Stephan Jaenicke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2465871/publications.pdf

Version: 2024-02-01

71102 102487 5,023 119 41 66 citations h-index g-index papers 124 124 124 5425 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mg-stabilized subnanometer Rh particles in zeolite Beta as highly efficient catalysts for selective hydrogenation. Journal of Catalysis, 2022, 405, 489-498.	6.2	8
2	Polymer-encapsulated crystalline zirconium phosphates as NH4+ and K+ ion exchangers for application in sorbent dialysis cartridges. Journal of Water Process Engineering, 2022, 49, 102971.	5.6	2
3	TiO2 encapsulated Au nanostars as catalysts for aerobic photo-oxidation of benzyl alcohol under visible light. Catalysis Today, 2021, 375, 558-564.	4.4	13
4	In/Cu Catalyzed Multiple Câ^'N/Câ^'C Bond Formation via Multiple Bond Cleavage in a Three Component Synthesis of Arylimidazopyridine Carboxylates. Asian Journal of Organic Chemistry, 2021, 10, 554-558.	2.7	6
5	A Visible Light and Ironâ€mediated Carbocationic Route to Polysubstituted 1â€Halonaphthalenes by Benzannulation using Allylbenzenes and Polyhalomethanes. Advanced Synthesis and Catalysis, 2021, 363, 1007-1013.	4.3	4
6	BiOBrnI1-n solid solutions as versatile photooxidation catalysts for phenolics and endocrine disrupting chemicals. Catalysis Today, 2021, 375, 547-557.	4.4	8
7	Hydrophobicity and co-solvent effects on Meerwein-Ponndorf-Verley reduction/dehydration cascade reactions over Zr-zeolite catalysts. Journal of Catalysis, 2021, 400, 50-61.	6.2	18
8	Recent Advances in Catalysts for the Conversion of Ethanol to Butadiene. Chemistry - an Asian Journal, 2020, 15, 4199-4214.	3.3	29
9	Ionâ€exchange Properties of γâ€Zirconium Phosphate. Chemistry - an Asian Journal, 2020, 15, 3542-3550.	3.3	1
10	Highly efficient and robust Cu catalyst for non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen. Journal of Catalysis, 2020, 389, 19-28.	6.2	85
11	Visible Light Induced Selective Aerobic Formation of N â€benzylidene Benzylamine over 2â€aminoterephthalic Acid Sensitized {110}â€Facetted BiOCl Nanosheets. ChemCatChem, 2019, 11, 6425-6430.	3.7	14
12	One-Pot Synthesis of Layered Disodium Zirconium Phosphate: Crystal Structure and Application in the Remediation of Heavy-Metal-Contaminated Wastewater. Inorganic Chemistry, 2019, 58, 13020-13029.	4.0	15
13	A combo Zr-HY and Al-HY zeolite catalysts for the one-pot cascade transformation of biomass-derived furfural to \hat{l}^3 -valerolactone. Journal of Catalysis, 2019, 375, 56-67.	6.2	104
14	Photocatalytic regeneration of brominating agent in the visible light-mediated synthesis of imidazo[1,2- <i>a</i>) pyridines. Catalysis Science and Technology, 2019, 9, 1528-1534.	4.1	13
15	A novel and environmental friendly synthetic route for hydroxypyrrolidines using zeolites. Carbohydrate Research, 2019, 472, 103-114.	2.3	6
16	Visible Lightâ∈Mediated Coupling of Thioureas and 1,3â€Dicarbonyls: Towards a Leaving Groupâ€Free Synthesis of Aminothiazoles. Advanced Synthesis and Catalysis, 2018, 360, 1584-1589.	4.3	13
17	Ru/ZrO ₂ Catalysts for Transfer Hydrogenation of Levulinic Acid with Formic Acid/Formate Mixtures: Importance of Support Stability. ChemistrySelect, 2018, 3, 1343-1351.	1.5	22
18	Mechanochemistry-Based Synthesis of Highly Crystalline \hat{l}^3 -Zirconium Phosphate for Selective Ion Exchange. Inorganic Chemistry, 2018, 57, 4370-4378.	4.0	27

#	Article	IF	Citations
19	Efficient photodegradation of chlorophenols by BiOBr/NaBiO3 heterojunctioned composites under visible light. Journal of Hazardous Materials, 2018, 341, 83-92.	12.4	61
20	A Dualâ \in Functional Catalyst for Cascade Meerweinâ \in "Pondorfâ \in "Verley Reduction and Dehydration of 4 â \in 2â \in Methoxypropiophenone to Anethole. ChemSusChem, 2018, 11, 3007-3017.	6.8	16
21	Selective hydrogenation of phenol to cyclohexanone by SiO2-supported rhodium nanoparticles under mild conditions. Journal of Catalysis, 2018, 364, 354-365.	6.2	57
22	Synthesis of 5â€Phenylthiazolamines by Using Thiourea as an αâ€Bromination Shuttle. European Journal of Organic Chemistry, 2017, 2017, 704-709.	2.4	7
23	Investigation into bulk liquid membranes for removal of chromium(VI) from simulated wastewater. Journal of Water Process Engineering, 2017, 17, 63-69.	5.6	20
24	Enhanced p-cresol photodegradation over BiOBr/Bi ₂ O ₃ in the presence of rhodamine B. RSC Advances, 2017, 7, 145-152.	3.6	32
25	Switching of Regioselectivity in a Perfluorohexyl Iodide Mediated Synthesis of Phenylimidazo[1,2â€∢i>a⟨li>]pyridines. European Journal of Organic Chemistry, 2017, 2017, 671-675.	2.4	10
26	Minimalistic Liquidâ€Assisted Route to Highly Crystalline αâ€Zirconium Phosphate. ChemSusChem, 2017, 10, 3235-3242.	6.8	33
27	Influence of the halide and exposed facets on the visible-light photoactivity of bismuth oxyhalides for selective aerobic oxidation of primary amines. Applied Catalysis B: Environmental, 2017, 219, 269-275.	20.2	75
28	Heterogeneous catalysis in continuous flow microreactors: A review of methods and applications. Chemical Engineering Journal, 2017, 327, 792-821.	12.7	242
29	Reagent-controlled regiodivergent intermolecular cyclization of 2-aminobenzothiazoles with \hat{l}^2 -ketoesters and \hat{l}^2 -ketoamides. Beilstein Journal of Organic Chemistry, 2017, 13, 2739-2750.	2.2	14
30	Dehydrogenation of Alcohols over Aluminaâ€Supported Silver Catalysts: The Role of Oxygen in Hydrogen Formation. ChemCatChem, 2016, 8, 968-975.	3.7	13
31	2â€Aminopyridines as an αâ€Bromination Shuttle in a Transition Metalâ€Free Oneâ€Pot Synthesis of Imidazo[1,2â€∢i>a∢/i>]pyridines. Advanced Synthesis and Catalysis, 2016, 358, 364-369.	4.3	26
32	Synthesis of Disubstituted 3-Phenylimidazo[1,2- <i>a</i>]pyridines via a 2-Aminopyridine/CBrCl ₃ $\hat{1}$ ±-Bromination Shuttle. Journal of Organic Chemistry, 2016, 81, 9167-9174.	3.2	26
33	Chemoselective transfer hydrogenation of $\hat{l}\pm,\hat{l}^2$ -unsaturated carbonyl compounds using potassium formate over amine-grafted Ru/AlO(OH) catalysts. Catalysis Science and Technology, 2016, 6, 3806-3813.	4.1	15
34	Solventâ€Free Synthesis of 4 <i>H</i> à€Pyrido[1,2â€ <i>a</i>]pyrimidinâ€4â€ones Catalyzed by BiCl ₃ <td>)>;<u>A</u></td> <td>19</td>)>; <u>A</u>	19
35	Alumina-entrapped Ag catalyzed nitro compounds coupled with alcohols using borrowing hydrogen methodology. Physical Chemistry Chemical Physics, 2015, 17, 15012-15018.	2.8	14
36	Post-synthesized zirconium-containing Beta zeolite in Meerwein–Ponndorf–Verley reduction: Pros and cons. Applied Catalysis A: General, 2015, 493, 112-120.	4.3	84

#	Article	IF	Citations
37	Cobalt(II)â€Catalyzed Electrophilic Alkynylation of 1,3â€Dicarbonyl Compounds To Form Polysubstituted Furans <i>via</i> π–΀ Activation. Advanced Synthesis and Catalysis, 2015, 357, 719-726.	4.3	25
38	Self-coupling of benzylamines over a highly active and selective supported copper catalyst to produce N-substituted amines by the borrowing hydrogen method. Journal of Catalysis, 2015, 329, 262-268.	6.2	29
39	Bismuth oxyiodide heterojunctions in photocatalytic degradation of phenolic molecules. Research on Chemical Intermediates, 2015, 41, 9509-9520.	2.7	8
40	Enhanced Photocatalytic Activity of the AgI/UiOâ€66(Zr) Composite for Rhodamineâ€B Degradation under Visibleâ€Light Irradiation. ChemPlusChem, 2015, 80, 1321-1328.	2.8	51
41	How the spontaneous insertion of amphiphilic imidazolium-based cations changes biological membranes: a molecular simulation study. Physical Chemistry Chemical Physics, 2015, 17, 29171-29183.	2.8	48
42	Influence of facets and heterojunctions in photoactive bismuth oxylodide. RSC Advances, 2015, 5, 88298-88305.	3.6	26
43	Protodecarboxylation of carboxylic acids over heterogeneous silver catalysts. Catalysis Science and Technology, 2014, 4, 516-523.	4.1	19
44	Bismuth tungstate incorporated zirconium metal–organic framework composite with enhanced visible-light photocatalytic performance. RSC Advances, 2014, 4, 64977-64984.	3.6	72
45	Zirconium–Beta zeolite as a robust catalyst for the transformation of levulinic acid to γ-valerolactone via Meerwein–Ponndorf–Verley reduction. RSC Advances, 2014, 4, 13481-13489.	3.6	167
46	Impact of Ionic Liquids in Aqueous Solution on Bacterial Plasma Membranes Studied with Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2014, 118, 10444-10459.	2.6	67
47	Highly efficient transfer hydrogenation of aldehydes and ketones using potassium formate over AlO(OH)-entrapped ruthenium catalysts. Applied Catalysis A: General, 2014, 484, 51-58.	4.3	37
48	Advances in Sorbents and Photocatalytic Materials for Water Remediation., 2013,, 127-153.		4
49	Coreâ€"Shell Composite as the Racemization Catalyst in the Dynamic Kinetic Resolution of Secondary Alcohols. ChemCatChem, 2013, 5, 247-254.	3.7	24
50	Phosphonium ionic liquids as highly thermal stable and efficient phase transfer catalysts for solid–liquid Halex reactions. Catalysis Today, 2012, 198, 300-304.	4.4	18
51	N-alkylation of amines with alcohols over alumina-entrapped Ag catalysts using the "borrowing hydrogen―methodology. Journal of Catalysis, 2012, 292, 130-137.	6.2	103
52	Mesoporous Zr-SBA-15 as a green solid acid catalyst for the Prins reaction. Catalysis Science and Technology, 2012, 2, 1417.	4.1	64
53	Potassium Phosphate as a Solid Base Catalyst for the Catalytic Transfer Hydrogenation of Aldehydes and Ketones. ACS Catalysis, 2011, 1, 1631-1636.	11.2	74
54	A heterogeneous Pd–Bi/C catalyst in the synthesis of l-lyxose and l-ribose from naturally occurring d-sugars. Organic and Biomolecular Chemistry, 2011, 9, 7720.	2.8	15

#	Article	IF	Citations
55	Acidity and porosity modulation of MWW type zeolites for Nopol production by Prins condensation. Catalysis Communications, 2011, 12, 1131-1135.	3.3	29
56	Effects of Acidity and Pore Size Constraints on Supported Niobium Oxide Catalysts for the Selective Formation of Glycerol Monolaurate. ChemCatChem, 2011, 3, 761-770.	3.7	9
57	Cationized bovine serum albumin with pendant RGD groups forms efficient biocoatings for cell adhesion. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 99B, 282-290.	3.4	15
58	KF on \hat{I}^3 -alumina: An efficient catalyst for the aldol condensation to pseudoionones. Catalysis Today, 2011, 164, 139-142.	4.4	23
59	A wall-coated catalytic capillary microreactor for the direct formation of hydrogen peroxide. Journal of Catalysis, 2010, 269, 302-308.	6.2	39
60	cBSA-147 for the preparation of bacterial biofilms in a microchannel reactor. Biointerphases, 2010, 5, FA41-FA47.	1.6	11
61	Immobilized Whole Cells as Effective Catalysts for Chiral Alcohol Production. Australian Journal of Chemistry, 2009, 62, 1034.	0.9	11
62	Zr–Zeolite Beta: A New Heterogeneous Catalyst System for the Highly Selective Cascade Transformation of Citral to (±)â€Menthol. Chemistry - A European Journal, 2009, 15, 1991-1999.	3.3	44
63	Effect of hydrothermal treatment and silica on thermal stability and oxygen storage capacity of ceria–zirconia. Applied Catalysis B: Environmental, 2009, 91, 92-100.	20.2	40
64	Enhanced enantioselectivity of chiral hydrogenation catalysts after immobilisation in thin films of ionic liquid. Journal of Molecular Catalysis A, 2008, 279, 239-247.	4.8	29
65	Structural and Morphological Control in the Preparation of High Surface Area Zirconia. Catalysis Surveys From Asia, 2008, 12, 153-169.	2.6	52
66	Singapore Catalysis Society. Catalysis Surveys From Asia, 2008, 12, 326-327.	2.6	0
67	Enhanced Asymmetric Reduction of Ethyl 3â€Oxobutyrate by Baker's Yeast via Substrate Feeding and Enzyme Inhibition. Engineering in Life Sciences, 2008, 8, 372-380.	3 . 6	8
68	Potassium Phosphate as a High-Performance Solid Base in Phase-Transfer-Catalyzed Alkylation Reactions. Industrial & Engineering Chemistry Research, 2007, 46, 3016-3023.	3.7	30
69	Dynamic Kinetic Resolution Combining Enzyme and Zeolite Catalysis. Studies in Surface Science and Catalysis, 2007, , 313-316.	1.5	0
70	Dynamic Kinetic Resolution of Secondary Alcohols Combining Enzyme-Catalyzed Transesterification and Zeolite-Catalyzed Racemization. Chemistry - A European Journal, 2007, 13, 541-547.	3.3	69
71	Evaluation of multiphase microreactors for the direct formation of hydrogen peroxide. Applied Catalysis A: General, 2007, 317, 258-265.	4.3	35
72	Stereoselective cascade hydrogenation of 4-tert-butylphenol and p-cresol over Zr-zeolite beta-supported rhodium. Journal of Catalysis, 2007, 246, 223-231.	6.2	33

#	Article	IF	Citations
73	A tandem cyclization and hydrogenation of $(\hat{A}\pm)$ -citronellal to menthol over bifunctional Ni/Zr-beta and mixed Zr-beta and Ni/MCM-41. Journal of Catalysis, 2007, 248, 1-10.	6.2	43
74	Highly ordered mesoporous MSU-SBEA/zeolite Beta composite material. Journal of Materials Chemistry, 2006, 16, 2235.	6.7	40
75	Domino-cyclisation and hydrogenation of citronellal to menthol over bifunctional Ni/Zr-Beta and Zr-beta/Ni-MCM-41 catalysts. Chemical Communications, 2006, , 790.	4.1	30
76	Selective Meerwein–Ponndorf–Verley reduction of α,βα,β-unsaturated aldehydes over Zr-zeolite beta. Journal of Catalysis, 2006, 241, 25-33.	6.2	87
77	Meerwein-Ponndorf-Verley Reduction over Heterogeneous Catalysts. Current Organic Chemistry, 2006, 10, 1639-1654.	1.6	119
78	Cyclisation of citronellal over zirconium zeolite beta? a highly diastereoselective catalyst to ($\ddot{\imath}_{2}1/2$)-isopulegol. Journal of Catalysis, 2005, 229, 404-413.	6.2	87
79	Characterization of Heterogeneous Catalysts by use of Test Reactions. Catalysis Surveys From Asia, 2005, 9, 173-185.	2.6	3
80	Chemo- and regioselective Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by Al-free Zr-zeolite beta. Journal of Catalysis, 2004, 227, 1-10.	6.2	159
81	Process intensification with biocatalysts: dynamic kinetic resolution and fluorous phase switch with continuous extraction. Catalysis Today, 2004, 97, 263-270.	4.4	22
82	Al-Free Zr-Zeolite β as a Regioselective Catalyst in the Meerwein—Ponndorf—Verley Reaction ChemInform, 2004, 35, no.	0.0	0
83	Liquid-phase Oppenauer oxidation of primary allylic and benzylic alcohols to corresponding aldehydes by solid zirconia catalysts. Journal of Molecular Catalysis A, 2004, 220, 267-274.	4.8	19
84	Isomerisation of α-pinene oxide over B2O3/SiO2 and Al-MSU catalysts. Catalysis Today, 2004, 96, 147-153.	4.4	50
85	Zirconia catalysts in Meerwein-Ponndorf-Verley reduction of citral. Catalysis Today, 2004, 97, 249-255.	4.4	71
86	Supported zirconium propoxideâ€"a versatile heterogeneous catalyst forÂtheÂMeerweinâ€"Ponndorfâ€"Verley reduction. Journal of Catalysis, 2003, 218, 396-404.	6.2	88
87	Structure and Properties of Alâ^'MSUâ^'S Mesoporous Catalysts:Â Structure Modification with Increasing Al Content. Industrial & Engineering Chemistry Research, 2003, 42, 3989-4000.	3.7	20
88	Effect of Al content on the assembly of Al-MSU-S mesostructures: zeolite seed structure change from zeolite LZY to LTA with increasing Al content. Catalysis Communications, 2003, 4, 140-146.	3.3	19
89	Al-free Zr-zeolite beta as a regioselective catalyst in the Meerwein–Ponndorf–Verley reaction. Chemical Communications, 2003, , 2734-2735.	4.1	55
90	Intracellular Inhibition of Hepatitis B Virus S Gene Expression by Chimeric DNA-RNA Phosphorothioate Minimized Ribozyme. Oligonucleotides, 2002, 12, 257-264.	4.3	10

#	Article	IF	CITATIONS
91	Soft-Lithography-Mediated Chemical Vapor Deposition of Architectured Carbon Nanotube Networks on Elastomeric Polymer. Langmuir, 2002, 18, 1-5.	3.5	35
92	Catalysts from MCM-41: framework modification, pore size engineering, and organic–inorganic hybrid materials. Journal of Molecular Catalysis A, 2002, 181, 25-31.	4.8	24
93	Liquid-phase regioselective benzylation of bromobenzene and other aromatics over microporous zeolites. Microporous and Mesoporous Materials, 2002, 53, 153-161.	4.4	10
94	Hydrous Zirconia as a Selective Catalyst for the Meerwein–Ponndorf–Verley Reduction of Cinnamaldehyde. Journal of Catalysis, 2002, 206, 321-330.	6.2	89
95	Solid acid catalysts for the efficient synthesis of 2-(2,4-difluorophenyl) propane. Applied Catalysis A: General, 2001, 209, 117-123.	4.3	7
96	Room temperature synthesis of diphenylmethane over MCM-41 supported AlCl3 and other Lewis acids. Applied Catalysis A: General, 2001, 217, 1-9.	4.3	60
97	Cyclisation of Citronellal to Isopulegol Catalysed by Hydrous Zirconia and Other Solid Acids. Journal of Catalysis, 2001, 200, 352-359.	6.2	107
98	High surface area zirconia by digestion of zirconium propoxide at different pH. Microporous and Mesoporous Materials, 2000, 39, 381-392.	4.4	69
99	Organic–inorganic hybrid catalysts for acid- and base-catalyzed reactions. Microporous and Mesoporous Materials, 2000, 35-36, 143-153.	4.4	89
100	The effect of digestion on the surface area and porosity of alumina. Microporous and Mesoporous Materials, 2000, 37, 345-353.	4.4	85
101	Pore Size Engineering on MCM-41: Selectivity Tuning of Heterogenized AlCl3 for the Synthesis of Linear Alkyl Benzenes. Journal of Catalysis, 2000, 195, 412-415.	6.2	57
102	Base-functionalized MCM-41 as catalysts for the synthesis of monoglycerides. Journal of Molecular Catalysis A, 1999, 150, 287-294.	4.8	55
103	A comparison of post-synthesis alumination and sol-gel synthesis of MCM-41 with high framework aluminum content. Microporous and Mesoporous Materials, 1999, 27, 231-242.	4.4	104
104	Remote Monitoring and Control of Electrochemical Experiments via the Internet Using "Intelligent Agent―Software. Electroanalysis, 1999, 11, 1027-1032.	2.9	9
105	The Preparation of High-Surface-Area Zirconia. Journal of Catalysis, 1998, 175, 80-92.	6.2	139
106	Propylene epoxidation with hydrogen peroxide catalyzed by molecular sieves containing framework titanium. Journal of Molecular Catalysis A, 1998, 132, 281-292.	4.8	67
107	Temperature programmed decomposition (TPDE) of [Mo(CO)6] on metal oxide supports: a novel tool to elucidate surface acidity and surface-mediated reactions. Talanta, 1998, 45, 739-749.	5.5	9
108	The preparation of high surface area zirconia â€" Influence of precipitating agent and digestion. Applied Catalysis A: General, 1997, 163, 261-273.	4.3	95

#	Article	IF	CITATIONS
109	Thermal and hydrothermal stability of framework-substituted MCM-41 mesoporous materials. Microporous Materials, 1997, 12, 323-330.	1.6	122
110	The influence of preparation conditions on the surface area of zirconia. Applied Catalysis A: General, 1996, 145, 267-284.	4.3	169
111	UV absorption study of solid catalysts. Journal of Electron Spectroscopy and Related Phenomena, 1996, 82, 203-208.	1.7	12
112	Thermal reactions of $Mo(CO)6$ on metal-oxide surfaces. Journal of the Chemical Society Dalton Transactions, 1995, , 3753.	1.1	25
113	Preparation of stable, high surface area zirconia. Journal of Materials Science Letters, 1994, 13, 1579-1581.	0.5	21
114	Catalytic carbon monoxide oxidation over strontium, cerium and copper-substituted lanthanum manganates and cobaltates. Applied Catalysis A: General, 1994, 107, 201-227.	4.3	111
115	Thermal decomposition of precursors for BaBiO3 prepared with amino acid complexes. Thermochimica Acta, 1993, 216, 285-300.	2.7	3
116	Steady-state multiplicity in carbon monoxide oxidation over LaMnO3. Applied Catalysis, 1991, 72, 51-61.	0.8	9
117	Catalytic CO oxidation over manganese-containing perovskites. Environmental Monitoring and Assessment, 1991, 19, 131-138.	2.7	9
118	Optical reflectivity and absorption measurements of sodium C222 sodide. Journal of Solid State Chemistry, 1987, 68, 239-246.	2.9	13
119	Electronic properties of sodium-C222-sodide. Journal of Solid State Chemistry, 1987, 67, 122-130.	2.9	16