: standard method for detecting upper respiratory carriage of Streptococcus pneumoniae. Pediatric Infectious Disease Journal, 2003, 22, 133-140.	2.0	123
45	The Path to Group A Streptococcus Vaccines: World Health Organization Research and Development Technology Roadmap and Preferred Product Characteristics. Clinical Infectious Diseases, 2019, 69, 877-883.	5.8	122
46	Fever as an adverse event following immunization: case definition and guidelines of data collection, analysis, and presentation. Vaccine, 2004, 22, 551-556.	3.8	120
47	Safety and Immunogenicity of Heptavalent Pneumococcal Vaccine Conjugated to CRM197Among Infants With Sickle Cell Disease. Pediatrics, 2000, 106, 965-972.	2.1	97
48	Effect of Communityâ€Wide Conjugate Pneumococcal Vaccine Use in Infancy on Nasopharyngeal Carriage through 3 Years of Age: A Crossâ€Sectional Study in a Highâ€Risk Population. Clinical Infectious Diseases, 2006, 43, 8-15.	5.8	97
49	Density of Upper Respiratory Colonization With Streptococcus pneumoniae and Its Role in the Diagnosis of Pneumococcal Pneumonia Among Children Aged <5 Years in the PERCH Study. Clinical Infectious Diseases, 2017, 64, S317-S327.	5.8	96
50	The evidence for using conjugate vaccines to protect HIV-infected children against pneumococcal disease. Lancet Infectious Diseases, The, 2008, 8, 67-80.	9.1	95
51	Impact of More Than a Decade of Pneumococcal Conjugate Vaccine Use on Carriage and Invasive Potential in Native American Communities. Journal of Infectious Diseases, 2012, 205, 280-288.	4.0	92
52	Laboratory Methods for Determining Pneumonia Etiology in Children. Clinical Infectious Diseases, 2012, 54, S146-S152.	5.8	92
53	Systematic Review of the Effect of Pneumococcal Conjugate Vaccine Dosing Schedules on Vaccine-type Invasive Pneumococcal Disease Among Young Children. Pediatric Infectious Disease Journal, 2014, 33, S109-S118.	2.0	92
54	Increased Risk for and Mortality From Invasive Pneumococcal Disease in HIV-Exposed but Uninfected Infants Aged <1 Year in South Africa, 2009–2013. Clinical Infectious Diseases, 2015, 60, 1346-1356.	5.8	91

#	Article	IF	Citations
55	Systematic Review of the Indirect Effect of Pneumococcal Conjugate Vaccine Dosing Schedules on Pneumococcal Disease and Colonization. Pediatric Infectious Disease Journal, 2014, 33, S161-S171.	2.0	88
56	Systematic Review of the Effect of Pneumococcal Conjugate Vaccine Dosing Schedules on Vaccine-type Nasopharyngeal Carriage. Pediatric Infectious Disease Journal, 2014, 33, S152-S160.	2.0	87
57	Association of C-Reactive Protein With Bacterial and Respiratory Syncytial Virus–Associated Pneumonia Among Children Aged <5 Years in the PERCH Study. Clinical Infectious Diseases, 2017, 64, S378-S386.	5.8	84
58	Systematic Review of the Effect of Pneumococcal Conjugate Vaccine Dosing Schedules on Prevention of Pneumonia. Pediatric Infectious Disease Journal, 2014, 33, S140-S151.	2.0	83
59	ls Higher Viral Load in the Upper Respiratory Tract Associated With Severe Pneumonia? Findings From the PERCH Study. Clinical Infectious Diseases, 2017, 64, S337-S346.	5.8	81
60	Epidemiology of Invasive Haemophilus influenzae Type A Disease among Navajo and White Mountain Apache Children, 1988-2003. Clinical Infectious Diseases, 2005, 40, 823-830.	5 . 8	79
61	Association of the Pneumococcal Pilus with Certain Capsular Serotypes but Not with Increased Virulence. Journal of Clinical Microbiology, 2007, 45, 1684-1689.	3.9	78
62	Case-control vaccine effectiveness studies: Preparation, design, and enrollment of cases and controls. Vaccine, 2017, 35, 3295-3302.	3.8	77
63	Young Infants Can Develop Protective Levels of Neutralizing Antibody after Infection with Respiratory Syncytial Virus. Journal of Infectious Diseases, 2008, 198, 1007-1015.	4.0	76
64	The burden of acute respiratory infections in crisis-affected populations: a systematic review. Conflict and Health, 2010, 4, 3.	2.7	74
65	Global emergence and population dynamics of divergent serotype 3 CC180 pneumococci. PLoS Pathogens, 2018, 14, e1007438.	4.7	74
66	Disk Diffusion Bioassays for the Detection of Antibiotic Activity in Body Fluids: Applications for the Pneumonia Etiology Research for Child Health Project. Clinical Infectious Diseases, 2012, 54, S159-S164.	5 . 8	73
67	Global burden of acute lower respiratory infection associated with human metapneumovirus in children under 5 years in 2018: a systematic review and modelling study. The Lancet Global Health, 2021, 9, e33-e43.	6.3	71
68	Nasopharyngeal versus Oropharyngeal Sampling for Detection of Pneumococcal Carriage in Adults. Journal of Clinical Microbiology, 2004, 42, 4974-4976.	3.9	70
69	Specimen Collection for the Diagnosis of Pediatric Pneumonia. Clinical Infectious Diseases, 2012, 54, S132-S139.	5.8	70
70	The Effect of Antibiotic Exposure and Specimen Volume on the Detection of Bacterial Pathogens in Children With Pneumonia. Clinical Infectious Diseases, 2017, 64, S368-S377.	5.8	70
71	Anticapsular Serum Antibody Concentration and Protection against Pneumococcal Colonization among Children Vaccinated with 7-Valent Pneumococcal Conjugate Vaccine. Clinical Infectious Diseases, 2007, 44, 1173-1179.	5 . 8	69
72	Seasonal Drivers of Pneumococcal Disease Incidence: Impact of Bacterial Carriage and Viral Activity. Clinical Infectious Diseases, 2014, 58, 188-194.	5.8	69

#	Article	IF	CITATIONS
73	Invasive Pneumococcal Disease a Decade after Pneumococcal Conjugate Vaccine Use in an American Indian Population at High Risk for Disease. Clinical Infectious Diseases, 2010, 50, 1238-1246.	5.8	68
74	Changing Epidemiology of Invasive Pneumococcal Disease among White Mountain Apache Persons in the Era of the Pneumococcal Conjugate Vaccine. Clinical Infectious Diseases, 2008, 47, 476-484.	5.8	67
75	Breathing New Life into Pneumonia Diagnostics. Journal of Clinical Microbiology, 2009, 47, 3405-3408.	3.9	67
76	The Potential for Reducing the Number of Pneumococcal Conjugate Vaccine Doses While Sustaining Herd Immunity in High-Income Countries. PLoS Medicine, 2015, 12, e1001839.	8.4	66
77	Design of a Group-Randomized Streptococcus pneumoniae Vaccine Trial. Contemporary Clinical Trials, 2001, 22, 438-452.	1.9	65
78	Effectiveness of the 23â€Valent Polysaccharide Vaccine against Invasive Pneumococcal Disease in Navajo Adults. Journal of Infectious Diseases, 2003, 188, 81-89.	4.0	65
79	The Burden of Childhood Pneumonia in the Developed World. Pediatric Infectious Disease Journal, 2013, 32, e119-e127.	2.0	64
80	Dosing Schedules for Pneumococcal Conjugate Vaccine. Pediatric Infectious Disease Journal, 2014, 33, S172-S181.	2.0	64
81	Standardized Interpretation of Chest Radiographs in Cases of Pediatric Pneumonia From the PERCH Study. Clinical Infectious Diseases, 2017, 64, S253-S261.	5.8	62
82	A Literature Review and Survey of Childhood Pneumonia Etiology Studies: 2000–2010. Clinical Infectious Diseases, 2012, 54, S102-S108.	5.8	60
83	Using Pneumococcal Carriage Data to Monitor Postvaccination Changes in Invasive Disease. American Journal of Epidemiology, 2013, 178, 1488-1495.	3.4	60
84	Comparative Immunogenicity of 7 and 13-Valent Pneumococcal Conjugate Vaccines and the Development of Functional Antibodies to Cross-Reactive Serotypes. PLoS ONE, 2013, 8, e74906.	2.5	58
85	Strain Characteristics ofStreptococcus pneumoniaeCarriage and Invasive Disease Isolates during a Clusterâ∈Randomized Clinical Trial of the 7â€Valent Pneumococcal Conjugate Vaccine. Journal of Infectious Diseases, 2007, 196, 1221-1227.	4.0	56
86	The Role of Neutralizing Antibodies in Protection of American Indian Infants Against Respiratory Syncytial Virus Disease. Pediatric Infectious Disease Journal, 2008, 27, 207-212.	2.0	56
87	Chest Radiograph Findings in Childhood Pneumonia Cases From the Multisite PERCH Study. Clinical Infectious Diseases, 2017, 64, S262-S270.	5.8	56
88	Potential Impact of Conjugate Pneumococcal Vaccines on Pediatric Pneumococcal Diseases. American Journal of Epidemiology, 2004, 159, 634-644.	3.4	55
89	RANDOMIZED, CONTROLLED TRIAL EFFICACY OF PNEUMOCOCCAL CONJUGATE VACCINE AGAINST OTITIS MEDIA AMONG NAVAJO AND WHITE MOUNTAIN APACHE INFANTS. Pediatric Infectious Disease Journal, 2008, 27, 71-73.	2.0	55
90	Systematic Review of the Effect of Pneumococcal Conjugate Vaccine Dosing Schedules on Immunogenicity. Pediatric Infectious Disease Journal, 2014, 33, S119-S129.	2.0	53

#	Article	lF	Citations
91	Colonisation endpoints in Streptococcus pneumoniae vaccine trials. Vaccine, 2013, 32, 153-158.	3.8	52
92	Estimating the full public health value of vaccination. Vaccine, 2017, 35, 6255-6263.	3.8	52
93	Respiratory Syncytial Virus Infection in Navajo and White Mountain Apache Children. Pediatrics, 2002, 110, e20-e20.	2.1	50
94	Epidemiology of Invasive Streptococcus pneumoniae among Navajo Children in the Era before Use of Conjugate Pneumococcal Vaccines, 1989-1996. American Journal of Epidemiology, 2004, 160, 270-278.	3.4	50
95	Identification and Selection of Cases and Controls in the Pneumonia Etiology Research for Child Health Project. Clinical Infectious Diseases, 2012, 54, S117-S123.	5.8	50
96	Evaluation of Risk Factors for Severe Pneumonia in Children: The Pneumonia Etiology Research for Child Health Study. Clinical Infectious Diseases, 2012, 54, S124-S131.	5. 8	49
97	Impact of the 13-Valent Pneumococcal Conjugate Vaccine on Pneumococcal Carriage Among American Indians. Pediatric Infectious Disease Journal, 2016, 35, 907-914.	2.0	49
98	Immunoblot Method To Detect Streptococcus pneumoniae and Identify Multiple Serotypes from Nasopharyngeal Secretions. Journal of Clinical Microbiology, 2004, 42, 1596-1600.	3.9	48
99	Invasive pneumococcal disease epidemiology and effectiveness of 23-valent pneumococcal polysaccharide vaccine in Alaska Native adults. Vaccine, 2007, 25, 2288-2295.	3 . 8	48
100	The Enduring Challenge of Determining Pneumonia Etiology in Children: Considerations for Future Research Priorities. Clinical Infectious Diseases, 2017, 64, S188-S196.	5.8	48
101	Standardization of Laboratory Methods for the PERCH Study. Clinical Infectious Diseases, 2017, 64, S245-S252.	5 . 8	48
102	Effectiveness of the 13-valent pneumococcal conjugate vaccine against invasive pneumococcal disease in South African children: a case-control study. The Lancet Global Health, 2017, 5, e359-e369.	6.3	47
103	Relating Pneumococcal Carriage Among Children to Disease Rates Among Adults Before and After the Introduction of Conjugate Vaccines. American Journal of Epidemiology, 2016, 183, 1055-1062.	3.4	45
104	Title is missing!. Pediatric Infectious Disease Journal, 2003, 22, e1-e11.	2.0	43
105	Predictors of Pneumococcal Conjugate Vaccine Immunogenicity among Infants and Toddlers in an American Indian PnCRM7 Efficacy Trial. Journal of Infectious Diseases, 2007, 196, 104-114.	4.0	42
106	Procedures for Collection of Induced Sputum Specimens From Children. Clinical Infectious Diseases, 2012, 54, S140-S145.	5.8	42
107	Serotype-Specific Correlates of Protection for Pneumococcal Carriage: An Analysis of Immunity in 19 Countries. Clinical Infectious Diseases, 2018, 66, 913-920.	5. 8	42
108	A public health evaluation of 13-valent pneumococcal conjugate vaccine impact on adult disease outcomes from a randomized clinical trial in the Netherlands. Vaccine, 2019, 37, 5777-5787.	3.8	41

#	Article	IF	Citations
109	Nasopharyngeal Carriage of Streptococcus pneumoniae in Navajo and White Mountain Apache Children Before the Introduction of Pneumococcal Conjugate Vaccine. Pediatric Infectious Disease Journal, 2009, 28, 711-716.	2.0	40
110	Individual level determinants for not receiving immunization, receiving immunization with delay, and being severely underimmunized among rural western Kenyan children. Vaccine, 2015, 33, 6778-6785.	3.8	40
111	Global invasive bacterial vaccine-preventable diseases surveillance2008-2014. Morbidity and Mortality Weekly Report, 2014, 63, 1159-62.	15.1	40
112	Pre– and Post–Conjugate Vaccine Epidemiology of Pneumococcal Serotype 6C Invasive Disease and Carriage within Navajo and White Mountain Apache Communities. Clinical Infectious Diseases, 2010, 51, 1258-1265.	5.8	39
113	Effectiveness of 7-Valent Pneumococcal Conjugate Vaccine Against Invasive Pneumococcal Disease in HIV-Infected and -Uninfected Children in South Africa: A Matched Case-Control Study. Clinical Infectious Diseases, 2014, 59, 808-818.	5 . 8	39
114	Pertussis-Associated Pneumonia in Infants and Children From Low- and Middle-Income Countries Participating in the PERCH Study. Clinical Infectious Diseases, 2016, 63, S187-S196.	5. 8	38
115	A policy framework for accelerating adoption of new vaccines. Hum Vaccin, 2010, 6, 1021-1024.	2.4	37
116	Detection of Pneumococcal DNA in Blood by Polymerase Chain Reaction for Diagnosing Pneumococcal Pneumonia in Young Children From Low- and Middle-Income Countries. Clinical Infectious Diseases, 2017, 64, S347-S356.	5.8	37
117	Estimated severe pneumococcal disease cases and deaths before and after pneumococcal conjugate vaccine introduction in children younger than 5 years of age in South Africa. PLoS ONE, 2017, 12, e0179905.	2.5	37
118	Bayesian Estimation of Pneumonia Etiology: Epidemiologic Considerations and Applications to the Pneumonia Etiology Research for Child Health Study. Clinical Infectious Diseases, 2017, 64, S213-S227.	5.8	37
119	Detection of G3P[3] and G3P[9] rotavirus strains in American Indian children with evidence of gene reassortment between human and animal rotaviruses. Journal of Medical Virology, 2011, 83, 1288-1299.	5.0	36
120	Nasopharyngeal Carriage and Transmission of Streptococcus pneumoniae in American Indian Households after a Decade of Pneumococcal Conjugate Vaccine Use. PLoS ONE, 2014, 9, e79578.	2.5	36
121	Title is missing!. Pediatric Infectious Disease Journal, 2003, 22, 133-140.	2.0	35
122	Invasive Pneumococcal Disease among Navajo Adults, 1989–1998. Clinical Infectious Diseases, 2004, 38, 496-501.	5.8	35
123	Risk Factors for Invasive Pneumococcal Disease among Navajo Adults. American Journal of Epidemiology, 2007, 166, 1080-1087.	3.4	33
124	Epidemiologic and Clinical Features of Other Enteric Viruses Associated with Acute Gastroenteritis in American Indian Infants. Journal of Pediatrics, 2012, 161, 110-115.e1.	1.8	33
125	The WHO position on rabies immunization – 2018 updates. Vaccine, 2019, 37, A85-A87.	3.8	33
126	The Serotype Distribution among Healthy Carriers before Vaccination Is Essential for Predicting the Impact of Pneumococcal Conjugate Vaccine on Invasive Disease. PLoS Computational Biology, 2015, 11, e1004173.	3.2	32

#	Article	IF	CITATIONS
127	Preliminary report from the World Health Organisation Chest Radiography in Epidemiological Studies project. Pediatric Radiology, 2017, 47, 1399-1404.	2.0	32
128	Assessing the Evidence for Maternal Pertussis Immunization: A Report From the Bill & Discussion of Maternal Pertussis Infant Discussion on Low- and Lower-Middle-Income Countries. Clinical Infectious Discusses, 2016, 63, S123-S133.	5.8	31
129	Case-control vaccine effectiveness studies: Data collection, analysis and reporting results. Vaccine, 2017, 35, 3303-3308.	3.8	31
130	Limited Utility of Polymerase Chain Reaction in Induced Sputum Specimens for Determining the Causes of Childhood Pneumonia in Resource-Poor Settings: Findings From the Pneumonia Etiology Research for Child Health (PERCH) Study. Clinical Infectious Diseases, 2017, 64, S289-S300.	5.8	31
131	Efficacy, safety and immunogenicity of a pneumococcal protein-based vaccine co-administered with 13-valent pneumococcal conjugate vaccine against acute otitis media in young children: A phase IIb randomized study. Vaccine, 2019, 37, 7482-7492.	3.8	31
132	National, regional, and state-level burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in India: modelled estimates for 2000–15. The Lancet Global Health, 2019, 7, e735-e747.	6.3	31
133	Upper respiratory tract colonization with <i>Streptococcus pneumoniae </i> ii adults. Expert Review of Vaccines, 2020, 19, 353-366.	4.4	31
134	Global burden of acute lower respiratory infection associated with human parainfluenza virus in children younger than 5 years for 2018: a systematic review and meta-analysis. The Lancet Global Health, 2021, 9, e1077-e1087.	6.3	30
135	Use and Evaluation of Molecular Diagnostics for Pneumonia Etiology Studies. Clinical Infectious Diseases, 2012, 54, S153-S158.	5.8	29
136	The Differential Impact of Coadministered Vaccines, Geographic Region, Vaccine Product and Other Covariates on Pneumococcal Conjugate Vaccine Immunogenicity. Pediatric Infectious Disease Journal, 2014, 33, S130-S139.	2.0	29
137	Evaluation of fast-track diagnostics and TaqMan array card real-time PCR assays for the detection of respiratory pathogens. Journal of Microbiological Methods, 2014, 107, 222-226.	1.6	29
138	The Diagnostic Utility of Induced Sputum Microscopy and Culture in Childhood Pneumonia. Clinical Infectious Diseases, 2017, 64, S280-S288.	5.8	29
139	Global Respiratory Syncytial Virus–Related Infant Community Deaths. Clinical Infectious Diseases, 2021, 73, S229-S237.	5.8	29
140	Standardizing Surveillance of Pneumococcal Disease. Clinical Infectious Diseases, 2009, 48, S37-S48.	5.8	28
141	Competition Between Streptococcus Pneumoniae Strains. Epidemiology, 2013, 24, 522-529.	2.7	28
142	Assessing the efficiency of catch-up campaigns for the introduction of pneumococcal conjugate vaccine: a modelling study based on data from PCV10 introduction in Kilifi, Kenya. BMC Medicine, 2017, 15, 113.	5.5	28
143	Addressing the Analytic Challenges of Cross-Sectional Pediatric Pneumonia Etiology Data. Clinical Infectious Diseases, 2017, 64, S197-S204.	5.8	28
144	Upper airways colonisation of Streptococcus pneumoniae in adults aged 60 years and older: A systematic review of prevalence and individual participant data meta-analysis of risk factors. Journal of Infection, 2020, 81, 540-548.	3.3	28

#	Article	IF	CITATIONS
145	Impact of Immunizations on the Disease Burden of American Indian and Alaska Native Children. JAMA Pediatrics, 2009, 163, 446.	3.0	27
146	Standardization of Clinical Assessment and Sample Collection Across All PERCH Study Sites. Clinical Infectious Diseases, 2017, 64, S228-S237.	5.8	27
147	The Predictive Performance of a Pneumonia Severity Score in Human Immunodeficiency Virus–negative Children Presenting to Hospital in 7 Low- and Middle-income Countries. Clinical Infectious Diseases, 2020, 70, 1050-1057.	5.8	26
148	Nontypeable Pneumococcal Isolates Among Navajo and White Mountain Apache Communities: Are These Really a Cause of Invasive Disease?. Journal of Infectious Diseases, 2012, 206, 73-80.	4.0	25
149	Should Controls With Respiratory Symptoms Be Excluded From Case-Control Studies of Pneumonia Etiology? Reflections From the PERCH Study. Clinical Infectious Diseases, 2017, 64, S205-S212.	5.8	25
150	The impact of serotype-specific vaccination on phylodynamic parameters of Streptococcus pneumoniae and the pneumococcal pan-genome. PLoS Pathogens, 2018, 14, e1006966.	4.7	25
151	Frequency-dependent selection can forecast evolution in Streptococcus pneumoniae. PLoS Biology, 2020, 18, e3000878.	5.6	24
152	Listening panel agreement and characteristics of lung sounds digitally recorded from children aged 1–59 months enrolled in the Pneumonia Etiology Research for Child Health (PERCH) case–control study. BMJ Open Respiratory Research, 2017, 4, e000193.	3.0	23
153	Modeling the Association between Pneumococcal Carriage and Child-Care Center Attendance. Clinical Infectious Diseases, 2005, 40, 1223-1226.	5.8	21
154	Pneumococcal Conjugate Vaccine, Polysaccharide Vaccine, or Both for Adults? We're Not There Yet. Clinical Infectious Diseases, 2009, 49, 1326-1328.	5.8	21
155	Efficacy of a Pentavalent Human-bovine Reassortant Rotavirus Vaccine Against Rotavirus Gastroenteritis Among American Indian Children. Pediatric Infectious Disease Journal, 2012, 31, 184-188.	2.0	21
156	The Incremental Value of Repeated Induced Sputum and Gastric Aspirate Samples for the Diagnosis of Pulmonary Tuberculosis in Young Children With Acute Community-Acquired Pneumonia. Clinical Infectious Diseases, 2017, 64, S309-S316.	5.8	21
157	Could a single dose of pneumococcal conjugate vaccine in children be effective?. Vaccine, 2006, 24, 904-913.	3.8	20
158	When less is more: how many doses of PCV are enough?. Lancet Infectious Diseases, The, 2018, 18, 127-128.	9.1	20
159	Effectiveness of pneumococcal conjugate vaccine. Lancet, The, 2006, 368, 1469-1470.	13.7	19
160	Introduction to the Epidemiologic Considerations, Analytic Methods, and Foundational Results From the Pneumonia Etiology Research for Child Health Study. Clinical Infectious Diseases, 2017, 64, S179-S184.	5.8	19
161	Comparison of three rapid household survey sampling methods for vaccination coverage assessment in a peri-urban setting in Pakistan. International Journal of Epidemiology, 2019, 48, 583-595.	1.9	19
162	Pneumococcal colonization prevalence and density among Thai children with severe pneumonia and community controls. PLoS ONE, 2020, 15, e0232151.	2.5	19

#	Article	IF	Citations
163	The Mobile Solutions for Immunization (M-SIMU) Trial: A Protocol for a Cluster Randomized Controlled Trial That Assesses the Impact of Mobile Phone Delivered Reminders and Travel Subsidies to Improve Childhood Immunization Coverage Rates and Timeliness in Western Kenya. JMIR Research Protocols, 2016, 5, e72.	1.0	19
164	Pneumococcal conjugate vaccines and hospitalization of children for pneumonia: a time-series analysis, South Africa, 2006–2014. Bulletin of the World Health Organization, 2017, 95, 618-628.	3.3	19
165	Pneumococcal sequence type replacement among American Indian children: A comparison of pre- and routine-PCV7 eras. Vaccine, 2012, 30, 2376-2381.	3.8	18
166	PCV13 Impact Evaluations. Pediatric Infectious Disease Journal, 2013, 32, 264-265.	2.0	18
167	The epidemiologic evidence underlying recommendations for use of pneumococcal polysaccharide vaccine among American Indian and Alaska Native populations. Vaccine, 2011, 29, 5355-5362.	3.8	17
168	Mind the gap: jumping from vaccine licensure to routine use. Lancet, The, 2016, 387, 1887-1889.	13.7	17
169	National, regional, and state-level pneumonia and severe pneumonia morbidity in children in India: modelled estimates for 2000 and 2015. The Lancet Child and Adolescent Health, 2020, 4, 678-687.	5.6	17
170	Safety of Induced Sputum Collection in Children Hospitalized With Severe or Very Severe Pneumonia. Clinical Infectious Diseases, 2017, 64, S301-S308.	5.8	17
171	Invasive Pneumococcal Disease Among White Mountain Apache Adults, 1991-2005. Archives of Internal Medicine, 2008, 168, 749.	3.8	15
172	Design questions for Streptococcus pneumoniae vaccine trials with a colonisation endpoint. Vaccine, 2013, 32, 159-164.	3.8	15
173	Review of Guidelines for Evidence-based Management for Childhood Community-acquired Pneumonia in Under-5 Years From Developed and Developing Countries. Pediatric Infectious Disease Journal, 2013, 32, 1281-1282.	2.0	15
174	Pneumococcal antibodies in a child with type 14 pneumococcal conjugate vaccine failure. Vaccine, 2009, 27, 1863-1868.	3.8	14
175	Association of Laboratory Methods, Colonization Density, and Age With Detection of Streptococcus pneumoniae in the Nasopharynx. American Journal of Epidemiology, 2019, 188, 2110-2119.	3.4	14
176	The Etiology of Pneumonia From Analysis of Lung Aspirate and Pleural Fluid Samples: Findings From the Pneumonia Etiology Research for Child Health (PERCH) Study. Clinical Infectious Diseases, 2021, 73, e3788-e3796.	5.8	14
177	Impact of intrapartum antibiotics on the care and evaluation of the neonate. Pediatric Infectious Disease Journal, 2003, 22, 853-857.	2.0	13
178	Data Management and Data Quality in PERCH, a Large International Case-Control Study of Severe Childhood Pneumonia. Clinical Infectious Diseases, 2017, 64, S238-S244.	5.8	13
179	Digital auscultation in PERCH: Associations with chest radiography and pneumonia mortality in children. Pediatric Pulmonology, 2020, 55, 3197-3208.	2.0	13
180	The Etiology of Childhood Pneumonia in Mali. Pediatric Infectious Disease Journal, 2021, 40, S18-S28.	2.0	13

#	Article	lF	Citations
181	Norovirus and Sapovirus Epidemiology and Strain Characteristics among Navajo and Apache Infants. PLoS ONE, 2017, 12, e0169491.	2.5	13
182	The changing epidemiology of group a Streptococcus infections. Seminars in Pediatric Infectious Diseases, 1997, 8, 10-16.	1.7	12
183	The Etiology of Childhood Pneumonia in The Gambia. Pediatric Infectious Disease Journal, 2021, 40, S7-S17.	2.0	12
184	The Etiology of Pneumonia in HIV-infected Zambian Children. Pediatric Infectious Disease Journal, 2021, 40, S50-S58.	2.0	12
185	Meta-Analysis of the Efficacy of Conjugate Vaccines against Invasive Pneumococcal Disease. , 0, , 317-326.		12
186	Contributions of Native Americans to the global control of infectious diseases. Vaccine, 2007, 25, 2366-2374.	3.8	11
187	Global Burden of Neonatal Invasive Pneumococcal Disease. Pediatric Infectious Disease Journal, 2016, 35, 172-179.	2.0	11
188	Introduction. Clinical Infectious Diseases, 2012, 54, S87-S88.	5.8	10
189	Methods for a Systematic Review of Pneumococcal Conjugate Vaccine Dosing Schedules. Pediatric Infectious Disease Journal, 2014, 33, S182-S187.	2.0	10
190	The Etiology of Pneumonia in Zambian Children. Pediatric Infectious Disease Journal, 2021, 40, S40-S49.	2.0	10
191	The Etiology of Pneumonia in HIV-uninfected South African Children. Pediatric Infectious Disease Journal, 2021, 40, S59-S68.	2.0	10
192	Reduction of childhood pneumonia mortality in the Sustainable Development era. Lancet Respiratory Medicine, the, 2016, 4, 932-933.	10.7	9
193	The burden of Staphylococcus aureus among Native Americans on the Navajo Nation. PLoS ONE, 2019, 14, e0213207.	2.5	9
194	Epidemiology of the Rhinovirus (RV) in African and Southeast Asian Children: A Case-Control Pneumonia Etiology Study. Viruses, 2021, 13, 1249.	3.3	9
195	The Etiology of Pneumonia in HIV-uninfected Children in Kilifi, Kenya. Pediatric Infectious Disease Journal, 2021, 40, S29-S39.	2.0	9
196	Prioritizing vaccines for developing world diseases. Vaccine, 2017, 35, A16-A19.	3.8	8
197	Comparison of two schedules of two-dose priming with the ten-valent pneumococcal conjugate vaccine in Nepalese children: an open-label, randomised non-inferiority controlled trial. Lancet Infectious Diseases, The, 2019, 19, 156-164.	9.1	8
198	The Etiology of Childhood Pneumonia in Bangladesh. Pediatric Infectious Disease Journal, 2021, 40, S79-S90.	2.0	8

#	Article	IF	Citations
199	Etiology and Clinical Characteristics of Severe Pneumonia Among Young Children in Thailand. Pediatric Infectious Disease Journal, 2021, 40, S91-S100.	2.0	8
200	Integrated monitoring of a new group B streptococcal disease prevention program and other perinatal infections. Maternal and Child Health Journal, 2002, 6, 107-114.	1.5	7
201	CPAP treatment for children with pneumonia in low-resource settings. Lancet Respiratory Medicine, the, 2017, 5, 924-925.	10.7	6
202	High Burden of Staphylococcus aureus Among Native American Individuals on the White Mountain Apache Tribal Lands. Open Forum Infectious Diseases, 2020, 7, ofaa061.	0.9	6
203	Impact of mobile phone delivered reminders and unconditional incentives on measles-containing vaccine timeliness and coverage: a randomised controlled trial in western Kenya. BMJ Global Health, 2021, 6, e003357.	4.7	6
204	The Etiology of Pneumonia in HIV-1-infected South African Children in the Era of Antiretroviral Treatment. Pediatric Infectious Disease Journal, 2021, 40, S69-S78.	2.0	6
205	A Prospective Study of Agents Associated With Acute Respiratory Infection Among Young American Indian Children. Pediatric Infectious Disease Journal, 2013, 32, e324-e333.	2.0	6
206	Pitfalls in Case-Control Studies of Vaccine Effectiveness. Clinical Infectious Diseases, 2007, 45, 1241-1242.	5.8	5
207	Lack of Nonspecific Protection Against Allâ€Cause Nonrotavirus Gastroenteritis by Vaccination with Orally Administered Rotavirus Vaccine. Journal of Pediatric Gastroenterology and Nutrition, 2013, 56, 635-640.	1.8	5
208	Why we need pneumococcal vaccine effectiveness studies. Lancet Respiratory Medicine, the, 2016, 4, 343-345.	10.7	5
209	Upper Respiratory Tract Co-detection of Human Endemic Coronaviruses and High-density Pneumococcus Associated With Increased Severity Among HIV-Uninfected Children Under 5 Years Old in the PERCH Study. Pediatric Infectious Disease Journal, 2021, 40, 503-512.	2.0	5
210	Delivering Pneumococcal Vaccine to a High Risk Population: The Navajo Experience. Hum Vaccin, 2005, 1, 66-69.	2.4	4
211	Why Do We Need a Systematic Review of Pneumococcal Conjugate Vaccine Dosing Schedules?. Pediatric Infectious Disease Journal, 2014, 33, S107-S108.	2.0	4
212	Leaning in to the Power of the Possible. Pediatric Infectious Disease Journal, 2014, 33, 280-283.	2.0	4
213	Is Pneumonia Among Children in Developing Countries a Different Disease From the 1 Among Patients in the Same Age Group in Developed Countries?. Pediatric Infectious Disease Journal, 2014, 33, 229-230.	2.0	4
214	Persistence of IgG Antibody Following Routine Infant Immunization with the 7-Valent Pneumococcal Conjugate Vaccine. Pediatric Infectious Disease Journal, 2015, 34, e138-e142.	2.0	4
215	Is the world ready for an Ebola vaccine?. Lancet, The, 2015, 385, 203-204.	13.7	4
216	Water quality, availability, and acute gastroenteritis on the Navajo Nation – a pilot case-control study. Journal of Water and Health, 2018, 16, 1018-1028.	2.6	4

#	Article	lF	Citations
217	Optimizing the Use of Pneumococcal Conjugate Vaccine Globally. JAMA - Journal of the American Medical Association, 2013, 310, 911.	7.4	3
218	Motavizumab, RSV, and subsequent wheezing $\hat{a}\in$ "Authors' reply. Lancet Infectious Diseases, The, 2016, 16, 1329-1330.	9.1	3
219	Assessment of an Antibody-in-Lymphocyte Supernatant Assay for the Etiological Diagnosis of Pneumococcal Pneumonia in Children. Frontiers in Cellular and Infection Microbiology, 2019, 9, 459.	3.9	3
220	Nasopharyngeal Carriage. , 0, , 277-300.		3
221	Digitally recorded and remotely classified lung auscultation compared with conventional stethoscope classifications among children aged 1–59 months enrolled in the Pneumonia Etiology Research for Child Health (PERCH) case–control study. BMJ Open Respiratory Research, 2022, 9, e001144.	3.0	3
222	Pneumococcal Vaccine and the Dance of the Veils. Pediatric Infectious Disease Journal, 2009, 28, 463-465.	2.0	2
223	To wheeze or not to wheeze: the question of RSV prevention. Lancet Respiratory Medicine, the, 2018, 6, 232-233.	10.7	2
224	Adjustments for oral fluid quality and collection methods improve prediction of circulating tetanus antitoxin: Approaches for correcting antibody concentrations detected in a non-invasive specimen. Vaccine, 2021, 39, 423-430.	3.8	2
225	Maternal Influenza Vaccination and Effect on Influenza Virus Infection in Young Infants. Obstetrical and Gynecological Survey, 2011, 66, 333-334.	0.4	1
226	Pneumococcus, Pneumococcal Disease, and Prevention., 2016,, 225-243.		1
227	Estimating the protective concentration of anti-pneumococcal capsular polysaccharide antibodies. Vaccine, 2007, 25, 3816-3826.	3.8	1
228	Correspondence. Obstetrics and Gynecology, 1998, 91, 156-159.	2.4	0
229	Effectiveness of seven-valent pneumococcal conjugate vaccine – Authors' reply. Lancet, The, 2007, 369, 460.	13.7	0
230	The unattainable criteria for new infant vaccines. Human Vaccines and Immunotherapeutics, 2018, 14, 1179-1187.	3.3	0
231	Persistence of Immunity Following 2-Dose Priming with a 10-Valent Pneumococcal Conjugate Vaccine at 6 and 10 Weeks or 6 and 14 Weeks of Age in Nepalese Toddlers. Pediatric Infectious Disease Journal, 2021, 40, 937-943.	2.0	0
232	Evaluation of indoor PM2.5 concentrations in a Native American Community: a pilot study. Journal of Exposure Science and Environmental Epidemiology, 2021, , .	3.9	0
233	Non-vaccine Serotypes of Streptococcus Pneumoniae: Readying India for Monitoring Pneumococcal Conjugate Vaccine Use. Indian Pediatrics, 2018, 55, 947-949.	0.4	0
234	Title is missing!. , 2020, 15, e0232151.		0

#	ARTICLE	IF	CITATIONS
235	Title is missing!. , 2020, 15, e0232151.		O
236	Title is missing!. , 2020, 15, e0232151.		0
237	Title is missing!. , 2020, 15, e0232151.		O
238	Title is missing!. , 2020, 15, e0232151.		0
239	Title is missing!. , 2020, 15, e0232151.		0