Andres Moure

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2470884/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Natural antioxidants from residual sources. Food Chemistry, 2001, 72, 145-171.	8.2	1,325
2	Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochemistry, 2006, 41, 1913-1923.	3.7	444
3	Functionality of oilseed protein products: A review. Food Research International, 2006, 39, 945-963.	6.2	433
4	Recovery, concentration and purification of phenolic compounds by adsorption: A review. Journal of Food Engineering, 2011, 105, 1-27.	5.2	391
5	Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochemistry, 2006, 41, 447-456.	3.7	334
6	In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chemistry, 2013, 138, 1764-1785.	8.2	333
7	Supercritical CO2Extraction and Purification of Compounds with Antioxidant Activity. Journal of Agricultural and Food Chemistry, 2006, 54, 2441-2469.	5.2	264
8	Evaluation of Extracts fromGevuina avellanaHulls as Antioxidants. Journal of Agricultural and Food Chemistry, 2000, 48, 3890-3897.	5.2	165
9	Fractional characterisation of jatropha, neem, moringa, trisperma, castor and candlenut seeds as potential feedstocks for biodiesel production in Cuba. Biomass and Bioenergy, 2010, 34, 533-538.	5.7	150
10	Ultra- and nanofiltration of aqueous extracts from distilled fermented grape pomace. Journal of Food Engineering, 2009, 91, 587-593.	5.2	115
11	Simultaneous Extraction and Depolymerization of Fucoidan from Sargassum muticum in Aqueous Media. Marine Drugs, 2013, 11, 4612-4627.	4.6	91
12	Extraction of antioxidants from several berries pressing wastes using conventional and supercritical solvents. European Food Research and Technology, 2010, 231, 669-677.	3.3	84
13	Antioxidant activity of extracts from Gevuina avellana and Rosa rubiginosa defatted seeds. Food Research International, 2001, 34, 103-109.	6.2	77
14	Valorization of Sargassum muticum Biomass According to the Biorefinery Concept. Marine Drugs, 2015, 13, 3745-3760.	4.6	77
15	Supercritical CO2 extraction of fatty acids, phenolics and fucoxanthin from freeze-dried Sargassum muticum. Journal of Applied Phycology, 2015, 27, 957-964.	2.8	77
16	Potential of antioxidant extracts produced by aqueous processing of renewable resources for the formulation of cosmetics. Industrial Crops and Products, 2014, 58, 104-110.	5.2	74
17	Hydrothermal fractionation of Sargassum muticum biomass. Journal of Applied Phycology, 2012, 24, 1569-1578.	2.8	72
18	Production of antioxidants by non-isothermal autohydrolysis of lignocellulosic wastes. LWT - Food Science and Technology, 2011, 44, 436-442.	5.2	71

ANDRES MOURE

#	Article	IF	CITATIONS
19	Membrane concentration of antioxidants from Castanea sativa leaves aqueous extracts. Chemical Engineering Journal, 2011, 175, 95-102.	12.7	64
20	Evaluation of ultra- and nanofiltration for refining soluble products from rice husk xylan. Bioresource Technology, 2008, 99, 5341-5351.	9.6	57
21	Characterization, refining and antioxidant activity of saccharides derived from hemicelluloses of wood and rice husks. Food Chemistry, 2013, 141, 495-502.	8.2	51
22	Recovery of antioxidants from industrial waste liquors using membranes and polymeric resins. Journal of Food Engineering, 2010, 96, 127-133.	5.2	48
23	Recovery and Concentration of Antioxidants from Winery Wastes. Molecules, 2012, 17, 3008-3024.	3.8	47
24	Extraction of phenolic compounds from hazelnut shells by green processes Journal of Food Engineering, 2019, 255, 1-8.	5.2	47
25	Fractionation of Antioxidants from Autohydrolysis of Barley Husks. Journal of Agricultural and Food Chemistry, 2008, 56, 10651-10659.	5.2	45
26	Batch and fixed bed column studies on phenolic adsorption from wine vinasses by polymeric resins. Journal of Food Engineering, 2017, 209, 52-60.	5.2	45
27	Fractionation and Enzymatic Hydrolysis of Soluble Protein Present in Waste Liquors from Soy Processing. Journal of Agricultural and Food Chemistry, 2005, 53, 7600-7608.	5.2	44
28	Antioxidant activity of extracts produced by solvent extraction of almond shells acid hydrolysates. Food Chemistry, 2007, 101, 193-201.	8.2	44
29	Study of the seasonal variation on proximate composition of oven-dried Sargassum muticum biomass collected in Vigo Ria, Spain. Journal of Applied Phycology, 2016, 28, 1943-1953.	2.8	42
30	Charcoal adsorption of phenolic compounds present in distilled grape pomace. Journal of Food Engineering, 2008, 84, 156-163.	5.2	37
31	Antioxidant activity of liquors from steam explosion of Olea europea wood. Wood Science and Technology, 2008, 42, 579-592.	3.2	35
32	Extraction and functionality of membrane-concentrated protein from defatted Rosa rubiginosa seeds. Food Chemistry, 2001, 74, 327-339.	8.2	32
33	Optimization of antioxidants – Extraction from Castanea sativa leaves. Chemical Engineering Journal, 2012, 203, 101-109.	12.7	32
34	Extraction of low-molar-mass phenolics and lipophilic compounds from Pinus pinaster wood with compressed CO2. Journal of Supercritical Fluids, 2013, 81, 193-199.	3.2	32
35	A membrane process for the recovery of a concentrated phenolic product from white vinasses. Chemical Engineering Journal, 2017, 327, 210-217.	12.7	30
36	Characterisation of protein concentrates from pressed cakes of Guevina avellana (Chilean hazelnut). Food Chemistry, 2002, 78, 179-186.	8.2	29

ANDRES MOURE

#	Article	IF	CITATIONS
37	Purified Phenolics from Hydrothermal Treatments of Biomass: Ability To Protect Sunflower Bulk Oil and Model Food Emulsions from Oxidation. Journal of Agricultural and Food Chemistry, 2011, 59, 9158-9165.	5.2	29
38	Purification of oligosaccharides from rice husk autohydrolysis liquors by ultra- and nano-filtration. Desalination, 2006, 199, 541-543.	8.2	24
39	Valorization of chestnut husks by non-isothermal hydrolysis. Industrial Crops and Products, 2012, 36, 172-176.	5.2	24
40	Potential use of Cytisus scoparius extracts in topical applications for skin protection against oxidative damage. Journal of Photochemistry and Photobiology B: Biology, 2013, 125, 83-89.	3.8	24
41	Production of nutraceutics from chestnut burs by hydrolytic treatment. Food Research International, 2014, 65, 359-366.	6.2	22
42	Adsorption technologies to recover and concentrate food polyphenols. Current Opinion in Food Science, 2018, 23, 165-172.	8.0	22
43	Ecofriendly extraction of bioactive fractions from Sargassum muticum. Process Biochemistry, 2019, 79, 166-173.	3.7	21
44	Water-Soluble Components of Pinus pinaster Wood. BioResources, 2013, 8, .	1.0	18
45	Effects of caffeic acid and bovine serum albumin in reducing the rate of development of rancidity in oil-in-water and water-in-oil emulsions. Food Chemistry, 2011, 129, 1652-1659.	8.2	17
46	Green technologies for cascade extraction of Sargassum muticum bioactives. Journal of Applied Phycology, 2019, 31, 2481-2495.	2.8	17
47	Ultrafiltration of industrial waste liquors from the manufacture of soy protein concentrates. Journal of Chemical Technology and Biotechnology, 2006, 81, 1252-1258.	3.2	16
48	Fractionation of industrial solids containing barley husks in aqueous media. Food and Bioproducts Processing, 2009, 87, 208-214.	3.6	16
49	Protective effect against oxygen reactive species and skin fibroblast stimulation of <i>Couroupita guianensis</i> leaf extracts. Natural Product Research, 2012, 26, 314-322.	1.8	16
50	Valuable Polyphenolic Antioxidants from Wine Vinasses. Food and Bioprocess Technology, 2012, 5, 2708-2716.	4.7	16
51	Non-isothermal autohydrolysis of nixtamalized maize pericarp: Production of nutraceutical extracts. LWT - Food Science and Technology, 2014, 58, 550-556.	5.2	16
52	Pretreatment of Hazelnut Shells as a Key Strategy for the Solubilization and Valorization of Hemicelluloses into Bioactive Compounds. Agronomy, 2020, 10, 760.	3.0	16
53	Supercritical extraction of borage seed oil coupled to conventional solvent extraction of antioxidants. European Journal of Lipid Science and Technology, 2008, 110, 1035-1044.	1.5	15
54	Enzyme-aided alternative processes for the extraction of oil from Rosa rubiginosa. JAOCS, Journal of the American Oil Chemists' Society, 2001, 78, 437-439.	1.9	14

ANDRES MOURE

#	Article	IF	CITATIONS
55	Manufacture of Prebiotics from Biomass Sources. , 2009, , 535-589.		14
56	Recovery of phenols from autohydrolysis liquors of barley husks: Kinetic and equilibrium studies. Industrial Crops and Products, 2017, 103, 175-184.	5.2	13
57	Simulation of multistage extraction of antioxidants from Chilean hazelnut (Gevuina avellana) hulls. JAOCS, Journal of the American Oil Chemists' Society, 2003, 80, 389-396.	1.9	11
58	An approach to assess the synergistic effect of natural antioxidants on the performance of the polypropylene stabilizing systems. Journal of Applied Polymer Science, 2012, 126, 1852-1858.	2.6	11
59	Development of Pretreatment Strategies for the Fractionation of Hazelnut Shells in the Scope of Biorefinery. Agronomy, 2020, 10, 1568.	3.0	10
60	ETHANOL-MODIFIED SUPERCRITICAL CO2 EXTRACTION OF CHESTNUT BURS ANTIOXIDANTS. Chemical Engineering and Processing: Process Intensification, 2020, 156, 108092.	3.6	9
61	Extraction of phenolics from broom branches using green technologies. Journal of Chemical Technology and Biotechnology, 2017, 92, 1345-1352.	3.2	8
62	Antioxidant Extraction by Supercritical Fluids. , 2007, , 275-303.		8
63	ANTIOXIDANT ACTIVITY OF FRACTIONS FROM ACID HYDROLYSATES OF ALMOND SHELLS. Journal of Food Process Engineering, 2008, 31, 817-832.	2.9	7
64	Physicochemical, functional and structural characterization of fibre from defattedRosa rubiginosa andGevuina avellana seeds. Journal of the Science of Food and Agriculture, 2004, 84, 1951-1959.	3.5	6
65	Effect of Hydrothermal Pretreatment on Lignin and Antioxidant Activity. , 2017, , 5-43.		3
66	Fractionation and characterization of proteins from <i>Gevuina avellana</i> and <i>Rosa rubiginosa</i> seeds. JAOCS, Journal of the American Oil Chemists' Society, 2005, 82, 169-173.	1.9	1
67	Conventional purification and isolation. , 2021, , 129-153.		0
68	The Impact of Supercritical Extraction and Fractionation Technology on the Functional Food and		0

Nutraceutical Industry. , 2010, , 407-446.

5