
Jung-Seok Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2469465/publications.pdf Version: 2024-02-01

LUNC-SEOK YANG

#	Article	IF	CITATIONS
1	Nutrient recirculating soilless culture system as a predictable and stable way of microbial risk management. Journal of Cleaner Production, 2021, 298, 126747.	9.3	6
2	Silicon foliage spraying improves growth characteristics, morphological traits, and root quality of Panax ginseng C.A.Mey. Industrial Crops and Products, 2020, 156, 112848.	5.2	11
3	Modified approach for estimating geogenic Pb isotope ratios in soils for metal source apportionment. Environmental Earth Sciences, 2020, 79, 1.	2.7	0
4	Improvement in host metabolic homeostasis and alteration in gut microbiota in mice on the high-fat diet: A comparison of calcium supplements. Food Research International, 2020, 136, 109495.	6.2	7
5	Heavy Metal Determination by Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) and Direct Mercury Analysis (DMA) and Arsenic Mapping by Femtosecond (fs) – Laser Ablation (LA) ICP-MS in Cereals. Analytical Letters, 2019, 52, 496-510.	1.8	31
6	Enhanced irreversible fixation of cesium by wetting and drying cycles in soil. Environmental Geochemistry and Health, 2019, 41, 149-157.	3.4	10
7	Study on removal of Se(IV) using Fe-Mn layered double hydroxides and Fe-Mn Dos (double oxides). Mongolian Journal of Chemistry, 2019, 20, 29-37.	0.3	1
8	Partitioning effects of nonionic surfactants on the solubilization of single or binary chlorinated solvents: Batch and column experiments. Journal of Industrial and Engineering Chemistry, 2018, 58, 140-147.	5.8	12
9	Adsorption of As(III) and As(V) in groundwater by Fe–Mn binary oxide-impregnated granular activated carbon (IMIGAC). Journal of the Taiwan Institute of Chemical Engineers, 2017, 72, 62-69.	5.3	48
10	Transformation of zinc-concentrate in surface and subsurface environments: Implications for assessing zinc mobility/toxicity andÂchoosing an optimal remediation strategy. Environmental Pollution, 2017, 226, 346-355.	7.5	22
11	Identifying the source of Zn in soils around a Zn smelter using Pb isotope ratios and mineralogical analysis. Science of the Total Environment, 2017, 601-602, 66-72.	8.0	31
12	Spatial distribution, mineralogy, and weathering of heavy metals in soils along zinc-concentrate ground transportation routes: implication for assessing heavy metal sources. Environmental Earth Sciences, 2017, 76, 1.	2.7	10
13	One-dimensional column and three-dimensional box flushing of silicone emulsion-enhanced remediation for chlorinated solvent contaminated soils. Korean Journal of Chemical Engineering, 2017, 34, 741-746.	2.7	2
14	Highly Enhanced Heavy Metal Adsorption Performance of Iron Oxide (Fe-Oxide) upon Incorporation of Aluminum. Materials Transactions, 2017, 58, 71-75.	1.2	9
15	Continuous electrochemical removal of salts from Korean food wastes. Journal of the Taiwan Institute of Chemical Engineers, 2016, 64, 142-145.	5.3	6
16	Effects of Soil Micro-particles and Micro-pores on Petroleum Hydrocarbons Released From Contaminated Soils During Solvent Extraction with Ultrasound. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	9
17	Extraction mechanism of lead from shooting range soil by ferric salts. Chemical Engineering Research and Design, 2016, 103, 174-182.	5.6	26
18	Speciation Analysis of 6 Arsenic Species in Sea Mustard Using IC-ICP-MS. Journal of the Korean Chemical Society, 2016, 60, 452-456.	0.2	0

#	Article	IF	CITATIONS
19	Geochemical characteristics and microbial community composition in toxic metal-rich sediments contaminated with Au–Ag mine tailings. Journal of Hazardous Materials, 2015, 296, 147-157.	12.4	44
20	Water quality changes in acid mine drainage streams in Gangneung, Korea, 10 years after treatment with limestone. Journal of Geochemical Exploration, 2015, 159, 234-242.	3.2	37
21	Comparison of Experimental and Simulated Adsorption of Binary Metal Ions using Sawdust Modified by Citric Acid. Separation Science and Technology, 2015, 50, 276-285.	2.5	2
22	Adsorption of Arsenic from Aqueous Solutions by Iron Oxide Coated Sand Fabricated with Acid Mine Drainage. Separation Science and Technology, 2015, 50, 267-275.	2.5	22
23	Step-Wise Extraction of Metals from Dredged Marine Sediments. Separation Science and Technology, 2015, 50, 536-544.	2.5	8
24	Bench-scale electrokinetic remediation for cesium-contaminated sediment at the Hanford Site, USA. Journal of Radioanalytical and Nuclear Chemistry, 2015, 304, 615-625.	1.5	13
25	Selective Recovery of Dissolved Metals from Mine Drainage Using Electrochemical Reactions. Electrochimica Acta, 2015, 181, 248-254.	5.2	58
26	Enhanced-electrokinetic extraction of heavy metals from dredged harbor sediment. Environmental Science and Pollution Research, 2015, 22, 9912-9921.	5.3	21
27	Identification of refined petroleum products in contaminated soils using an identification index for GC chromatograms. Environmental Science and Pollution Research, 2015, 22, 12029-12034.	5.3	7
28	Reductive capacity measurement of waste forms for secondary radioactive wastes. Journal of Nuclear Materials, 2015, 467, 251-259.	2.7	12
29	Enhanced Electrokinetic Transport of Sulfate in Saline Soil. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	10
30	Selective recovery of dissolved Fe, Al, Cu, and Zn in acid mine drainage based on modeling to predict precipitation pH. Environmental Science and Pollution Research, 2015, 22, 3013-3022.	5.3	41
31	Extractive and oxidative removal of copper bound to humic acid in soil. Environmental Science and Pollution Research, 2015, 22, 6077-6085.	5.3	8
32	Identifying Type of Refined Petroleum Products in Environmental Media: Thin-Layer Chromatography (TLC) as a Quick Methodology. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	1
33	Analysis of arsenic in rice grains using ICP-MS and fs LA-ICP-MS. Journal of Analytical Atomic Spectrometry, 2014, 29, 1233-1237.	3.0	40
34	Environmental assessment on electrokinetic remediation of multimetal-contaminated site: a case study. Environmental Science and Pollution Research, 2014, 21, 6751-6758.	5.3	20
35	Effects of Radiation and Temperature on lodide Sorption by Surfactant-Modified Bentonite. Environmental Science & Technology, 2014, 48, 9684-9691.	10.0	57
36	The transport behavior of As, Cu, Pb, and Zn during electrokinetic remediation of a contaminated soil using electrolyte conditioning. Chemosphere, 2014, 117, 79-86.	8.2	77

#	Article	IF	CITATIONS
37	Removal of As(III) and As(V) using iron-rich sludge produced from coal mine drainage treatment plant. Environmental Science and Pollution Research, 2014, 21, 10878-10889.	5.3	28
38	Acid Extraction Overestimates the Total Fe(II) in the Presence of Iron (Hydr)oxide and Sulfide Minerals. Environmental Science and Technology Letters, 2014, 1, 310-314.	8.7	10
39	Stepwise Sequential Extraction of Asâ€, Cuâ€, and Pb ontaminated Paddy Soil. Clean - Soil, Air, Water, 2014, 42, 1785-1789.	1.1	5
40	Revealing the Spatial Distribution of Inorganic Elements in Rice Grains. Bulletin of the Korean Chemical Society, 2014, 35, 3289-3293.	1.9	3
41	Extraction characteristics of heavy metals from marine sediments. Chemical Engineering Journal, 2013, 228, 688-699.	12.7	88
42	Selective recovery of Cu, Zn, and Ni from acid mine drainage. Environmental Geochemistry and Health, 2013, 35, 735-743.	3.4	26
43	Evaluation of Electrolyte and Electrode Spacing for Application of Electrokinetic Remediation. Journal of Soil and Groundwater Environment, 2013, 18, 6-15.	0.1	2
44	Electrokinetic Extraction of Metals from Marine Sediment. Korean Chemical Engineering Research, 2013, 51, 733-738.	0.2	2
45	Soil Washing and Effluent Treatment for Contaminated Soil with Toxic Metals. Korean Chemical Engineering Research, 2013, 51, 745-754.	0.2	4
46	Electrode Configuration for Electrokinetic Restoration of Greenhouse Saline Soil. Separation Science and Technology, 2012, 47, 1677-1681.	2.5	9
47	Comparison of As, Ni, Zn, Cd, and Pb removals using treatment agents. Environmental Technology (United Kingdom), 2012, 33, 445-454.	2.2	5
48	Hexagonal two dimensional electrokinetic systems for restoration of saline agricultural lands: A pilot study. Chemical Engineering Journal, 2012, 198-199, 110-121.	12.7	52
49	Pulse-enhanced electrokinetic restoration of sulfate-containing saline greenhouse soil. Electrochimica Acta, 2012, 86, 57-62.	5.2	41
50	Application of iron-coated zeolites (ICZ) for mine drainage treatment. Korean Journal of Chemical Engineering, 2012, 29, 1171-1177.	2.7	17
51	Influence of mixed-surfactant on reductive dechlorination of trichloroethylene by zero-valent iron. Korean Journal of Chemical Engineering, 2011, 28, 1047-1053.	2.7	6
52	Electrokinetic Restoration of Sulfateâ€Accumulated Saline Greenhouse Soil. Clean - Soil, Air, Water, 2011, 39, 1036-1040.	1.1	17
53	Arsenic Removal Behavior by Fe-Al Binary Oxide: Thermodynamic and Kinetic Study. Separation Science and Technology, 2011, 46, 2531-2538.	2.5	22
54	Removal Characteristics of Cd(II), Cu(II), Pb(II), and Zn(II) by Natural Mongolian Zeolite through Batch and Column Experiments. Separation Science and Technology, 2011, 46, 1313-1320.	2.5	20

#	Article	IF	CITATIONS
55	Pulsed electrokinetic removal of Cd and Zn from fine-grained soil. Journal of Applied Electrochemistry, 2010, 40, 1039-1047.	2.9	57
56	Electrokinetic removal of chloride and sodium from tidelands. Journal of Applied Electrochemistry, 2010, 40, 1139-1144.	2.9	38
57	Comparison of the microbiological and chemical characterization of harvested rainwater and reservoir water as alternative water resources. Science of the Total Environment, 2010, 408, 896-905.	8.0	104
58	Electrokinetic Removal of Petroleum Hydrocarbon from Residual Clayey Soil Following a Washing Process. Clean - Soil, Air, Water, 2010, 38, 189-193.	1.1	39
59	Assessment of metals contamination of soils in Ulaanbaatar, Mongolia. Journal of Hazardous Materials, 2010, 184, 872-876.	12.4	83
60	Adsorption of As(III), As(V), Cd(II), Cu(II), and Pb(II) from Aqueous Solutions by Natural Muscovite. Separation Science and Technology, 2010, 45, 814-823.	2.5	33
61	Electrokinetic Separation of Heavy Metals from Wastewater Treatment Sludge. Separation Science and Technology, 2010, 45, 1982-1987.	2.5	18
62	Removal of Metal Ions From Aqueous Solutions Using Sawdust Modified with Citric Acid or Tartaric Acid. Separation Science and Technology, 2010, 45, 1963-1974.	2.5	25
63	Relationship between land use and water quality in a small watershed in South Korea. Water Science and Technology, 2010, 62, 2607-2615.	2.5	19
64	Preparation and Evaluation of Fe-Al Binary Oxide for Arsenic Removal: Comparative Study with Single Metal Oxides. Separation Science and Technology, 2010, 45, 1975-1981.	2.5	46
65	Alkaline Enhanced-Separation of Waste Lubricant Oils from Railway Contaminated Soil. Separation Science and Technology, 2010, 45, 1988-1993.	2.5	11
66	Removal of As(V) from aqueous system using steel-making by-product. Desalination and Water Treatment, 2009, 7, 152-159.	1.0	7
67	Pulsed Electrokinetic Decontamination of Agricultural Lands around Abandoned Mines Contaminated with Heavy Metals. Separation Science and Technology, 2009, 44, 2421-2436.	2.5	43
68	Extraction behavior of As, Pb, and Zn from mine tailings with acid and base solutions. Journal of Hazardous Materials, 2009, 171, 443-451.	12.4	90
69	Electrokinetic remediation of fluorine-contaminated soil: Conditioning of anolyte. Journal of Hazardous Materials, 2009, 161, 565-569.	12.4	78
70	Electrolyte conditioning-enhanced electrokinetic remediation of arsenic-contaminated mine tailing. Journal of Hazardous Materials, 2009, 161, 457-462.	12.4	102
71	Influence of cationic surfactant on adsorption of Cr(VI) onto activated carbon. Journal of Hazardous Materials, 2009, 161, 1565-1568.	12.4	44
72	Adsorption of Cr(VI) onto cationic surfactant-modified activated carbon. Journal of Hazardous Materials, 2009, 166, 642-646.	12.4	109

#	Article	IF	CITATIONS
73	Electrokinetic remediation of contaminated soil with waste-lubricant oils and zinc. Journal of Hazardous Materials, 2009, 169, 1168-1172.	12.4	68
74	Adsorption of chlorinated solvents in nonionic surfactant solutions with activated carbon in a fixed bed. Journal of Industrial and Engineering Chemistry, 2009, 15, 777-779.	5.8	16
75	Defluoridation from aqueous solutions by granular ferric hydroxide (GFH). Water Research, 2009, 43, 490-498.	11.3	259
76	Biosorption of heavy metals and uranium by starfish and Pseudomonas putida. Journal of Hazardous Materials, 2009, 161, 157-162.	12.4	65
77	Feasibility of micellar-enhanced ultrafiltration (MEUF) or the heavy metal removal in soil washing effluent. Desalination, 2008, 222, 202-211.	8.2	39
78	Removal of arsenic from groundwater by micellar-enhanced ultrafiltration (MEUF). Chemosphere, 2007, 66, 970-976.	8.2	129
79	Removal of perchlorate from groundwater by the polyelectolyte-enhanced ultrafiltration process. Desalination, 2007, 204, 335-343.	8.2	31
80	Cationic starch-enhanced ultrafiltration for Cr(VI) removal. Desalination, 2007, 206, 245-250.	8.2	24
81	Simultaneous removal of chlorinated contaminants by pervaporation for the reuse of a surfactant. Desalination, 2007, 205, 87-96.	8.2	13
82	Remediation of groundwater contaminated with DNAPLs by biodegradable oil emulsion. Journal of Hazardous Materials, 2007, 140, 340-345.	12.4	25
83	Centrifugal Polyelectrolyte Enhanced Ultrafiltration for Removal of Copper itrate Complexes from Aqueous Solutions. Separation Science and Technology, 2006, 41, 1583-1592.	2.5	3
84	Silicone emulsion-enhanced recovery of chlorinated solvents: Batch and column studies. Journal of Hazardous Materials, 2006, 136, 610-617.	12.4	7
85	Competitive immobilization of multiple component chlorinated solvents by cyclodextrin derivatives. Journal of Hazardous Materials, 2006, 137, 1866-1869.	12.4	11
86	Simultaneous removal of organic and inorganic contaminants by micellar enhanced ultrafiltration with mixed surfactant. Desalination, 2005, 184, 395-407.	8.2	66
87	Crossflow ultrafiltration of surfactant solutions. Desalination, 2005, 184, 385-394.	8.2	36
88	The Solubilization Characteristics of DNAPLs by Oil-Based Emulsion. Separation Science and Technology, 2005, 40, 685-698.	2.5	5
89	Immobilization behavior of methyl tert-butyl ether by cyclodextrins. Journal of Hazardous Materials, 2003, 105, 169-177.	12.4	4