Louis Ten Bosch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2467758/publications.pdf

Version: 2024-02-01

1040056 839539 51 484 9 18 citations h-index g-index papers 51 51 51 341 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Cognate status modulates the comprehension of isolated reduced forms. Language, Cognition and Neuroscience, 2022, 37, 576-614.	1.2	3
2	DIANA, a Process-Oriented Model of Human Auditory Word Recognition. Brain Sciences, 2022, 12, 681.	2.3	3
3	A tool for efficient and accurate segmentation of speech data: announcing POnSS. Behavior Research Methods, 2021, 53, 744-756.	4.0	3
4	Paradigmatic Relations Interact During the Production of Complex Words: Evidence From Variable Plurals in Dutch. Frontiers in Psychology, 2021, 12, 720017.	2.1	4
5	Control of speaking rate is achieved by switching between qualitatively distinct cognitive "gaits― Evidence from simulation Psychological Review, 2020, 127, 281-304.	3.8	4
6	Interactive L2 vocabulary acquisition in a lab-based immersion setting. Language, Cognition and Neuroscience, 2019, 34, 916-935.	1.2	5
7	Deriving the onset and offset times of planning units from acoustic and articulatory measurements. Journal of the Acoustical Society of America, 2019, 145, EL161-EL167.	1.1	3
8	Do speech registers differ in the predictability of words?. International Journal of Corpus Linguistics, 2019, 24, 98-130.	1.4	4
9	Human-inspired modulation frequency features for noise-robust ASR. Speech Communication, 2016, 84, 66-82.	2.8	O
10	Locally learning heterogeneous manifolds for phonetic classification. Computer Speech and Language, 2016, 38, 28-45.	4.3	5
11	Phone classification via manifold learning based dimensionality reduction algorithms. Speech Communication, 2016, 76, 28-41.	2.8	3
12	Modelling the Noise-Robustness of Infants' Word Representations: The Impact of Previous Experience. PLoS ONE, 2015, 10, e0132245.	2.5	1
13	MCA-NMF: Multimodal Concept Acquisition with Non-Negative Matrix Factorization. PLoS ONE, 2015, 10, e0140732.	2.5	17
14	Unconstrained Speech Segmentation using Deep Neural Networks. , 2015, , .		2
15	Fusion of parametric and non-parametric approaches to noise-robust ASR. Speech Communication, 2014, 56, 49-62.	2.8	3
16	Choosing alternatives: Using Bayesian Networks and memory-based learning to study the dative alternation. Corpus Linguistics and Linguistic Theory, 2013, 9, 227-262.	0.9	52
17	A computational model to investigate assumptions in the headturn preference procedure. Frontiers in Psychology, 2013, 4, 676.	2.1	8
18	A model of the headturn preference procedure: Linking cognitive processes to overt behaviour. , 2012, , .		1

#	Article	IF	CITATIONS
19	Knowledge-based Quadratic Discriminant Analysis for phonetic classification. , 2012, , .		3
20	Measuring word learning performance in computational models and infants., 2011,,.		1
21	Artificial neural network analysis to assess hypernasality in patients treated for oral or oropharyngeal cancer. Logopedics Phoniatrics Vocology, 2011, 36, 168-174.	1.0	12
22	Dealing with uncertain input in word learning. , 2010, , .		0
23	Hybrid HMM/BLSTM-RNN for Robust Speech Recognition. Lecture Notes in Computer Science, 2010, , 400-407.	1.3	7
24	Analysis of acoustic reduction using spectral similarity measures. Journal of the Acoustical Society of America, 2009, 126, 3227-3235.	1.1	11
25	Learning meaningful units from multimodal input. , 2009, , .		1
26	Objective Acoustic-Phonetic Speech Analysis in Patients Treated for Oral or Oropharyngeal Cancer. Folia Phoniatrica Et Logopaedica, 2009, 61, 180-187.	1.1	33
27	A Computational Model of Language Acquisition: the Emergence of Words. Fundamenta Informaticae, 2009, 90, 229-249.	0.4	26
28	Modelling pronunciation variation with single-path and multi-path syllable models: Issues to consider. Speech Communication, 2009, 51, 130-150.	2.8	7
29	On a Computational Model for Language Acquisition: Modeling Cross-Speaker Generalisation. Lecture Notes in Computer Science, 2009, , 315-322.	1.3	3
30	Language Acquisition: The Emergence of Words from Multimodal Input. Lecture Notes in Computer Science, 2008, , 261-268.	1.3	1
31	Modelling Pronunciation Variation using Multi-Path HMMS for Syllables. , 2007, , .		4
32	On the Utility of Syllable-Based Acoustic Models for Pronunciation Variation Modelling. Eurasip Journal on Audio, Speech, and Music Processing, 2007, 2007, 1-11.	2.1	4
33	ACORNS - towards computational modeling of communication and recognition skills. , 2007, , .		22
34	â€~Early recognition' of polysyllabic words in continuous speech. Computer Speech and Language, 2007, 21, 54-71.	4.3	4
35	Bridging the gap between human and automatic speech recognition. Speech Communication, 2007, 49, 331-335.	2.8	8
36	Conversational agent or direct manipulation in human–system interaction. Speech Communication, 2005, 47, 194-207.	2.8	7

#	Article	IF	CITATIONS
37	On temporal aspects of turn taking in conversational dialogues. Speech Communication, 2005, 47, 80-86.	2.8	62
38	How Should a Speech Recognizer Work?. Cognitive Science, 2005, 29, 867-918.	1.7	52
39	Bridging automatic speech recognition and psycholinguistics: Extending Shortlist to an end-to-end model of human speech recognition (L). Journal of the Acoustical Society of America, 2003, 114, 3032-3035.	1.1	14
40	Evaluation of various sets of acoustic cues for the perception of prevocalic stop consonants. II. Modeling and evaluation. Journal of the Acoustical Society of America, 1996, 100, 3865-3881.	1.1	12
41	Evaluation of various sets of acoustic cues for the perception of prevocalic stop consonants. I. Perception experiment. Journal of the Acoustical Society of America, 1996, 100, 3852-3864.	1.1	46
42	Word Competition: An Entropy-Based Approach in the DIANA Model of Human Word Comprehension. , 0, , .		1
43	Models of Reaction Times in Auditory Lexical Decision: RTonset versus RToffset. , 0, , .		2
44	Comparing Different Methods for Analyzing ERP Signals. , 0, , .		1
45	Analyzing Reaction Time Sequences from Human Participants in Auditory Experiments. , 0, , .		8
46	Implementing DIANA to Model Isolated Auditory Word Recognition in English. , 0, , .		6
47	Combining Data-Oriented and Process-Oriented Approaches to Modeling Reaction Time Data., 0, , .		2
48	Analytical Assessment of Dual-Stream Merging for Noise-Robust ASR., 0,,.		0
49	Information Encoding by Deep Neural Networks: What Can We Learn?. , 0, , .		0
50	Analyzing EEG Signals in Auditory Speech Comprehension Using Temporal Response Functions and Generalized Additive Models., 0,,.		2
51	Comparing EEG Analyses with Different Epoch Alignments in an Auditory Lexical Decision Experiment. , 0, , .		1