Kirk Mykytyn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2470460/publications.pdf

Version: 2024-02-01

		236925	377865
35	4,559	25	34
papers	citations	h-index	g-index
37	37	37	3475
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	HTR6 and SSTR3 ciliary targeting relies on both IC3 loops and C-terminal tails. Life Science Alliance, 2021, 4, e202000746.	2.8	17
2	Super-Resolution Imaging Using a Novel High-Fidelity Antibody Reveals Close Association of the Neuronal Sodium Channel Na $<$ sub $>$ V $<$ $ $ sub $>$ 1.6 with Ryanodine Receptors in Cardiac Muscle. Microscopy and Microanalysis, 2020, 26, 157-165.	0.4	16
3	Monitoring \hat{l}^2 -Arrestin 2 Targeting to the Centrosome, Basal Body, and Primary Cilium by Fluorescence Microscopy. Methods in Molecular Biology, 2019, 1957, 271-289.	0.9	4
4	Cellular signalling by primary cilia in development, organ function and disease. Nature Reviews Nephrology, 2019, 15, 199-219.	9.6	533
5	A CreER mouse to study melanin concentrating hormone signaling in the developing brain. Genesis, 2018, 56, e23217.	1.6	18
6	G-Protein-Coupled Receptor Signaling in Cilia. Cold Spring Harbor Perspectives in Biology, 2017, 9, a028183.	5 . 5	77
7	Primary Cilia Signaling Shapes the Development of Interneuronal Connectivity. Developmental Cell, 2017, 42, 286-300.e4.	7.0	90
8	Recruitment of \hat{l}^2 -Arrestin into Neuronal Cilia Modulates Somatostatin Receptor Subtype 3 Ciliary Localization. Molecular and Cellular Biology, 2016, 36, 223-235.	2.3	63
9	Neuronal Primary Cilia: An Underappreciated Signaling and Sensory Organelle in the Brain. Neuropsychopharmacology, 2014, 39, 244-245.	5.4	48
10	Primary cilia enhance kisspeptin receptor signaling on gonadotropin-releasing hormone neurons. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10335-10340.	7.1	81
11	Cilioplasm is a cellular compartment for calcium signaling in response to mechanical and chemical stimuli. Cellular and Molecular Life Sciences, 2014, 71, 2165-2178.	5.4	113
12	Arborization of Dendrites by Developing Neocortical Neurons Is Dependent on Primary Cilia and Type 3 Adenylyl Cyclase. Journal of Neuroscience, 2013, 33, 2626-2638.	3 . 6	117
13	Heteromerization of Ciliary G Protein-Coupled Receptors in the Mouse Brain. PLoS ONE, 2012, 7, e46304.	2.5	48
14	Dopamine receptor 1 localizes to neuronal cilia in a dynamic process that requires the Bardet-Biedl syndrome proteins. Cellular and Molecular Life Sciences, 2011, 68, 2951-2960.	5 . 4	187
15	Neuronal ciliary signaling in homeostasis and disease. Cellular and Molecular Life Sciences, 2010, 67, 3287-3297.	5.4	67
16	Markers for Neuronal Cilia. Methods in Cell Biology, 2009, 91, 111-121.	1.1	21
17	Identification of Ciliary Localization Sequences within the Third Intracellular Loop of G Protein-coupled Receptors. Molecular Biology of the Cell, 2008, 19, 1540-1547.	2.1	322
18	Bardet–Biedl syndrome proteins are required for the localization of G protein-coupled receptors to primary cilia. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4242-4246.	7.1	417

#	Article	IF	Citations
19	Differences in Renal Tubule Primary Cilia Length in a Mouse Model of Bardet-Biedl Syndrome. Nephron Experimental Nephrology, 2007, 106, e88-e96.	2.2	50
20	Type III adenylyl cyclase localizes to primary cilia throughout the adult mouse brain. Journal of Comparative Neurology, 2007, 505, 562-571.	1.6	298
21	Hippocampal neurons possess primary cilia in culture. Journal of Neuroscience Research, 2007, 85, 1095-1100.	2.9	97
22	Clinical variability in ciliary disorders. Nature Genetics, 2007, 39, 818-819.	21.4	10
23	Clinical evidence of decreased olfaction in Bardet-Biedl syndrome caused by a deletion in the BBS4Gene. American Journal of Medical Genetics, Part A, 2005, 132A, 343-346.	1.2	66
24	<i>Bbs2</i> -null mice have neurosensory deficits, a defect in social dominance, and retinopathy associated with mislocalization of rhodopsin. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16588-16593.	7.1	345
25	Bardet–Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8664-8669.	7.1	309
26	Establishing a connection between cilia and Bardet–Biedl Syndrome. Trends in Molecular Medicine, 2004, 10, 106-109.	6.7	89
27	Evaluation of Complex Inheritance Involving the Most Common Bardet-Biedl Syndrome Locus (BBS1). American Journal of Human Genetics, 2003, 72, 429-437.	6.2	117
28	The Phenotype in Norwegian Patients With Bardet-Biedl Syndrome With Mutations in the BBS4 Gene. JAMA Ophthalmology, 2002, 120, 1364.	2.4	40
29	Identification of the gene (BBS1) most commonly involved in Bardet-Biedl syndrome, a complex human obesity syndrome. Nature Genetics, 2002, 31, 435-438.	21.4	327
30	Identification of the gene that, when mutated, causes the human obesity syndrome BBS4. Nature Genetics, 2001, 28, 188-191.	21.4	254
31	Mutations in MKKS cause Bardet-Biedl syndrome. Nature Genetics, 2000, 26, 15-16.	21.4	256
32	Hemizygosity for the COP9 signalosome subunit gene, SGN3, in the Smith-Magenis syndrome., 1999, 87, 342-348.		24
33	DNA polymorphism in cytokine genes based on length variation in simple-sequence tandem repeats. Immunogenetics, 1993, 38, 251-7.	2.4	17
34	Novel DNA polymorphism in the mouse tumor necrosis factor receptors type 1 and type 2. Immunogenetics, 1993, 37, 199-203.	2.4	10
35	Mapping of the interleukin 5 receptor gene to human Chromosome 3 p25?p26 and to mouse Chromosome 6 close to the Raf-1 locus with polymorphic tandem repeat sequences. Mammalian Genome, 1993, 4, 435-439.	2.2	9

3