
Matthew L Freedman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2466859/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiple regions within 8q24 independently affect risk for prostate cancer. Nature Genetics, 2007, 39, 638-644.	21.4	621
2	The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nature Genetics, 2009, 41, 882-884.	21.4	616
3	Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14068-14073.	7.1	575
4	Principles for the post-GWAS functional characterization of cancer risk loci. Nature Genetics, 2011, 43, 513-518.	21.4	392
5	The androgen receptor cistrome is extensively reprogrammed in human prostate tumorigenesis. Nature Genetics, 2015, 47, 1346-1351.	21.4	363
6	8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with <i>MYC</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9742-9746.	7.1	353
7	Integrative eQTL-Based Analyses Reveal the Biology of Breast Cancer Risk Loci. Cell, 2013, 152, 633-641.	28.9	300
8	A Somatically Acquired Enhancer of the Androgen Receptor Is a Noncoding Driver in Advanced Prostate Cancer. Cell, 2018, 174, 422-432.e13.	28.9	234
9	Transferability of tag SNPs in genetic association studies in multiple populations. Nature Genetics, 2006, 38, 1298-1303.	21.4	224
10	Functional Enhancers at the Gene-Poor 8q24 Cancer-Linked Locus. PLoS Genetics, 2009, 5, e1000597.	3.5	214
11	Modulation of long noncoding RNAs by risk SNPs underlying genetic predispositions to prostate cancer. Nature Genetics, 2016, 48, 1142-1150.	21.4	196
12	Prostate cancer reactivates developmental epigenomic programs during metastatic progression. Nature Genetics, 2020, 52, 790-799.	21.4	174
13	Detection of renal cell carcinoma using plasma and urine cell-free DNA methylomes. Nature Medicine, 2020, 26, 1041-1043.	30.7	161
14	Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types. Cancer Discovery, 2016, 6, 1052-1067.	9.4	157
15	A Common 8q24 Variant in Prostate and Breast Cancer from a Large Nested Case-Control Study. Cancer Research, 2007, 67, 2951-2956.	0.9	136
16	Large-scale transcriptome-wide association study identifies new prostate cancer risk regions. Nature Communications, 2018, 9, 4079.	12.8	121
17	EZH2 inhibition activates a dsRNA–STING–interferon stress axis that potentiates response to PD-1 checkpoint blockade in prostate cancer. Nature Cancer, 2021, 2, 444-456.	13.2	118
18	A Large Multiethnic Genome-Wide Association Study of Prostate Cancer Identifies Novel Risk Variants and Substantial Ethnic Differences. Cancer Discovery, 2015, 5, 878-891.	9.4	111

#	Article	IF	CITATIONS
19	Evaluation of the 8q24 Prostate Cancer Risk Locus and <i>MYC</i> Expression. Cancer Research, 2009, 69, 5568-5574.	0.9	110
20	Genome-wide association study identifies multiple risk loci for renal cell carcinoma. Nature Communications, 2017, 8, 15724.	12.8	106
21	Genetic and functional analyses implicate the <i>NUDT11</i> , <i>HNF1B</i> , and <i>SLC22A3</i> genes in prostate cancer pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11252-11257.	7.1	102
22	Enhancer Architecture and Essential Core Regulatory Circuitry of Chronic Lymphocytic Leukemia. Cancer Cell, 2018, 34, 982-995.e7.	16.8	101
23	Chromosome 8q24-Associated Cancers and MYC. Genes and Cancer, 2010, 1, 555-559.	1.9	100
24	CAUSEL: an epigenome- and genome-editing pipeline for establishing function of noncoding GWAS variants. Nature Medicine, 2015, 21, 1357-1363.	30.7	90
25	A transcriptome-wide association study of high-grade serous epithelial ovarian cancer identifies new susceptibility genes and splice variants. Nature Genetics, 2019, 51, 815-823.	21.4	89
26	Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants. Nature Communications, 2018, 9, 2256.	12.8	88
27	Expression QTL-based analyses reveal candidate causal genes and loci across five tumor types. Human Molecular Genetics, 2014, 23, 5294-5302.	2.9	71
28	Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer. Nature Communications, 2021, 12, 1979.	12.8	70
29	Cis-eQTL analysis and functional validation of candidate susceptibility genes for high-grade serous ovarian cancer. Nature Communications, 2015, 6, 8234.	12.8	63
30	A novel genomic alteration of LSAMP associates with aggressive prostate cancer in African American men. EBioMedicine, 2015, 2, 1957-1964.	6.1	61
31	Subtype heterogeneity and epigenetic convergence in neuroendocrine prostate cancer. Nature Communications, 2021, 12, 5775.	12.8	59
32	MYC drives aggressive prostate cancer by disrupting transcriptional pause release at androgen receptor targets. Nature Communications, 2022, 13, 2559.	12.8	56
33	Non-coding somatic mutations converge on the PAX8 pathway in ovarian cancer. Nature Communications, 2020, 11, 2020.	12.8	52
34	Integration of multiethnic fine-mapping and genomic annotation to prioritize candidate functional SNPs at prostate cancer susceptibility regions. Human Molecular Genetics, 2015, 24, 5603-5618.	2.9	50
35	Atlas of prostate cancer heritability in European and African-American men pinpoints tissue-specific regulation. Nature Communications, 2016, 7, 10979.	12.8	50
36	Association of Prostate Cancer Risk Loci with Disease Aggressiveness and Prostate Cancer–Specific Mortality. Cancer Prevention Research, 2011, 4, 719-728.	1.5	48

MATTHEW L FREEDMAN

#	Article	IF	CITATIONS
37	Evaluation of 8q24 and 17q Risk Loci and Prostate Cancer Mortality. Clinical Cancer Research, 2009, 15, 3223-3230.	7.0	46
38	Androgen receptor and MYC equilibration centralizes on developmental super-enhancer. Nature Communications, 2021, 12, 7308.	12.8	46
39	Identification of Novel Susceptibility Loci and Genes for Prostate Cancer Risk: A Transcriptome-Wide Association Study in Over 140,000 European Descendants. Cancer Research, 2019, 79, 3192-3204.	0.9	43
40	Epigenetic remodeling regulates transcriptional changes between ovarian cancer and benign precursors. JCl Insight, 2016, 1, .	5.0	42
41	Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci. Human Molecular Genetics, 2015, 24, 3595-3607.	2.9	40
42	Plasma cell-free DNA variant analysis compared with methylated DNA analysis in renal cell carcinoma. Genetics in Medicine, 2020, 22, 1366-1373.	2.4	40
43	HOXB13 suppresses de novo lipogenesis through HDAC3-mediated epigenetic reprogramming in prostate cancer. Nature Genetics, 2022, 54, 670-683.	21.4	39
44	ASCL1 activates neuronal stem cell-like lineage programming through remodeling of the chromatin landscape in prostate cancer. Nature Communications, 2022, 13, 2282.	12.8	34
45	A rare variant of African ancestry activates 8q24 lncRNA hub by modulating cancer associated enhancer. Nature Communications, 2020, 11, 3598.	12.8	33
46	Clinical Utility of Cell-free and Circulating Tumor DNA in Kidney and Bladder Cancer: A Critical Review of Current Literature. European Urology Oncology, 2021, 4, 893-903.	5.4	31
47	H3K27ac HiChIP in prostate cell lines identifies risk genes for prostate cancer susceptibility. American Journal of Human Genetics, 2021, 108, 2284-2300.	6.2	31
48	Predicting master transcription factors from pan-cancer expression data. Science Advances, 2021, 7, eabf6123.	10.3	30
49	Detecting Neuroendocrine Prostate Cancer Through Tissue-Informed Cell-Free DNA Methylation Analysis. Clinical Cancer Research, 2022, 28, 928-938.	7.0	29
50	A multi-level investigation of the genetic relationship between endometriosis and ovarian cancer histotypes. Cell Reports Medicine, 2022, 3, 100542.	6.5	26
51	Genetics of Prostate Cancer Risk. Mount Sinai Journal of Medicine, 2010, 77, 643-654.	1.9	22
52	Validation and genomic interrogation of the <scp><i>MET</i></scp> variant rs11762213 as a predictor of adverse outcomes in clear cell renal cell carcinoma. Cancer, 2016, 122, 402-410.	4.1	18
53	A systematic approach to understand the functional consequences of non-protein coding risk regions. Cell Cycle, 2010, 9, 256-259.	2.6	17
54	Trans-ethnic variation in germline variants of patients with renal cell carcinoma. Cell Reports, 2021, 34, 108926.	6.4	16

MATTHEW L FREEDMAN

#	Article	IF	CITATIONS
55	Ovarian Cancer Risk Variants Are Enriched in Histotype-Specific Enhancers and Disrupt Transcription Factor Binding Sites. American Journal of Human Genetics, 2020, 107, 622-635.	6.2	14
56	Pharmacogenomic Markers of Targeted Therapy Toxicity in Patients with Metastatic Renal Cell Carcinoma. European Urology Focus, 2016, 2, 633-639.	3.1	12
57	Epigenetic and transcriptional analysis reveals a core transcriptional program conserved in clonal prostate cancer metastases. Molecular Oncology, 2021, 15, 1942-1955.	4.6	10
58	CREB5 reprograms FOXA1 nuclear interactions to promote resistance to androgen receptor-targeting therapies. ELife, 2022, 11, .	6.0	10
59	Response to supraphysiological testosterone is predicted by a distinct androgen receptor cistrome. JCI Insight, 2022, 7, .	5.0	9
60	Androgen receptor reprogramming demarcates prognostic, context-dependent gene sets in primary and metastatic prostate cancer. Clinical Epigenetics, 2022, 14, 60.	4.1	8
61	A polymorphism in the promoter of FRAS1 is a candidate SNP associated with metastatic prostate cancer. Prostate, 2021, 81, 683-693.	2.3	5
62	Evaluation of significant genome-wide association studies risk — SNPs in young breast cancer patients. PLoS ONE, 2019, 14, e0216997.	2.5	4
63	Allele-specific epigenetic activity in prostate cancer and normal prostate tissue implicates prostate cancer risk mechanisms. American Journal of Human Genetics, 2021, 108, 2071-2085.	6.2	3
64	Clinical Uncertainty of Prostate Cancer Genetic Risk Panels. Science Translational Medicine, 2013, 5, 182ed6.	12.4	2
65	Principles for the post-GWAS functional characterisation of risk loci. Nature Precedings, 2010, , .	0.1	1
66	Validation and genomic interrogation of the MET variant rs11762213 as a predictor of adverse outcomes in clear cell renal cell carcinoma Journal of Clinical Oncology, 2014, 32, 395-395.	1.6	1
67	Principles for the post-GWAS functional characterisation of risk loci. Nature Precedings, 2011, , .	0.1	0
68	Exonic variants undergoing allele-specific selection in cancers. BMC Medical Genomics, 2021, 14, 142.	1.5	0