List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2468329/publications.pdf Version: 2024-02-01

		41627	29333
165	13,192	51	108
papers	citations	h-index	g-index
177	177	177	11695
all docs	docs citations	times ranked	citing authors

MADE HEIM

#	Article	IF	CITATIONS
1	Analysis of pseudouridines and other RNA modifications using HydraPsiSeq protocol. Methods, 2022, 203, 383-391.	1.9	9
2	RNA marker modifications reveal the necessity for rigorous preparation protocols to avoid artifacts in epitranscriptomic analysis. Nucleic Acids Research, 2022, 50, 4201-4215.	6.5	13
3	RNA modifications stabilize the tertiary structure of tRNAfMet by locally increasing conformational dynamics. Nucleic Acids Research, 2022, 50, 2334-2349.	6.5	16
4	A low-cost 3D-printable differential scanning fluorometer for protein and RNA melting experiments. HardwareX, 2022, 11, e00256.	1.1	3
5	Machine learning algorithm for precise prediction of 2′-O-methylation (Nm) sites from experimental RiboMethSeq datasets. Methods, 2022, 203, 311-321.	1.9	4
6	<scp>RNA</scp> nucleotide methylation: 2021 update. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1691.	3.2	39
7	Chemical biology and medicinal chemistry of RNA methyltransferases. Nucleic Acids Research, 2022, 50, 4216-4245.	6.5	9
8	Phosphorylation found inside RNA. Nature, 2022, 605, 234-235.	13.7	0
9	Dihydrouridine in the Transcriptome: New Life for This Ancient RNA Chemical Modification. ACS Chemical Biology, 2022, 17, 1638-1657.	1.6	9
10	Discovery of Inhibitors of DNA Methyltransferase 2, an Epitranscriptomic Modulator and Potential Target for Cancer Treatment. Journal of Medicinal Chemistry, 2022, 65, 9750-9788.	2.9	7
11	NOseq: amplicon sequencing evaluation method for RNA m6A sites after chemical deamination. Nucleic Acids Research, 2021, 49, e23-e23.	6.5	25
12	An epigenetic â€~extreme makeover': the methylation of flaviviral RNA (and beyond). RNA Biology, 2021, 18, 696-708.	1.5	7
13	AlkAniline-Seq: A Highly Sensitive and Specific Method for Simultaneous Mapping of 7-Methyl-guanosine (m7G) and 3-Methyl-cytosine (m3C) in RNAs by High-Throughput Sequencing. Methods in Molecular Biology, 2021, 2298, 77-95.	0.4	8
14	Mapping of 7-methylguanosine (m7G), 3-methylcytidine (m3C), dihydrouridine (D) and 5-hydroxycytidine (ho5C) RNA modifications by AlkAniline-Seq. Methods in Enzymology, 2021, 658, 25-47.	0.4	14
15	In-Depth Immune-Oncology Studies of the Tumor Microenvironment in a Humanized Melanoma Mouse Model. International Journal of Molecular Sciences, 2021, 22, 1011.	1.8	6
16	Non-Redundant tRNA Reference Sequences for Deep Sequencing Analysis of tRNA Abundance and Epitranscriptomic RNA Modifications. Genes, 2021, 12, 81.	1.0	10
17	Gene Amplification-Associated Overexpression of the Selenoprotein tRNA Enzyme TRIT1 Confers Sensitivity to Arsenic Trioxide in Small-Cell Lung Cancer. Cancers, 2021, 13, 1869.	1.7	6
18	m6A RNA methylation of major satellite repeat transcripts facilitates chromatin association and RNA:DNA hybrid formation in mouse heterochromatin. Nucleic Acids Research, 2021, 49, 5568-5587.	6.5	21

#	Article	IF	CITATIONS
19	Binding and/or hydrolysis of purineâ€based nucleotides is not required for IM30 ring formation. FEBS Letters, 2021, 595, 1876-1885.	1.3	2
20	Hakai is required for stabilization of core components of the m6A mRNA methylation machinery. Nature Communications, 2021, 12, 3778.	5.8	77
21	General Principles for the Detection of Modified Nucleotides in RNA by Specific Reagents. Advanced Biology, 2021, 5, e2100866.	1.4	15
22	Biallelic variants in YRDC cause a developmental disorder with progeroid features. Human Genetics, 2021, 140, 1679-1693.	1.8	3
23	tRNA-derived fragments: A new class of non-coding RNA with key roles in nervous system function and dysfunction. Progress in Neurobiology, 2021, 205, 102118.	2.8	28
24	Translational adaptation to heat stress is mediated by RNA 5â€methylcytosine in <i>Caenorhabditis elegans</i> . EMBO Journal, 2021, 40, e105496.	3.5	24
25	Therapeutic melanoma inhibition by local micelle-mediated cyclic nucleotide repression. Nature Communications, 2021, 12, 5981.	5.8	13
26	The Effect of tRNA[Ser]Sec Isopentenylation on Selenoprotein Expression. International Journal of Molecular Sciences, 2021, 22, 11454.	1.8	8
27	Balancing of mitochondrial translation through METTL8-mediated m3C modification of mitochondrial tRNAs. Molecular Cell, 2021, 81, 4810-4825.e12.	4.5	44
28	Identification of the 3-amino-3-carboxypropyl (acp) transferase enzyme responsible for acp3U formation at position 47 in Escherichia coli tRNAs. Nucleic Acids Research, 2020, 48, 1435-1450.	6.5	28
29	HydraPsiSeq: a method for systematic and quantitative mapping of pseudouridines in RNA. Nucleic Acids Research, 2020, 48, e110-e110.	6.5	72
30	Stability of Alkyl Chain-Mediated Lipid Anchoring in Liposomal Membranes. Cells, 2020, 9, 2213.	1.8	10
31	Validation strategies for antibodies targeting modified ribonucleotides. Rna, 2020, 26, 1489-1506.	1.6	18
32	Bacterial tRNA 2′-O-methylation is dynamically regulated under stress conditions and modulates innate immune response. Nucleic Acids Research, 2020, 48, 12833-12844.	6.5	27
33	Manganese Ions Individually Alter the Reverse Transcription Signature of Modified Ribonucleosides. Genes, 2020, 11, 950.	1.0	15
34	5-methylcytosine modification of an Epstein–Barr virus noncoding RNA decreases its stability. Rna, 2020, 26, 1038-1048.	1.6	17
35	Functional characterization of the human tRNA methyltransferases TRMT10A and TRMT10B. Nucleic Acids Research, 2020, 48, 6157-6169.	6.5	38
36	Machine learning of reverse transcription signatures of variegated polymerases allows mapping and discrimination of methylated purines in limited transcriptomes. Nucleic Acids Research, 2020, 48, 3734-3746.	6.5	45

#	Article	IF	CITATIONS
37	Holistic Optimization of Bioinformatic Analysis Pipeline for Detection and Quantification of 2′-O-Methylations in RNA by RiboMethSeq. Frontiers in Genetics, 2020, 11, 38.	1.1	21
38	A protein-RNA interaction atlas of the ribosome biogenesis factor AATF. Scientific Reports, 2019, 9, 11071.	1.6	19
39	FICC-Seq: a method for enzyme-specified profiling of methyl-5-uridine in cellular RNA. Nucleic Acids Research, 2019, 47, e113-e113.	6.5	48
40	Functionalization of Liposomes with Hydrophilic Polymers Results in Macrophage Uptake Independent of the Protein Corona. Biomacromolecules, 2019, 20, 2989-2999.	2.6	56
41	Against Expectations: Unassisted RNA Adsorption onto Negatively Charged Lipid Bilayers. Langmuir, 2019, 35, 14704-14711.	1.6	12
42	Graphical Workflow System for Modification Calling by Machine Learning of Reverse Transcription Signatures. Frontiers in Genetics, 2019, 10, 876.	1.1	10
43	Absolute Quantifizierung nichtâ€kodierender RNAâ€Spezies mittels Mikroskalaâ€Thermophorese. Angewandte Chemie, 2019, 131, 9666-9670.	1.6	0
44	Tackling the Limitations of Copolymeric Small Interfering RNA Delivery Agents by a Combined Experimental–Computational Approach. Biomacromolecules, 2019, 20, 4389-4406.	2.6	7
45	Overcoming the barrier of CD8+ T cells: Two types of nano-sized carriers for siRNA transport. Acta Biomaterialia, 2019, 100, 338-351.	4.1	10
46	RNA Modifications Modulate Activation of Innate Toll-Like Receptors. Genes, 2019, 10, 92.	1.0	75
47	Surface Modification of Nanoparticles and Nanovesicles via Click-Chemistry. Methods in Molecular Biology, 2019, 2000, 235-245.	0.4	3
48	2′- <i>O</i> -methylation within prokaryotic and eukaryotic tRNA inhibits innate immune activation by endosomal Toll-like receptors but does not affect recognition of whole organisms. Rna, 2019, 25, 869-880.	1.6	22
49	Absolute Quantification of Noncoding RNA by Microscale Thermophoresis. Angewandte Chemie - International Edition, 2019, 58, 9565-9569.	7.2	29
50	Kti12, a PSTK-like tRNA dependent ATPase essential for tRNA modification by Elongator. Nucleic Acids Research, 2019, 47, 4814-4830.	6.5	15
51	Analysis of the Cellular Roles of MOCS3 Identifies a MOCS3-Independent Localization of NFS1 at the Tips of the Centrosome. Biochemistry, 2019, 58, 1786-1798.	1.2	7
52	Limited antibody specificity compromises epitranscriptomic analyses. Nature Communications, 2019, 10, 5669.	5.8	34
53	A tRNA half modulates translation as stress response in Trypanosoma brucei. Nature Communications, 2019, 10, 118.	5.8	102
54	Methods for RNA Modification Mapping Using Deep Sequencing: Established and New Emerging Technologies. Genes, 2019, 10, 35.	1.0	103

MARK HELM

#	Article	IF	CITATIONS
55	Determination of enrichment factors for modified RNA in MeRIP experiments. Methods, 2019, 156, 102-109.	1.9	12
56	Mapping and Quantification of tRNA 2′-O-Methylation by RiboMethSeq. Methods in Molecular Biology, 2019, 1870, 273-295.	0.4	13
57	Positioning Europe for the EPITRANSCRIPTOMICS challenge. RNA Biology, 2018, 15, 1-3.	1.5	18
58	Die stark wachsende chemische Vielfalt der RNAâ€Modifikationen enthä eine Thioacetalstruktur. Angewandte Chemie, 2018, 130, 8019-8024.	1.6	5
59	A Vastly Increased Chemical Variety of RNA Modifications Containing a Thioacetal Structure. Angewandte Chemie - International Edition, 2018, 57, 7893-7897.	7.2	44
60	MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Research, 2018, 46, D303-D307.	6.5	1,442
61	Zc3h13/Flacc is required for adenosine methylation by bridging the mRNA-binding factor Rbm15/Spenito to the m ⁶ A machinery component Wtap/Fl(2)d. Genes and Development, 2018, 32, 415-429.	2.7	416
62	Engineering of a DNA Polymerase for Direct m ⁶ A Sequencing. Angewandte Chemie - International Edition, 2018, 57, 417-421.	7.2	66
63	Entwicklung einer DNAâ€Polymerase für die direkte m ⁶ Aâ€Sequenzierung. Angewandte Chemie, 2018, 130, 424-428.	1.6	15
64	Monitoring drug nanocarriers in human blood by near-infrared fluorescence correlation spectroscopy. Nature Communications, 2018, 9, 5306.	5.8	55
65	AlkAniline‣eq: Profiling of m 7 G and m 3 C RNA Modifications at Single Nucleotide Resolution. Angewandte Chemie, 2018, 130, 17027-17032.	1.6	0
66	AlkAniline‣eq: Profiling of m ⁷ G and m ³ C RNA Modifications at Single Nucleotide Resolution. Angewandte Chemie - International Edition, 2018, 57, 16785-16790.	7.2	119
67	Double methylation of tRNA-U54 to 2′-O-methylthymidine (Tm) synergistically decreases immune response by Toll-like receptor 7. Nucleic Acids Research, 2018, 46, 9764-9775.	6.5	15
68	Innentitelbild: Die stark wachsende chemische Vielfalt der RNAâ€Modifikationen enthä eine Thioacetalstruktur (Angew. Chem. 26/2018). Angewandte Chemie, 2018, 130, 7658-7658.	1.6	0
69	Mechanism and biological role of Dnmt2 in Nucleic Acid Methylation. RNA Biology, 2017, 14, 1108-1123.	1.5	156
70	Detecting RNA modifications in the epitranscriptome: predict and validate. Nature Reviews Genetics, 2017, 18, 275-291.	7.7	501
71	Alkyne-Functionalized Coumarin Compound for Analytic and Preparative 4-Thiouridine Labeling. Bioconjugate Chemistry, 2017, 28, 1123-1134.	1.8	18
72	High-Throughput Mapping of 2â€2-O-Me Residues in RNA Using Next-Generation Sequencing (Illumina) Tj ETQq0	0 0 rgBT /	Oyerlock 10

#	Article	IF	CITATIONS
73	LC-MS Analysis of Methylated RNA. Methods in Molecular Biology, 2017, 1562, 3-18.	0.4	38
74	Modulation of Mitochondriotropic Properties of Cyanine Dyes by in Organello Copperâ€Free Click Reaction. ChemBioChem, 2017, 18, 1814-1818.	1.3	8
75	Identification of an optimized 2′- <i>O</i> -methylated trinucleotide RNA motif inhibiting Toll-like receptors 7 and 8. Rna, 2017, 23, 1344-1351.	1.6	21
76	PeptoSomes for Vaccination: Combining Antigen and Adjuvant in Polypept(o)ideâ€Based Polymersomes. Macromolecular Bioscience, 2017, 17, 1700061.	2.1	18
77	Editorial: RNA modifications – what to read first?. RNA Biology, 2017, 14, 1087-1088.	1.5	1
78	Statistically robust methylation calling for whole-transcriptome bisulfite sequencing reveals distinct methylation patterns for mouse RNAs. Genome Research, 2017, 27, 1589-1596.	2.4	137
79	The RNA methyltransferase Dnmt2 methylates DNA in the structural context of a tRNA. RNA Biology, 2017, 14, 1241-1251.	1.5	51
80	Nextâ€Generation Sequencingâ€Based RiboMethSeq Protocol for Analysis of tRNA 2′â€Oâ€Methylation. Biomolecules, 2017, 7, 13.	1.8	49
81	Bioconjugation of Small Molecules to RNA Impedes Its Recognition by Toll-Like Receptor 7. Frontiers in Immunology, 2017, 8, 312.	2.2	8
82	Sulfur transfer and activation by ubiquitin-like modifier system Uba4•Urm1 link protein urmylation and tRNA thiolation in yeast. Microbial Cell, 2016, 3, 554-564.	1.4	35
83	CoverageAnalyzer (CAn): A Tool for Inspection of Modification Signatures in RNA Sequencing Profiles. Biomolecules, 2016, 6, 42.	1.8	16
84	m6A modulates neuronal functions and sex determination in Drosophila. Nature, 2016, 540, 242-247.	13.7	453
85	Diastereoselectivity of 5-Methyluridine Osmylation Is Inverted inside an RNA Chain. Bioconjugate Chemistry, 2016, 27, 2188-2197.	1.8	8
86	Orthogonal Click Conjugation to the Liposomal Surface Reveals the Stability of the Lipid Anchorage as Crucial for Targeting. Chemistry - A European Journal, 2016, 22, 11578-11582.	1.7	20
87	DNA and RNA Pyrimidine Nucleobase Alkylation at the Carbon-5 Position. Advances in Experimental Medicine and Biology, 2016, 945, 19-33.	0.8	13
88	Comprehensive DNA methylation analysis of the Aedes aegypti genome. Scientific Reports, 2016, 6, 36444.	1.6	21
89	Analysis of RNA modifications by liquid chromatography–tandem mass spectrometry. Methods, 2016, 107, 48-56.	1.9	100
90	Stability of a Split Streptomycin Binding Aptamer. Journal of Physical Chemistry B, 2016, 120, 6479-6489.	1.2	11

#	Article	IF	CITATIONS
91	Illumina-based RiboMethSeq approach for mapping of 2′-O-Me residues in RNA. Nucleic Acids Research, 2016, 44, e135-e135.	6.5	178
92	High-throughput sequencing for 1-methyladenosine (m1A) mapping in RNA. Methods, 2016, 107, 110-121.	1.9	47
93	Cytosine methylation of tRNA-Asp by DNMT2 has a role in translation of proteins containing poly-Asp sequences. Cell Discovery, 2015, 1, 15010.	3.1	63
94	The reverse transcription signature of <i>N</i> -1-methyladenosine in RNA-Seq is sequence dependent. Nucleic Acids Research, 2015, 43, gkv895.	6.5	163
95	Eukaryotic rRNA Modification by Yeast 5-Methylcytosine-Methyltransferases and Human Proliferation-Associated Antigen p120. PLoS ONE, 2015, 10, e0133321.	1.1	73
96	2'-O-Methylation within Bacterial RNA Acts as Suppressor of TLR7/TLR8 Activation in Human Innate Immune Cells. Journal of Innate Immunity, 2015, 7, 482-493.	1.8	43
97	Intermolecular 'cross-torque': the N4-cytosine propargyl residue is rotated to the 'CH'-edge as a result of Watson-Crick interaction. Nucleic Acids Research, 2015, 43, 5275-5283.	6.5	5
98	GADD45a physically and functionally interacts with TET1. Differentiation, 2015, 90, 59-68.	1.0	37
99	Dynamic modulation of Dnmt2-dependent tRNA methylation by the micronutrient queuine. Nucleic Acids Research, 2015, 43, 10952-10962.	6.5	74
100	Urmylation and tRNA thiolation functions of ubiquitinâ€like Uba4·Urm1 systems are conserved from yeast to man. FEBS Letters, 2015, 589, 904-909.	1.3	25
101	Recognition of Specified RNA Modifications by the Innate Immune System. Methods in Enzymology, 2015, 560, 73-89.	0.4	7
102	Phosphorylation of Elp1 by Hrr25 Is Required for Elongator-Dependent tRNA Modification in Yeast. PLoS Genetics, 2015, 11, e1004931.	1.5	38
103	New Techniques to Assess In Vitro Release of siRNA from Nanoscale Polyplexes. Pharmaceutical Research, 2015, 32, 1957-1974.	1.7	18
104	Live cell imaging of duplex siRNA intracellular trafficking. Nucleic Acids Research, 2015, 43, 4650-4660.	6.5	53
105	The marbled crayfish as a paradigm for saltational speciation by autopolyploidy and parthenogenesis in animals. Biology Open, 2015, 4, 1583-1594.	0.6	70
106	Variable presence of 5-methylcytosine in commercial RNA and DNA. RNA Biology, 2015, 12, 1152-1158.	1.5	15
107	Loss of Anticodon Wobble Uridine Modifications Affects tRNALys Function and Protein Levels in Saccharomyces cerevisiae. PLoS ONE, 2015, 10, e0119261.	1.1	52
108	Partial Methylation at Am100 in 18S rRNA of Baker's Yeast Reveals Ribosome Heterogeneity on the Level of Eukaryotic rRNA Modification. PLoS ONE, 2014, 9, e89640.	1.1	49

#	Article	lF	CITATIONS
109	A modified dinucleotide motif specifies tRNA recognition by TLR7. Rna, 2014, 20, 1351-1355.	1.6	26
110	Pseudouridine: Still mysterious, but never a fake (uridine)!. RNA Biology, 2014, 11, 1540-1554.	1.5	158
111	Absolute and relative quantification of RNA modifications via biosynthetic isotopomers. Nucleic Acids Research, 2014, 42, e142-e142.	6.5	107
112	The Dnmt2 RNA methyltransferase homolog of Geobacter sulfurreducens specifically methylates tRNA-Glu. Nucleic Acids Research, 2014, 42, 6487-6496.	6.5	27
113	Dye label interference with RNA modification reveals 5-fluorouridine as non-covalent inhibitor. Nucleic Acids Research, 2014, 42, 12735-12745.	6.5	10
114	Aberrant methylation of t <scp>RNA</scp> s links cellular stress to neuroâ€developmental disorders. EMBO Journal, 2014, 33, 2020-2039.	3.5	490
115	The Guanidinium Group as a Key Part of Waterâ€Soluble Polymer Carriers for siRNA Complexation and Protection against Degradation. Macromolecular Rapid Communications, 2014, 35, 1191-1197.	2.0	25
116	Profiling of RNA modifications by multiplexed stable isotope labelling. Chemical Communications, 2014, 50, 3516.	2.2	69
117	Click Modification of Multifunctional Liposomes Bearing Hyperbranched Polyether Chains. Biomacromolecules, 2014, 15, 2440-2448.	2.6	20
118	Synthesis of new asymmetric xanthene dyes via catalyst-free SNAr with sulfur nucleophiles. Organic and Biomolecular Chemistry, 2014, 12, 3816.	1.5	9
119	Posttranscriptional RNA Modifications: Playing Metabolic Games in a Cell's Chemical Legoland. Chemistry and Biology, 2014, 21, 174-185.	6.2	178
120	Structure-Function Relationship of Substituted Bromomethylcoumarins in Nucleoside Specificity of RNA Alkylation. PLoS ONE, 2013, 8, e67945.	1.1	10
121	MODOMICS: a database of RNA modification pathways—2013 update. Nucleic Acids Research, 2012, 41, D262-D267.	6.5	933
122	RNA mediated toll-like receptor stimulation in health and disease. RNA Biology, 2012, 9, 828-842.	1.5	90
123	Dye selection for live cell imaging of intact siRNA. Biological Chemistry, 2012, 393, 23-35.	1.2	13
124	Identification of modifications in microbial, native tRNA that suppress immunostimulatory activity. Journal of Experimental Medicine, 2012, 209, 225-233.	4.2	110
125	Mapping the tRNA Binding Site on the Surface of Human DNMT2 Methyltransferase. Biochemistry, 2012, 51, 4438-4444.	1.2	17
126	RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nature Structural and Molecular Biology, 2012, 19, 900-905.	3.6	488

MARK HELM

#	Article	IF	CITATIONS
127	A modified guanosine phosphoramidite for click functionalization of RNA on the sugar edge. Chemical Communications, 2012, 48, 11014.	2.2	21
128	Cationic Nanohydrogel Particles as Potential siRNA Carriers for Cellular Delivery. ACS Nano, 2012, 6, 2198-2214.	7.3	111
129	Single-Molecule FRET Studies of Counterion Effects on the Free Energy Landscape of Human Mitochondrial Lysine tRNA. Biochemistry, 2011, 50, 3107-3115.	1.2	11
130	A multifunctional bioconjugate module for versatile photoaffinity labeling and click chemistry of RNA. Nucleic Acids Research, 2011, 39, 7348-7360.	6.5	50
131	Expanding the chemical scope of RNA:methyltransferases to site-specific alkynylation of RNA for click labeling. Nucleic Acids Research, 2011, 39, 1943-1952.	6.5	114
132	Use of Specific Chemical Reagents for Detection of Modified Nucleotides in RNA. Journal of Nucleic Acids, 2011, 2011, 1-17.	0.8	92
133	RNA nucleotide methylation. Wiley Interdisciplinary Reviews RNA, 2011, 2, 611-631.	3.2	348
134	Single-Molecule FRET Reveals a Cooperative Effect of Two Methyl Group Modifications in the Folding of Human Mitochondrial tRNALys. Chemistry and Biology, 2011, 18, 928-936.	6.2	25
135	A Post-Labeling Approach for the Characterization and Quantification of RNA Modifications Based on Site-Directed Cleavage by DNAzymes. Methods in Molecular Biology, 2011, 718, 259-270.	0.4	7
136	In vitro tRNA Methylation Assay with the Entamoeba histolytica DNA and tRNA Methyltransferase Dnmt2 (Ehmeth) Enzyme. Journal of Visualized Experiments, 2010, , .	0.2	18
137	tRNA Stabilization by Modified Nucleotides. Biochemistry, 2010, 49, 4934-4944.	1.2	384
138	Formation of a stalled early intermediate of pseudouridine synthesis monitored by real-time FRET. Rna, 2010, 16, 610-620.	1.6	6
139	Detection of RNA modifications. RNA Biology, 2010, 7, 237-247.	1.5	111
140	A New Nuclear Function of the Entamoeba histolytica Glycolytic Enzyme Enolase: The Metabolic Regulation of Cytosine-5 Methyltransferase 2 (Dnmt2) Activity. PLoS Pathogens, 2010, 6, e1000775.	2.1	73
141	RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes and Development, 2010, 24, 1590-1595.	2.7	604
142	5-methylcytosine in RNA: detection, enzymatic formation and biological functions. Nucleic Acids Research, 2010, 38, 1415-1430.	6.5	300
143	FRET Imaging of Cells Transfected with siRNA/Liposome Complexes. Methods in Molecular Biology, 2010, 606, 439-455.	0.4	9
144	Effect of a quaternary pentamine on RNA stabilization and enzymatic methylation. Biological Chemistry, 2009, 390, 851-861.	1.2	22

#	Article	IF	CITATIONS
145	Preparation of small amounts of sterile siRNA-liposomes with high entrapping efficiency by dual asymmetric centrifugation (DAC). Journal of Controlled Release, 2009, 135, 80-88.	4.8	54
146	Single-molecule Förster resonance energy transfer studies of RNA structure, dynamics and function. Biophysical Reviews, 2009, 1, 161-176.	1.5	19
147	Use of DNAzymes for site-specific analysis of ribonucleotide modifications. Rna, 2008, 14, 180-187.	1.6	53
148	Sculpting an RNA Conformational Energy Landscape by a Methyl Group Modification—A Singleâ€Molecule FRET Study. Angewandte Chemie - International Edition, 2008, 47, 4326-4330.	7.2	37
149	Human DNMT2 methylates tRNA ^{Asp} molecules using a DNA methyltransferase-like catalytic mechanism. Rna, 2008, 14, 1663-1670.	1.6	153
150	RNA Intramolecular Dynamics by Singleâ€Molecule FRET. Current Protocols in Nucleic Acid Chemistry, 2008, 34, Unit 11.12.	0.5	16
151	Wavelength Dependence of Photoinduced Microcantilever Bending in the UV-VIS Range. Sensors, 2008, 8, 23-34.	2.1	11
152	Mg2+-dependent folding of a Diels-Alderase ribozyme probed by single-molecule FRET analysis. Nucleic Acids Research, 2007, 35, 2047-2059.	6.5	79
153	Surveillance of siRNA integrity by FRET imaging. Nucleic Acids Research, 2007, 35, e124.	6.5	54
154	A Methyl Group Controls Conformational Equilibrium in Human Mitochondrial tRNA ^{Lys} . Journal of the American Chemical Society, 2007, 129, 13382-13383.	6.6	77
155	Post-transcriptional nucleotide modification and alternative folding of RNA. Nucleic Acids Research, 2006, 34, 721-733.	6.5	342
156	Optimizing splinted ligation of highly structured small RNAs. Rna, 2005, 11, 1909-1914.	1.6	69
157	A new mechanism for mtDNA pathogenesis: impairment of post-transcriptional maturation leads to severe depletion of mitochondrial tRNASer(UCN) caused by T7512C and G7497A point mutations. Nucleic Acids Research, 2005, 33, 5647-5658.	6.5	30
158	Allosterically Activated Dielsâ^'Alder Catalysis by a Ribozyme. Journal of the American Chemical Society, 2005, 127, 10492-10493.	6.6	45
159	Aminoacylation properties of pathology-related human mitochondrial tRNALys variants. Rna, 2004, 10, 841-853.	1.6	52
160	Nuclear Control of Cloverleaf Structure of Human Mitochondrial tRNALys. Journal of Molecular Biology, 2004, 337, 545-560.	2.0	45
161	Search for characteristic structural features of mammalian mitochondrial tRNAs. Rna, 2000, 6, 1356-1379.	1.6	256
162	Search for differences in post-transcriptional modification patterns of mitochondrial DNA-encoded wild-type and mutant human tRNALys and tRNALeu(UUR). Nucleic Acids Research, 1999, 27, 756-763.	6.5	94

#	Article	IF	CITATIONS
163	A Watsonâ^'Crick Base-Pair-Disrupting Methyl Group (m1A9) Is Sufficient for Cloverleaf Folding of Human Mitochondrial tRNALysÂâ€. Biochemistry, 1999, 38, 13338-13346.	1.2	214
164	Chemical and Enzymatic Probing of RNA Structure. , 1999, , 63-80.		4
165	The presence of modified nucleotides is required for cloverleaf folding of a human mitochondrial tRNA. Nucleic Acids Research, 1998, 26, 1636-1643.	6.5	202