
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2470944/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hypoxic Preconditioning Averts Sporadic Alzheimer's Disease-Like Phenotype in Rats: A Focus on Mitochondria. Antioxidants and Redox Signaling, 2022, 37, 739-757.	2.5	6
2	Altered Behavioral Performance in the Neuron-Specific HIF-1- and HIF-2-Deficient Mice Following Chronic Hypoxic Exposure. Advances in Experimental Medicine and Biology, 2021, 1269, 271-276.	0.8	1
3	Environmental Enrichment Improved Cognitive Performance in Mice under Normoxia and Hypoxia. Advances in Experimental Medicine and Biology, 2021, 1269, 329-333.	0.8	3
4	Chronic Ketosis Modulates HIF1α-Mediated Inflammatory Response in Rat Brain. Advances in Experimental Medicine and Biology, 2021, 1269, 3-7.	0.8	2
5	Effect of 3-Day and 21-Day Hypoxic Preconditioning on Recovery Following Cerebral Ischemia in Rats. Advances in Experimental Medicine and Biology, 2021, 1269, 317-322.	0.8	1
6	Neurovascular and cortical responses to hyperoxia: enhanced cognition and electroencephalographic activity despite reduced perfusion. Journal of Physiology, 2020, 598, 3941-3956.	1.3	13
7	Intrinsic Optical Properties of Brain Slices: Useful Indices of Electrophysiology and Metabolism. , 2020, , 47-63.		1
8	Increased cerebral vascularization and decreased water exchange across the blood-brain barrier in aquaporin-4 knockout mice. PLoS ONE, 2019, 14, e0218415.	1.1	25
9	Functionalized Phenylbenzamides Inhibit Aquaporin-4 Reducing Cerebral Edema and Improving Outcome in Two Models of CNS Injury. Neuroscience, 2019, 404, 484-498.	1.1	38
10	Post-resuscitation Arterial Blood Pressure on Survival and Change of Capillary Density Following Cardiac Arrest and Resuscitation in Rats. Advances in Experimental Medicine and Biology, 2018, 1072, 77-82.	0.8	1
11	Cerebral Angioplasticity: The Anatomical Contribution to Ensuring Appropriate Oxygen Transport to Brain. Advances in Experimental Medicine and Biology, 2018, 1072, 3-6.	0.8	5
12	Impact of Aging on Metabolic Changes in the Ketotic Rat Brain: Glucose, Oxidative and 4-HNE Metabolism. Advances in Experimental Medicine and Biology, 2018, 1072, 21-25.	0.8	7
13	Brain Tissue PO2 Measurement During Normoxia and Hypoxia Using Two-Photon Phosphorescence Lifetime Microscopy. Advances in Experimental Medicine and Biology, 2017, 977, 149-153.	0.8	8
14	Diet-Induced Ketosis Protects Against Focal Cerebral Ischemia in Mouse. Advances in Experimental Medicine and Biology, 2017, 977, 205-213.	0.8	18
15	Gender differences in hypoxic acclimatization in cyclooxygenase-2-deficient mice. Physiological Reports, 2017, 5, e13148.	0.7	6
16	Environmental Enrichment Induces Increased Cerebral Capillary Density and Improved Cognitive Function in Mice. Advances in Experimental Medicine and Biology, 2017, 977, 175-181.	0.8	29
17	Protective Effect of Dl-3-n-Butylphthalide on Recovery from Cardiac Arrest and Resuscitation in Rats. Advances in Experimental Medicine and Biology, 2016, 923, 31-36.	0.8	4
18	Aging Effect on Post-recovery Hypofusion and Mortality Following Cardiac Arrest and Resuscitation in Rats. Advances in Experimental Medicine and Biology, 2016, 876, 265-270.	0.8	2

#	Article	IF	CITATIONS
19	Altered Behavioral Performance in the Cellâ€specific HIFâ€1α and HIFâ€2α Deficient Mice. FASEB Journal, 2015, 29, 682.4.	0.2	0
20	HIF-1α/COX-2 expression and mouse brain capillary remodeling during prolonged moderate hypoxia and subsequent re-oxygenation. Brain Research, 2014, 1569, 41-47.	1.1	21
21	Defining the Role of HIF and Its Downstream Mediators in Hypoxic-Induced Cerebral Angiogenesis. Methods in Molecular Biology, 2014, 1135, 251-260.	0.4	2
22	Hypoxia-Induced Angiogenesis and Capillary Density Determination. Methods in Molecular Biology, 2014, 1135, 69-80.	0.4	10
23	Short-Term Hypoxic Preconditioning Improved Survival Following Cardiac Arrest and Resuscitation in Rats. Advances in Experimental Medicine and Biology, 2014, 812, 309-315.	0.8	9
24	Contribution of Brain Glucose and Ketone Bodies to Oxidative Metabolism. Advances in Experimental Medicine and Biology, 2013, 765, 365-370.	0.8	17
25	Ketosis Proportionately Spares Glucose Utilization in Brain. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1307-1311.	2.4	87
26	Early Life Hypoxic or Hypoxic/Hypercapnic Stress Alters Acute Ventilatory Sensitivity in Adult Mice. Advances in Experimental Medicine and Biology, 2013, 765, 351-355.	0.8	0
27	735. Critical Care Medicine, 2013, 41, A182.	0.4	0
28	Changes in Gastric Mucosa, Submucosa, and Muscularis IC pH May Herald Irreversible Tissue Injury. Advances in Experimental Medicine and Biology, 2013, 765, 59-65.	0.8	2
29	Kidney EPO Expression During Chronic Hypoxia in Aged Mice. Advances in Experimental Medicine and Biology, 2013, 765, 9-14.	0.8	14
30	Increased HIF-1α and HIF-2α Accumulation, but Decreased Microvascular Density, in Chronic Hyperoxia and Hypercapnia in the Mouse Cerebral Cortex. Advances in Experimental Medicine and Biology, 2013, 789, 29-35.	0.8	9
31	Mitochondrial Abnormalities in a Streptozotocin-Induced Rat Model of Sporadic Alzheimer's Disease. Current Alzheimer Research, 2013, 10, 406-419.	0.7	106
32	Ventilatory pattern variability predicts longâ€ŧerm survival following cardiac arrest and resuscitation in rats. FASEB Journal, 2013, 27, 691.15.	0.2	0
33	Improvement of neurological recovery and stimulation of neural progenitor cell proliferation by intrathecal administration of Sonic hedgehog. Journal of Neurosurgery, 2012, 116, 1114-1120.	0.9	56
34	Ads against chimp research criticized. Nature, 2012, 483, 275-275.	13.7	1
35	Decreased VEGF expression and microvascular density, but increased HIF-1 and 2α accumulation and EPO expression in chronic moderate hyperoxia in the mouse brain. Brain Research, 2012, 1471, 46-55.	1.1	57
36	Safety evaluation of a recombinant plasmin derivative lacking kringles 2-5 and rt-PA in a rat model of transient ischemic stroke. Experimental & Translational Stroke Medicine, 2012, 4, 10.	3.2	8

#	Article	IF	CITATIONS
37	Neuroprotective Properties of Ketone Bodies. Advances in Experimental Medicine and Biology, 2012, 737, 97-102.	0.8	7
38	Angioplasticity and Cerebrovascular Remodeling. Advances in Experimental Medicine and Biology, 2012, 737, 13-17.	0.8	12
39	Increased ketone body flux into GABA in ketotic rat brain. FASEB Journal, 2012, 26, lb315.	0.2	0
40	Hypoxia-induced angiogenesis is delayed in aging mouse brain. Brain Research, 2011, 1389, 50-60.	1.1	64
41	Intra-arterial administration of recombinant tissue-type plasminogen activator (rt-PA) causes more intracranial bleeding than does intravenous rt-PA in a transient rat middle cerebral artery occlusion model. Experimental & Translational Stroke Medicine, 2011, 3, 10.	3.2	18
42	Regional Brain Blood Flow in Mouse: Quantitative Measurement Using a Single-Pass Radio-Tracer Method and a Mathematical Algorithm. Advances in Experimental Medicine and Biology, 2011, 701, 255-260.	0.8	5
43	A Heat-Shock Protein Co-Inducer Treatment Improves Behavioral Performance in Rats Exposed to Hypoxia. Advances in Experimental Medicine and Biology, 2011, 701, 313-318.	0.8	11
44	Chronic Intermittent Hypoxia-Induced Augmented Cardiorespiratory Outflow Mediated by Vasopressin-V1A Receptor Signaling in the Medulla. Advances in Experimental Medicine and Biology, 2011, 701, 319-325.	0.8	7
45	The Western Reserve, Edward Morley, and Oxygen. Advances in Experimental Medicine and Biology, 2011, 701, 3-8.	0.8	0
46	Hypoxia—implications for pharmaceutical developments. Sleep and Breathing, 2010, 14, 291-298.	0.9	25
47	Decreased Brainstem Function Following Cardiac Arrest and Resuscitation in Aged Rat. Brain Research, 2010, 1328, 181-189.	1.1	29
48	Hypoxia-inducible factor-1 (HIF-1)-independent microvascular angiogenesis in the aged rat brain. Brain Research, 2010, 1366, 101-109.	1.1	50
49	In the hypoxic central nervous system, endothelial cell proliferation is followed by astrocyte activation, proliferation, and increased expression of the î±6î²4 integrin and dystroglycan. Clia, 2010, 58, 1157-1167.	2.5	62
50	Increased vasopressin transmission from the paraventricular nucleus to the rostral medulla augments cardiorespiratory outflow in chronic intermittent hypoxia-conditioned rats. Journal of Physiology, 2010, 588, 725-740.	1.3	71
51	O2 regulates stem cells through Wnt/β-catenin signalling. Nature Cell Biology, 2010, 12, 1007-1013.	4.6	413
52	Distribution of NBCn2 (SLC4A10) splice variants in mouse brain. Neuroscience, 2010, 169, 951-964.	1.1	18
53	Diet-Induced Ketosis Improves Cognitive Performance in Aged Rats. Advances in Experimental Medicine and Biology, 2010, 662, 71-75.	0.8	44
54	The "Eyes―Have It. Journal of Alzheimer's Disease, 2009, 18, 365-366.	1.2	0

#	Article	IF	CITATIONS
55	Brain Metabolic Adaptations to Hypoxia. , 2009, , 15-30.		1
56	Ketones Suppress Brain Glucose Consumption. Advances in Experimental Medicine and Biology, 2009, 645, 301-306.	0.8	87
57	Increased prolyl 4-hydroxylase expression and differential regulation of hypoxia-inducible factors in the aged rat brain. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R158-R165.	0.9	41
58	Kruppel-like Factor 2 Inhibits Hypoxia-inducible Factor 1α Expression and Function in the Endothelium. Journal of Biological Chemistry, 2009, 284, 20522-20530.	1.6	76
59	The loss of hypoxic ventilatory responses following resuscitation after cardiac arrest in rats is associated with failure of long-term survival. Brain Research, 2009, 1258, 59-64.	1.1	12
60	The effect of acetyl-L-carnitine and R-α-lipoic acid treatment in ApoE4 mouse as a model of human Alzheimer's disease. Journal of the Neurological Sciences, 2009, 283, 199-206.	0.3	85
61	Brainstem Sensitivity to Hypoxia and Ischemia. , 2009, , 213-223.		2
62	Impaired Behavioral Performance after Prolonged Moderate Hypobaric Hypoxic Exposure in Mice. FASEB Journal, 2009, 23, 616.16.	0.2	0
63	Neuroprotection in Diet-Induced Ketotic Rat Brain after Focal Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 1907-1916.	2.4	170
64	Increased expression of fibronectin and the α5β1 integrin in angiogenic cerebral blood vessels of mice subject to hypobaric hypoxia. Molecular and Cellular Neurosciences, 2008, 38, 43-52.	1.0	100
65	Effect of Alternate Energy Substrates on Mammalian Brain Metabolism During Ischemic Events. Advances in Experimental Medicine and Biology, 2008, 614, 361-370.	0.8	6
66	Hypobaric Hypoxia Reduces GLUT2 Transporter Content in Rat Jejunum more than in lleum. , 2008, 614, 345-352.		1
67	Cerebral Blood Flow Adaptation to Chronic Hypoxia. Advances in Experimental Medicine and Biology, 2008, 614, 371-377.	0.8	9
68	Mitochondrial Dysfunction in Aging Rat Brain Following Transient Global Ischemia. Advances in Experimental Medicine and Biology, 2008, 614, 379-386.	0.8	22
69	Diet-induced ketosis increases capillary density without altered blood flow in rat brain. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1607-E1615.	1.8	56
70	Iron homeostasis is maintained in the brain, but not the liver, following mild hypoxia. Redox Report, 2007, 12, 257-266.	1.4	8
71	In situ measurements of brain tissue hemoglobin saturation and blood volume by reflectance spectrophotometry in the visible spectrum. Journal of Biomedical Optics, 2007, 12, 062103.	1.4	5
72	Cerebral angiogenic factors, angiogenesis, and physiological response to chronic hypoxia differ among four commonly used mouse strains. Journal of Applied Physiology, 2007, 102, 1927-1935.	1.2	49

#	Article	IF	CITATIONS
73	Brain Tissue Oxygen Concentration Measurements. Antioxidants and Redox Signaling, 2007, 9, 1207-1220.	2.5	118
74	Physiologic Angiodynamics in the Brain. Antioxidants and Redox Signaling, 2007, 9, 1363-1372.	2.5	121
75	Harnessing hypoxic adaptation to prevent, treat, and repair stroke. Journal of Molecular Medicine, 2007, 85, 1331-1338.	1.7	78
76	Statistical Analysis of Metabolic Pathways of Brain Metabolism at Steady State. Annals of Biomedical Engineering, 2007, 35, 886-902.	1.3	27
77	7.2 Genetics and Gene Expression of Glycolysis. , 2007, , 771-778.		4
78	Increased Sensitivity to Transient Global Ischemia in Aging Rat Brain. , 2007, 599, 199-206.		18
79	Hypoxia in the central nervous system. Essays in Biochemistry, 2007, 43, 139-152.	2.1	27
80	Mitochondrial dysfunction following cardiac arrest and resuscitation in rat brain. FASEB Journal, 2007, 21, .	0.2	0
81	Hypoxiaâ€induced angiogenesis is suppressed in COXâ€2 deficient mouse brain cortex. FASEB Journal, 2007, 21, A138.	0.2	Ο
82	Chronic hypoxia and the cerebral circulation. Journal of Applied Physiology, 2006, 100, 725-730.	1.2	95
83	Adenosine treatment delays postischemic hippocampal CA1 loss after cardiac arrest and resuscitation in rats. Brain Research, 2006, 1071, 208-217.	1.1	29
84	Effect of chronic continuous or intermittent hypoxia and reoxygenation on cerebral capillary density and myelination. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290, R1105-R1114.	0.9	115
85	Is Cycloxygenase-2 (COX-2) a Major Component of the Mechanism Responsible for Microvascular Remodeling in the Brain?. , 2006, 578, 297-303.		6
86	THREE-DAY HYPOBARIC HYPOXIA REDUCES JEJUNAL AND ILEAL GLUT2 IN AGED RATS Critical Care Medicine, 2006, 34, A30.	0.4	0
87	Intracellular pH in Gastric and Rectal Tissue Post Cardiac Arrest. , 2006, 578, 11-16.		0
88	Absence of cellular stress in brain after hypoxia induced by arousal from hibernation in Arctic ground squirrels. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R1297-R1306.	0.9	114
89	Hypoxia-inducible Factor Prolyl 4-Hydroxylase Inhibition. Journal of Biological Chemistry, 2005, 280, 41732-41743.	1.6	265
90	MAPKs are differentially modulated in arctic ground squirrels during hibernation. Journal of Neuroscience Research, 2005, 80, 862-868.	1.3	35

#	Article	IF	CITATIONS
91	Gut Dysoxia. , 2005, 566, 151-157.		2
92	Computational Study on Use of Single-Point Analysis Method for Quantitating Local Cerebral Blood Flow in Mice. , 2005, 566, 99-104.		3
93	Adaptation to Chronic Hypoxia During Diet-Induced Ketosis. , 2005, 566, 51-57.		18
94	Prosurvival and Prodeath Effects of Hypoxia-inducible Factor-1α Stabilization in a Murine Hippocampal Cell Line. Journal of Biological Chemistry, 2005, 280, 3996-4003.	1.6	98
95	Reduced infarct volumes following focal ischemia in diet induced ketotic rat brain. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S307-S307.	2.4	Ο
96	Hypoxic Regulation of Angiopoietin-2 Expression in Endothelial Cells. Journal of Biological Chemistry, 2004, 279, 12171-12180.	1.6	171
97	The Third Signal in T Cell-Mediated Autoimmune Disease?. Journal of Immunology, 2004, 173, 92-99.	0.4	42
98	Structural and functional adaptation to hypoxia in the rat brain. Journal of Experimental Biology, 2004, 207, 3163-3169.	0.8	176
99	Hypoxia tolerance in mammalian heterotherms. Journal of Experimental Biology, 2004, 207, 3155-3162.	0.8	94
100	Comparison of Glucose Influx and Blood Flow in Retina and Brain of Diabetic Rats. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 449-457.	2.4	39
101	Renormalization of regional brain blood flow during prolonged mild hypoxic exposure in rats. Brain Research, 2004, 1027, 188-191.	1.1	24
102	The neurovascular unit and its growth factors: coordinated response in the vascular and nervous systems. Neurological Research, 2004, 26, 870-883.	0.6	116
103	Mitochondria and vascular lesions as a central target for the development of Alzheimer's disease and Alzheimer disease-like pathology in transgenic mice. Neurological Research, 2003, 25, 665-674.	0.6	93
104	Single-Pass Dual-Label Indicator Method: Blood-to-Brain Transport of Glucose and Short-Chain Monocarboxylic Acids. , 2003, 89, 265-276.		1
105	Differential Expression of Intracellular Acidosis in Rat Brainstem Regions in Response to Hypercapnic Ventilation. Advances in Experimental Medicine and Biology, 2003, 536, 407-413.	0.8	3
106	The Redox State of Cytochrome Oxidase in Brain in Vivo: An Historical Perspective. Advances in Experimental Medicine and Biology, 2003, 530, 535-546.	0.8	2
107	A Quantitative Study of Oxygen as a Metabolic Regulator. Advances in Experimental Medicine and Biology, 2003, 530, 547-554.	0.8	1
108	Expression of Angiopoietin-1 and -2 in the Rat Brain During Chronic Hypoxia and De-Adaptation. Advances in Experimental Medicine and Biology, 2003, 510, 331-335.	0.8	3

#	Article	IF	CITATIONS
109	Hypoxia-Inducible Factor-1α Accumulation in the Rat Brain in Response to Hypoxia and Ischemia is Attenuated During Aging. Advances in Experimental Medicine and Biology, 2003, 510, 337-341.	0.8	39
110	Oxygen and Oxidative Stress Modulate the Expression of Uncoupling Protein-5 in Vitro and in Vivo. Advances in Experimental Medicine and Biology, 2003, 540, 103-107.	0.8	11
111	SUSTAINED SPINAL CORD COMPRESSION. Journal of Bone and Joint Surgery - Series A, 2003, 85, 86-94.	1.4	178
112	SUSTAINED SPINAL CORD COMPRESSION. Journal of Bone and Joint Surgery - Series A, 2003, 85, 95-101.	1.4	30
113	Activation of Hypoxia-Inducible Factor-1 in the Rat Cerebral Cortex after Transient Global Ischemia: Potential Role of Insulin-Like Growth Factor-1. Journal of Neuroscience, 2002, 22, 8922-8931.	1.7	222
114	Role of nitric oxide in the regulation of HIF-1α expression during hypoxia. American Journal of Physiology - Cell Physiology, 2002, 283, C178-C186.	2.1	124
115	Angiopoietin-2 and rat brain capillary remodeling during adaptation and deadaptation to prolonged mild hypoxia. Journal of Applied Physiology, 2002, 93, 1131-1139.	1.2	120
116	Inhibitors of mitochondrial complex I attenuate the accumulation of hypoxia-inducible factor-1 during hypoxia in Hep3B cells. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2002, 132, 107-109.	0.8	27
117	Atherosclerotic Lesions and Mitochondria DNA Deletions in Brain Microvessels as a Central Target for the Development of Human AD and ADâ€Like Pathology in Aged Transgenic Mice. Annals of the New York Academy of Sciences, 2002, 977, 45-64.	1.8	88
118	The Role of Oxidative Stress in the Pathophysiology of Cerebrovascular Lesions in Alzheimer's Disease. Brain Pathology, 2002, 12, 21-35.	2.1	146
119	Labeling of cerebral amyloid beta deposits in vivo using intranasal basic fibroblast growth factor and serum amyloid P component in mice. Journal of Nuclear Medicine, 2002, 43, 1044-51.	2.8	30
120	Atherosclerotic Lesions Are Associated with Increased Immunoreactivity for Inducible Nitric Oxide Synthase and Endothelin-1 in Thoracic Aortic Intimal Cells of Hyperlipidemic Watanabe Rabbits. Experimental and Molecular Pathology, 2001, 71, 40-54.	0.9	33
121	Acute and Delayed Effects of Transient Global Cerebral Ischemia on Rat Brain Capillary Endothelial Cells in Vivo. , 2001, , 319-325.		1
122	Perfusion-Limited Recovery of Evoked Potential Function After Spinal Cord Injury. Spine, 2000, 25, 1218-1226.	1.0	25
123	Decreased constitutive nitric oxide synthase, but increased inducible nitric oxide synthase and endothelin-1 immunoreactivity in aortic endothelial cells of Donryu rats on a cholesterol-enriched diet. The Anatomical Record, 2000, 260, 16-25.	2.3	22
124	Prospects for Noninvasive Imaging of Brain Amyloid beta in Alzheimer's Disease. Annals of the New York Academy of Sciences, 2000, 903, 123-128.	1.8	20
125	Expression of hypoxia-inducible factor-1α in the brain of rats during chronic hypoxia. Journal of Applied Physiology, 2000, 89, 1937-1942.	1.2	241
126	The Role of Mitochondria in the Regulation of Hypoxia-inducible Factor 1 Expression during Hypoxia. Journal of Biological Chemistry, 2000, 275, 35863-35867.	1.6	184

#	Article	IF	CITATIONS
127	Rapid and Slow Swelling During Hypoxia in the CA1 Region of Rat Hippocampal Slices. Journal of Neurophysiology, 1999, 82, 320-329.	0.9	29
128	Prolonged hypoxia increases vascular endothelial growth factor mRNA and protein in adult mouse brain. Journal of Applied Physiology, 1999, 86, 260-264.	1.2	80
129	Cerebral metabolic profile, selective neuron loss, and survival of acute and chronic hyperglycemic rats following cardiac arrest and resuscitation. Brain Research, 1999, 821, 467-479.	1.1	91
130	Methyl isobutyl amiloride alters regional brain reperfusion after resuscitation from cardiac arrest in rats. Brain Research, 1999, 831, 64-71.	1.1	7
131	Vascular endothelial growth factor upregulation in transient global ischemia induced by cardiac arrest and resuscitation in rat brain. Molecular Brain Research, 1999, 74, 83-90.	2.5	61
132	Effects of oxygen deprivation on parapyramidal neurons of the ventrolateral medulla in the rat. Respiration Physiology, 1999, 115, 11-22.	2.8	1
133	Endothelial Activation Following Prolonged Hypobaric Hypoxia. Microvascular Research, 1999, 57, 75-85.	1.1	39
134	Identification and expression of the Na+/H+ exchanger in mammalian cerebrovascular and choroidal tissues: characterization by amiloride-sensitive []MIA binding and RT–PCR analysis. Molecular Brain Research, 1998, 58, 178-187.	2.5	43
135	Vascular endothelial growth factor in Alzheimer's disease and experimental cerebral ischemia. Molecular Brain Research, 1998, 62, 101-105.	2.5	174
136	Hypoxia-Induced Brain Angiogenesis. Advances in Experimental Medicine and Biology, 1998, 454, 287-293.	0.8	32
137	Early Time-Dependent Decompression for Spinal Cord Injury: Vascular Mechanisms of Recovery. Journal of Neurotrauma, 1997, 14, 951-962.	1.7	160
138	Viscoelastic Relaxation and Regional Blood Flow Response to Spinal Cord Compression and Decompression. Spine, 1997, 22, 1285-1291.	1.0	74
139	The paraventricular nucleus of the hypothalamus influences respiratory timing and activity in the rat. Neuroscience Letters, 1997, 232, 63-66.	1.0	64
140	Nutrient Consumption and Metabolic Perturbations. Neurosurgery Clinics of North America, 1997, 8, 145-164.	0.8	10
141	Ketogenic Diet and the Brain. Annals of the New York Academy of Sciences, 1997, 835, 218-224.	1.8	10
142	Ultrastructural concomitants of hypoxia-induced angiogenesis. Acta Neuropathologica, 1997, 93, 579-584.	3.9	29
143	Adequacy of Cerebral Vascular Remodeling Following Three Weeks of Hypobaric Hypoxia. Advances in Experimental Medicine and Biology, 1997, 411, 369-376.	0.8	23
144	Decreased energy metabolism in brain stem during central respiratory depression in response to hypoxia. Journal of Applied Physiology, 1996, 81, 1772-1777.	1.2	34

#	Article	IF	CITATIONS
145	Decreased rat brain cytochrome oxidase activity after prolonged hypoxia. Brain Research, 1996, 720, 1-6.	1.1	35
146	The amiloride-sensitive Na+/H+ exchange antiporter and control of intracellular pH in hippocampal brain slices. Brain Research, 1996, 731, 108-113.	1.1	22
147	Time-course and reversibility of the hypoxia-induced alterations in cerebral vascularity and cerebral capillary glucose transporter density. Brain Research, 1996, 737, 335-338.	1.1	86
148	Diet-Induced Ketosis Does Not Cause Cerebral Acidosis. Epilepsia, 1996, 37, 258-261.	2.6	101
149	Hypoxia/Ischemia and the pH Paradox. Advances in Experimental Medicine and Biology, 1996, 388, 283-292.	0.8	23
150	Hypoxiaâ€induced brain angiogenesis in the adult rat Journal of Physiology, 1995, 485, 525-530.	1.3	86
151	Local Cerebral Glucose Utilization and Cytoskeletal Proteolysis as Indices of Evolving Focal Ischemic Injury in Core and Penumbra. Journal of Cerebral Blood Flow and Metabolism, 1995, 15, 398-408.	2.4	64
152	Rapid recovery of rat brain intracellular pH after cardiac arrest and resuscitation. Brain Research, 1995, 687, 175-181.	1.1	28
153	Light transmittance as an index of cell volume in hippocampal slices: optical differences of interfaced and submerged positions. Brain Research, 1995, 693, 179-186.	1.1	53
154	Brain glucose metabolism in hypobaric hypoxia. Journal of Applied Physiology, 1995, 79, 136-140.	1.2	58
155	Methyl isobutyl amiloride delays normalization of brain intracellular pH after cardiac arrest in rats. Critical Care Medicine, 1995, 23, 1106-1111.	0.4	22
156	Hypoxia increases glucose transport at blood-brain barrier in rats. Journal of Applied Physiology, 1994, 77, 896-901.	1.2	94
157	Quantitative Multicomponent Spectral Analysis Using Neural Networks. Advances in Experimental Medicine and Biology, 1994, 345, 651-658.	0.8	0
158	Early reversal of acidosis and metabolic recovery following ischemia. Journal of Neurosurgery, 1994, 81, 567-573.	0.9	23
159	Architectural alterations in rat cerebral microvessels after hypobaric hypoxia. Brain Research, 1994, 660, 73-80.	1.1	69
160	Changes in energy metabolites, cGMP and intracellular pH during cortical spreading depression. Brain Research, 1994, 641, 176-180.	1.1	40
161	Increased Basic Fibroblastic Growth Factor mRNA in the Brains of Rats Exposed to Hypobaric Hypoxia. Advances in Experimental Medicine and Biology, 1994, 361, 497-502.	0.8	13
162	Increased Capillary Segment Length in Cerebral Cortical Microvessels of Rats Exposed to 3 Weeks of Hypobaric Hypoxia. Advances in Experimental Medicine and Biology, 1994, 345, 627-632.	0.8	6

#	Article	IF	CITATIONS
163	Regional blood-brain lactate influx. Brain Research, 1993, 614, 164-170.	1.1	42
164	DELAYED NORMALIZATION OF BRAIN INTRACELLULAR pH BY METHYL ISOBUTYL AMILORIDE AFTER CARDIAC ARREST IN RATS. Critical Care Medicine, 1993, 21, S205.	0.4	2
165	Rat Brain Adaptation to Chronic Hypobaric Hypoxia. Advances in Experimental Medicine and Biology, 1992, 317, 107-114.	0.8	12
166	Intracellular pH in rat brain in vivo and in brain slices. Canadian Journal of Physiology and Pharmacology, 1992, 70, S269-S277.	0.7	34
167	Brain adaptation to chronic hypobaric hypoxia in rats. Journal of Applied Physiology, 1992, 72, 2238-2243.	1.2	182
168	Hyperglycemia and Blood-Brain Barrier Glucose Transport. Journal of Cerebral Blood Flow and Metabolism, 1992, 12, 887-899.	2.4	65
169	Distribution of intracellular pH in the rat brain cortex after global ischemia as measured by color film histophotometry of neutral red. Brain Research, 1992, 573, 1-7.	1.1	34
170	Protein kinase C activity in permanent focal cerebral ischemia. Molecular and Chemical Neuropathology, 1992, 16, 85-93.	1.0	9
171	Quantitative measurement of two-component pH-sensitive colorimetric spectra using multilayer neural networks. Biological Cybernetics, 1992, 67, 303-308.	0.6	11
172	Metabolic Correlates of Focal Ischemia. , 1992, , 9-39.		1
173	Regional Blood to Brain Transport of Lactate. , 1992, , 293-298.		1
174	Regional changes in intracellular pH determined by neutral red histophotometry and high energy metabolites during cardiac arrest and following resuscitation in the rat. Metabolic Brain Disease, 1991, 6, 145-155.	1.4	11
175	Rapid metabolic failure in spontaneously hypertensive rats after middle cerebral artery ligation. Metabolic Brain Disease, 1991, 6, 57-64.	1.4	3
176	Regional Cerebral Metabolites, Blood Flow, Plasma Volume, and Mean Transit Time in Total Cerebral Ischemia in the Rat. Journal of Cerebral Blood Flow and Metabolism, 1991, 11, 272-282.	2.4	86
177	Altered glucose metabolism in microvessels from patients with Alzheimer's disease. Annals of Neurology, 1991, 29, 573-573.	2.8	9
178	Impairment of metabolic recovery with increasing periods of middle cerebral artery occlusion in rats Stroke, 1990, 21, 467-471.	1.0	39
179	Protein Kinase C Activity in Rat Brain Cortex. Journal of Neurochemistry, 1990, 55, 826-831.	2.1	11
180	Decreased Protein Kinase C Activity During Cerebral Ischemia and After Reperfusion in the Adult Rat. Journal of Neurochemistry, 1990, 55, 2001-2007.	2.1	56

#	Article	IF	CITATIONS
181	The evolution of focal ischemic damage: A metabolic analysis. Metabolic Brain Disease, 1990, 5, 33-44.	1.4	30
182	Lactate compartmentation in hippocampal slices: Evidence for a transporter. Metabolic Brain Disease, 1990, 5, 143-154.	1.4	27
183	Measurement of intracellular pH in hamster diaphragm by absorption spectrophotometry. Journal of Applied Physiology, 1990, 68, 1101-1106.	1.2	42
184	Carbonic Anhydrase Inhibition and Cerebral Cortical Oxygenation in the Rat. Advances in Experimental Medicine and Biology, 1990, 277, 335-343.	0.8	6
185	Stimulus-activated changes in brain tissue temperature in the anesthetized rat. Metabolic Brain Disease, 1989, 4, 225-237.	1.4	82
186	Determination of intracellular pH in the in vitro hippocampal slice preparation by transillumination spectrophotometry of Neutral red. Journal of Neuroscience Methods, 1989, 27, 25-34.	1.3	11
187	Manipulating the intracellular environment of hippocampal slices: pH and high-energy phosphates. Journal of Neuroscience Methods, 1989, 28, 83-91.	1.3	28
188	Brain perfusion in acute and chronic hyperglycemia in rats Stroke, 1989, 20, 1027-1031.	1.0	27
189	Changes in Regional Cerebral Blood Flow and Sucrose Space after 3-4 Weeks of Hypobaric Hypoxia (0.5) Tj ETQq1	1.0.7843 0.8	14 rgBT /0∨ 10
190	Vascular Perfusion and Blood-Brain Glucose Transport in Acute and Chronic Hyperglycemia. Journal of Neurochemistry, 1988, 51, 1924-1929.	2.1	90
191	Determination of rat cerebral cortical blood volume changes by capillary mean transit time analysis during hypoxia, hypercapnia and hyperventilation. Brain Research, 1988, 454, 170-178.	1.1	132
192	No correlation between cerebral blood flow and neurologic recovery after reversible total cerebral ischemia in the dog. Experimental Neurology, 1988, 101, 234-247.	2.0	23
193	MPTP Neurotoxicity And The "Biochemical―Blood-Brain Barrier. , 1988, , 93-100.		1
194	Visually Defined Zones of Focal Ischemia in the Rat Brain. Neurosurgery, 1987, 21, 825-830.	0.6	30
195	Optical Studies of Metabolism and Intracellular Ion Homeostasis in the Hippocampal Slice. , 1987, , 70-80.		0
196	Relationship of changes in diaphragmatic muscle blood flow to muscle contractile activity. Journal of Applied Physiology, 1987, 62, 291-299.	1.2	23
197	Intracellular pH determination by absorption spectrophotometry of neutral red. Metabolic Brain Disease, 1987, 2, 167-182.	1.4	27
198	Regional Studies of Blood—Brain Barrier Transport of Glucose and Leucine in Awake and Anesthetized Rats. Journal of Cerebral Blood Flow and Metabolism, 1986, 6, 717-723.	2.4	47

#	Article	IF	CITATIONS
199	Determination of Intracellular pH by Color Film Histophotometry of Frozen in Situ Rat Brain. Advances in Experimental Medicine and Biology, 1986, 200, 253-259.	0.8	8
200	Decreased blood volume with hypoperfusion during recovery from total cerebral ischaemia in dogs. Neurological Research, 1985, 7, 161-165.	0.6	11
201	A rapid-scanning spectrophotometer designed for biological tissues in vitro or in vivo. Analytical Biochemistry, 1985, 144, 483-493.	1.1	21
202	A computer-assisted rapid-scanning spectrophotometer with applications to tissues in vitro and in vivo. Journal of Biomedical Informatics, 1985, 18, 408-421.	0.7	8
203	Regional comparisons of brain glucose influx. Brain Research, 1985, 326, 299-305.	1.1	94
204	The use of Neutral Red as an intracellular pH indicator in rat brain cortex in vivo. Analytical Biochemistry, 1984, 142, 117-125.	1.1	80
205	Effects of acetazolamide and electrical stimulation on cerebral oxidative metabolism as indicated by the cytochrome oxidase redox state. Brain Research, 1984, 308, 9-14.	1.1	13
206	Oxygen insufficiency during hypoxic hypoxia in rat brain cortex. Brain Research, 1984, 293, 313-318.	1.1	38
207	Noradrenergic Modulation of Cerebral Cortical Oxidative Metabolism. Advances in Experimental Medicine and Biology, 1984, 180, 211-219.	0.8	2
208	(Na ⁺ -K ⁺)-ATPase Activity and Ouabain-Binding Sites in the Cerebral Cortex of Young and Aged Fischer-344 Rats. Gerontology, 1983, 29, 242-247.	1.4	18
209	Abnormalities of Cerebral Oxidative Metabolism with Aging and Their Relation to the Central Noradrenergic System. Gerontology, 1983, 29, 248-261.	1.4	18
210	Ethanol and acetaldehyde alter brain mitochondrial redox responses to direct cortical stimulation in vivo. Neuropharmacology, 1982, 21, 1051-1058.	2.0	10
211	Comparative brain oxygenation and mitochondrial redox activity in turtles and rats. Journal of Applied Physiology, 1982, 53, 1354-1359.	1.2	46
212	Sensitive and inexpensive dual-wavelength reflection spectrophotometry using interference filters. Analytical Biochemistry, 1982, 125, 13-23.	1.1	11
213	Does Endogenous Norepinephrine Regulate Potassium Homeostasis and Metabolism in Rat Cerebral Cortex?. Journal of Cerebral Blood Flow and Metabolism, 1982, 2, 355-361.	2.4	5
214	Nitrous oxide alters oxidative metabolic activities of rat neocortex in situ. Brain Research, 1981, 213, 405-414.	1.1	6
215	Norepinephrine depletion alters cerebral oxidative metabolism in the â€~active' state. Brain Research, 1981, 204, 87-101.	1.1	66
216	Local tissue oxygen tension - cytochrome a,a3 redox relationships in rat cerebral cortex in vivo. Brain Research, 1981, 218, 161-174.	1.1	90

#	Article	IF	CITATIONS
217	Oxidative metabolic responses with recurrent seizures in rat cerebral cortex: Role of systemic factors. Brain Research, 1981, 218, 175-188.	1.1	54
218	OXYGEN SUFFICIENCY IN THE "WORKING―BRAIN. , 1981, , 95-96.		2
219	Disparate recovery of resting and stimulated oxidative metabolism following transient ischemia Stroke, 1981, 12, 677-686.	1.0	54
220	Response of cyt a,a3 in the in situ canine heart to transient ischemic episodes. Basic Research in Cardiology, 1981, 76, 289-304.	2.5	20
221	Oxidative metabolic activity of cerebral cortex after fluid-percussion head injury in the cat. Journal of Neurosurgery, 1981, 54, 607-614.	0.9	64
222	APPLICATIONS OF OPTICAL TECHNIQUES TO BRAIN PHYSIOLOGY., 1981, , 343-352.		2
223	Temperature Coefficients for the Oxidative Metabolic Responses to Electrical Stimulation in Cerebral Cortex. Journal of Neurochemistry, 1980, 34, 203-209.	2.1	23
224	The relative time course of early changes in mitochondrial function and intracellular pH during hypoxia in the isolated toad ventricle strip Circulation Research, 1980, 46, 755-763.	2.0	14
225	Cerebral resistance to anoxia in the marine turtle. Respiration Physiology, 1980, 41, 241-251.	2.8	36
226	Cerebral norepinephrine: influence on cortical oxidative metabolism in situ. Science, 1979, 206, 69-71.	6.0	57
227	Oxidative metabolism, extracellular potassium and sustained potential shifts in cat spinal cord in situ. Brain Research, 1979, 162, 113-127.	1.1	61
228	Simultaneous monitoring by optical techniques of respiratory chain and intracellular pH in toad ventricle strip. Experientia, 1978, 34, 203-205.	1.2	10
229	Contributions of glycolysis and oxidative metabolism to recovery from electrical pulses in the isolated toad brain. Brain Research, 1978, 152, 365-368.	1.1	16
230	Phenytoin, Electric, Ionic, and Metabolic Responses in Cortex and Spinal Cord. Epilepsia, 1977, 18, 317-329.	2.6	24
231	Changes in brain metabolism in the cat in response to multiple brief transient ischemic episodes. Experimental Neurology, 1977, 55, 304-317.	2.0	13
232	The cerebral oxidative metabolic response to acute ethanol administration in rats and cats. Neuropharmacology, 1977, 16, 283-288.	2.0	18
233	Reflectance spectrophotometry of cytochrome aa3 in vivo. Journal of Applied Physiology, 1977, 43, 858-872.	1.2	290
234	Oxidation of cerebral cytochrome aa3 by oxygen plus carbon dioxide at hyperbaric pressures. Journal of Applied Physiology, 1977, 43, 873-879.	1.2	63

14

#	Article	IF	CITATIONS
235	Fluorometric monitoring of the effects of adrenergic agents on oxidative metabolism in intact cerebral cortex. Neuropharmacology, 1976, 15, 17-24.	2.0	23
236	Activity, avoidance learning and regional 5-hydroxytryptamine following intra-brain stem 5,7-dihydroxytryptamine and electrolytic midbrain raphe lesions in the rat. Brain Research, 1976, 108, 97-113.	1.1	125
237	Effects of respiratory gases on cytochrome a in intact cerebral cortex: Is there a critical Po2?. Brain Research, 1976, 108, 143-154.	1.1	131
238	In situ studies of oxidative energy metabolism during transient cortical ischemia in cats. Experimental Neurology, 1976, 50, 477-494.	2.0	54
239	Effects of incomplete and complete ischemia on mitochondrial functioning measured in intact cerebral cortex of cats. Experimental Neurology, 1976, 52, 433-446.	2.0	20
240	EFFECT OF OUABAIN AND PHENOBARBITAL ON THE KINETICS OF CORTICAL METABOLIC TRANSIENTS ASSOCIATED WITH EVOKED POTENTIALS. Journal of Neurochemistry, 1975, 24, 111-116.	2.1	37
241	Responses of electrical potential, potassium levels, and oxidative metabolic activity of the cerebral neocortex of cats. Brain Research, 1975, 88, 15-36.	1.1	204
242	Effect of ouabain and phenobarbital on oxidative metabolic activity associated with spreading cortical depression in cats. Brain Research, 1975, 88, 145-149.	1.1	45