List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2465823/publications.pdf Version: 2024-02-01

LINKAS F KELLED

#	Article	IF	CITATIONS
1	Back to the future: museum specimens in population genetics. Trends in Ecology and Evolution, 2007, 22, 634-642.	8.7	508
2	Selection against inbred song sparrows during a natural population bottleneck. Nature, 1994, 372, 356-357.	27.8	387
3	Dense sampling of bird diversity increases power of comparative genomics. Nature, 2020, 587, 252-257.	27.8	251
4	The foraging performance of great and blue tits (Parus major and P. caeruleus) in relation to caterpillar development, and its consequences for nestling growth and fledging weight. Journal of Animal Ecology, 1999, 68, 708-718.	2.8	250
5	Immigration and the ephemerality of a natural population bottleneck: evidence from molecular markers. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 1387-1394.	2.6	242
6	ENVIRONMENTAL CONDITIONS AFFECT THE MAGNITUDE OF INBREEDING DEPRESSION IN SURVIVAL OF DARWIN'S FINCHES. Evolution; International Journal of Organic Evolution, 2002, 56, 1229-1239.	2.3	190
7	Inbreeding and Its Fitness Effects in an Insular Population of Song Sparrows (Melospiza melodia). Evolution; International Journal of Organic Evolution, 1998, 52, 240.	2.3	171
8	Intrinsic Parentâ€Offspring Correlation in Inbreeding Level in a Song Sparrow (Melospiza melodia) Population Open to Immigration. American Naturalist, 2006, 168, 1-13.	2.1	147
9	Purging of highly deleterious mutations through severe bottlenecks in Alpine ibex. Nature Communications, 2020, 11, 1001.	12.8	147
10	HETEROSIS AND OUTBREEDING DEPRESSION IN DESCENDANTS OF NATURAL IMMIGRANTS TO AN INBRED POPULATION OF SONG SPARROWS (MELOSPIZA MELODIA). Evolution; International Journal of Organic Evolution, 2002, 56, 131-142.	2.3	135
11	Heritability of morphological traits in Darwin's Finches: misidentified paternity and maternal effects. Heredity, 2001, 87, 325-336.	2.6	127
12	Inbreeding depresses immune response in song sparrows (Melospiza melodia): direct and inter–generational effects. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 2151-2157.	2.6	124
13	Song repertoire size predicts initial mating success in male song sparrows, Melospiza melodia. Animal Behaviour, 2004, 68, 1055-1063.	1.9	109
14	Comprehensive paternity assignment: genotype, spatial location and social status in song sparrows, Melospiza Melodia. Molecular Ecology, 2010, 19, 4352-4364.	3.9	81
15	A strong genetic footprint of the reâ€introduction history of Alpine ibex (<i>Capra ibex ibex</i>). Molecular Ecology, 2009, 18, 5046-5058.	3.9	79
16	Fitness Correlates of Song Repertoire Size in Free‣iving Song Sparrows (Melospiza melodia). American Naturalist, 2005, 165, 299-310.	2.1	72
17	Genetic variance in fitness indicates rapid contemporary adaptive evolution in wild animals. Science, 2022, 376, 1012-1016.	12.6	69
18	VIRAL EPIZOOTIC REVEALS INBREEDING DEPRESSION IN A HABITUALLY INBREEDING MAMMAL. Evolution; International Journal of Organic Evolution, 2007, 61, 2268-2273.	2.3	65

#	Article	IF	CITATIONS
19	Inbreeding effects on immune response in free-living song sparrows (Melospiza melodia). Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 697-706.	2.6	64
20	EFFECTS OF EL NINÌ∱O EVENTS ON DARWIN'S FINCH PRODUCTIVITY. Ecology, 2000, 81, 2442-2457.	3.2	62
21	Population genomics analyses of European ibex species show lower diversity and higher inbreeding in reintroduced populations. Evolutionary Applications, 2018, 11, 123-139.	3.1	62
22	Additive Genetic Variance, Heritability, and Inbreeding Depression in Male Extra-Pair Reproductive Success. American Naturalist, 2011, 177, 177-187.	2.1	61
23	Inbreeding reduces long-term growth of Alpine ibex populations. Nature Ecology and Evolution, 2019, 3, 1359-1364.	7.8	58
24	Differentiation with drift: a spatio-temporal genetic analysis of Galápagos mockingbird populations (<i>Mimus</i> spp.). Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1127-1138.	4.0	57
25	A hitchhikers guide to the GalÃįpagos: co-phylogeography of GalÃįpagos mockingbirds and their parasites. BMC Evolutionary Biology, 2011, 11, 284.	3.2	57
26	Are There Indirect Fitness Benefits of Female Extra-Pair Reproduction? Lifetime Reproductive Success of Within-Pair and Extra-Pair Offspring. American Naturalist, 2012, 179, 779-793.	2.1	56
27	Male reproductive pattern in a polygynous ungulate with a slow life-history: the role of age, social status and alternative mating tactics. Evolutionary Ecology, 2012, 26, 187-206.	1.2	56
28	PEDIGREE ERROR DUE TO EXTRAâ€PAIR REPRODUCTION SUBSTANTIALLY BIASES ESTIMATES OF INBREEDING DEPRESSION. Evolution; International Journal of Organic Evolution, 2014, 68, 802-815.	2.3	50
29	Disentangling the effect of genes, the environment and chance on sex ratio variation in a wild bird population. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2996-3002.	2.6	48
30	A landscape of coexistence for a large predator in a human dominated landscape. Oikos, 2017, 126, 1389-1399.	2.7	48
31	Long-term maternal effect on offspring immune response in song sparrows Melospiza melodia. Biology Letters, 2006, 2, 573-576.	2.3	47
32	Inbreeding in reintroduced populations: the effects of early reintroduction history and contemporary processes. Conservation Genetics, 2010, 11, 527-538.	1.5	47
33	Dominance genetic variance and inbreeding in natural populations. , 2014, , 104-127.		46
34	Abundant variation in microsatellites of the parasitic nematode Trichostrongylus tenuis and linkage to a tandem repeatâ~†. Molecular and Biochemical Parasitology, 2006, 148, 210-218.	1.1	43
35	Quantifying inbreeding avoidance through extraâ€pair reproduction. Evolution; International Journal of Organic Evolution, 2015, 69, 59-74.	2.3	43
36	Nonequivalent lethal equivalents: Models and inbreeding metrics for unbiased estimation of inbreeding load. Evolutionary Applications, 2019, 12, 266-279.	3.1	43

#	Article	IF	CITATIONS
37	Inbreeding and Loss of Genetic Variation in a Reintroduced Population of Mauritius Kestrel. Conservation Biology, 2008, 22, 395-404.	4.7	42
38	Heritability of female extra-pair paternity rate in song sparrows (<i>Melospiza melodia</i>). Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1114-1120.	2.6	42
39	Genetic variation depends more on admixture than number of founders in reintroduced Alpine ibex populations. Biological Conservation, 2012, 147, 197-203.	4.1	42
40	EXTRA-PAIR PATERNITY AND THE VARIANCE IN MALE FITNESS IN SONG SPARROWS (<i>MELOSPIZA) Tj ETQq000</i>) rgBT /Ov 2.3	erlock 10 Tf 40
41	Inbreeding coefficient and heterozygosity-fitness correlations in unhatched and hatched song sparrow nestmates. Molecular Ecology, 2010, 19, 4454-4461.	3.9	39
42	CORRELATED INBREEDING AMONG RELATIVES: OCCURRENCE, MAGNITUDE, AND IMPLICATIONS. Evolution; International Journal of Organic Evolution, 2010, 64, 973-985.	2.3	37
43	Pedigree-based inbreeding coefficient explains more variation in fitness than heterozygosity at 160 microsatellites in a wild bird population. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162763.	2.6	37
44	Mother–offspring and nest-mate resemblance but no heritability in early-life telomere length in white-throated dippers. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142924.	2.6	36
45	Mate choice evolution, dominance effects, and the maintenance of genetic variation. Journal of Theoretical Biology, 2007, 244, 282-295.	1.7	34
46	The effect of trait type and strength of selection on heritability and evolvability in an island bird population. Evolution; International Journal of Organic Evolution, 2014, 68, 3325-3336.	2.3	33
47	Sexâ€specific additive genetic variances and correlations for fitness in a song sparrow (<i>Melospiza) Tj ETQq1 1 Journal of Organic Evolution, 2018, 72, 2057-2075.</i>	0.784314 2.3	rgBT /Overlo 33
48	A microsatelliteâ€based linkage map for song sparrows (<i><scp>M</scp>elospiza melodia</i>). Molecular Ecology Resources, 2015, 15, 1486-1496.	4.8	31
49	Marginal or conditional regression models for correlated nonâ€normal data?. Methods in Ecology and Evolution, 2016, 7, 1514-1524.	5.2	30
50	Sex-specific differential survival of extra-pair and within-pair offspring in song sparrows, <i>Melospiza melodia</i> . Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 3251-3259.	2.6	27
51	Evidence for nonconsumptive effects from a large predator in an ungulate prey?. Behavioral Ecology, 2018, 29, 724-735.	2.2	26
52	Heritability, selection, and the response to selection in the presence of phenotypic measurement error: Effects, cures, and the role of repeated measurements. Evolution; International Journal of Organic Evolution, 2018, 72, 1992-2004.	2.3	26
53	FEMALE AND MALE GENETIC EFFECTS ON OFFSPRING PATERNITY: ADDITIVE GENETIC (CO)VARIANCES IN FEMALE EXTRAâ€PAIR REPRODUCTION AND MALE PATERNITY SUCCESS IN SONG SPARROWS (<i>MELOSPIZA)</i>	[j £. BQq1]	. 0.2 84314 r
54	CONCORDANT AND DISCORDANT SIGNALS BETWEEN GENETIC DATA AND DESCRIBED SUBSPECIES OF PACIFIC COAST SONG SPARROWS. Condor, 2008, 110, 359-364.	1.6	20

#	Article	IF	CITATIONS
55	Resolving the conundrum of inbreeding depression but no inbreeding avoidance: Estimating sex-specific selection on inbreeding by song sparrows (<i>Melospiza melodia</i>). Evolution; International Journal of Organic Evolution, 2015, 69, 2846-2861.	2.3	19
56	Huntingâ€mediated predator facilitation and superadditive mortality in a European ungulate. Ecology and Evolution, 2018, 8, 109-119.	1.9	19
57	Macrogeographic population structure in a parasitic nematode with avian hosts. Veterinary Parasitology, 2007, 144, 93-103.	1.8	18
58	INDIVIDUAL PHENOTYPE, KINSHIP, AND THE OCCURRENCE OF INBREEDING IN SONG SPARROWS. Evolution; International Journal of Organic Evolution, 2008, 62, 887-899.	2.3	17
59	Balancing selection and genetic drift create unusual patterns of <scp>MHCII</scp> β variation in Galápagos mockingbirds. Molecular Ecology, 2016, 25, 4757-4772.	3.9	17
60	Saving Darwin's muse: evolutionary genetics for the recovery of the Floreana mockingbird. Biology Letters, 2010, 6, 212-215.	2.3	16
61	Animal models with group-specific additive genetic variances: extending genetic group models. Genetics Selection Evolution, 2019, 51, 7.	3.0	15
62	Microsatellite-based genotyping of MHC class II DRB1 gene in Iberian and Alpine ibex. European Journal of Wildlife Research, 2012, 58, 743-748.	1.4	14
63	Hybrid ancestry of an island subspecies of Galápagos mockingbird explains discordant gene trees. Molecular Phylogenetics and Evolution, 2013, 69, 581-592.	2.7	14
64	Reverse attenuation in interaction terms due to covariate measurement error. Biometrical Journal, 2015, 57, 1068-1083.	1.0	12
65	Resurrecting Darwin's Niata - anatomical, biomechanical, genetic, and morphometric studies of morphological novelty in cattle. Scientific Reports, 2018, 8, 9129.	3.3	12
66	Absence of three known benzimidazole resistance mutations in Trichostrongylus tenuis, a nematode parasite of avian hosts. Veterinary Parasitology, 2008, 158, 302-310.	1.8	10
67	Cross-Species Utility of Microsatellite Markers in Trichostrongyloid Nematodes. Journal of Parasitology, 2009, 95, 487-489.	0.7	10
68	Inbreeding, immune defence and ectoparasite load in different mockingbird populations and species in the Galápagos Islands. Journal of Avian Biology, 2012, 43, 423-434.	1.2	9
69	Quantifying fenbendazole and its metabolites in self-medicating wild red grouse Lagopus lagopus scoticus using an HPLC–MS–MS approach. Veterinary Parasitology, 2011, 177, 383-386.	1.8	7
70	The simulation extrapolation technique meets ecology and evolution: A general and intuitive method to account for measurement error. Methods in Ecology and Evolution, 2019, 10, 1734-1748.	5.2	7
71	Are immigrants outbred and unrelated? Testing standard assumptions in a wild metapopulation. Molecular Ecology, 2021, 30, 5674-5686.	3.9	7
72	Modelling different reintroduction strategies for the critically endangered Floreana mockingbird. Animal Conservation, 2017, 20, 144-154.	2.9	5