
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2465791/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photonics, 2009, 3, 649-653.	15.6	3,015
2	Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells. Journal of the American Chemical Society, 2017, 139, 7148-7151.	6.6	2,524
3	Fullereneâ€Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability. Advanced Materials, 2016, 28, 4734-4739.	11.1	1,698
4	Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nature Communications, 2019, 10, 2515.	5.8	1,431
5	Energyâ€Level Modulation of Smallâ€Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells. Advanced Materials, 2016, 28, 9423-9429.	11.1	1,307
6	Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials. Chemical Reviews, 2016, 116, 7397-7457.	23.0	998
7	Over 14% Efficiency in Polymer Solar Cells Enabled by a Chlorinated Polymer Donor. Advanced Materials, 2018, 30, e1800868.	11.1	979
8	Replacing Alkoxy Groups with Alkylthienyl Groups: A Feasible Approach To Improve the Properties of Photovoltaic Polymers. Angewandte Chemie - International Edition, 2011, 50, 9697-9702.	7.2	926
9	Design, Application, and Morphology Study of a New Photovoltaic Polymer with Strong Aggregation in Solution State. Macromolecules, 2012, 45, 9611-9617.	2.2	664
10	Over 14% Efficiency in Organic Solar Cells Enabled by Chlorinated Nonfullerene Smallâ€Molecule Acceptors. Advanced Materials, 2018, 30, e1800613.	11.1	623
11	Highly Efficient 2D-Conjugated Benzodithiophene-Based Photovoltaic Polymer with Linear Alkylthio Side Chain. Chemistry of Materials, 2014, 26, 3603-3605.	3.2	531
12	A Potential Perylene Diimide Dimerâ€Based Acceptor Material for Highly Efficient Solutionâ€Processed Nonâ€Fullerene Organic Solar Cells with 4.03% Efficiency. Advanced Materials, 2013, 25, 5791-5797.	11.1	444
13	Fine-Tuned Photoactive and Interconnection Layers for Achieving over 13% Efficiency in a Fullerene-Free Tandem Organic Solar Cell. Journal of the American Chemical Society, 2017, 139, 7302-7309.	6.6	427
14	Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications. Nature Energy, 2019, 4, 768-775.	19.8	407
15	A Highly Efficient Nonâ€Fullerene Organic Solar Cell with a Fill Factor over 0.80 Enabled by a Fineâ€Tuned Holeâ€Transporting Layer. Advanced Materials, 2018, 30, e1801801.	11.1	360
16	Ternary Polymer Solar Cells based on Two Acceptors and One Donor for Achieving 12.2% Efficiency. Advanced Materials, 2017, 29, 1604059.	11.1	333
17	Realizing over 10% efficiency in polymer solar cell by device optimization. Science China Chemistry, 2015, 58, 248-256.	4.2	311
18	Breaking the 10% Efficiency Barrier in Organic Photovoltaics: Morphology and Device Optimization of Wellâ€Known PBDTTT Polymers. Advanced Energy Materials, 2016, 6, 1502529	10.2	285

#	Article	IF	CITATIONS
19	PBDB-T and its derivatives: A family of polymer donors enables over 17% efficiency in organic photovoltaics. Materials Today, 2020, 35, 115-130.	8.3	269
20	Manipulating Aggregation and Molecular Orientation in Allâ€Polymer Photovoltaic Cells. Advanced Materials, 2015, 27, 6046-6054.	11.1	264
21	New Wide Band Gap Donor for Efficient Fullerene-Free All-Small-Molecule Organic Solar Cells. Journal of the American Chemical Society, 2017, 139, 1958-1966.	6.6	260
22	Green-solvent-processable organic solar cells. Materials Today, 2016, 19, 533-543.	8.3	252
23	Remove the Residual Additives toward Enhanced Efficiency with Higher Reproducibility in Polymer Solar Cells. Journal of Physical Chemistry C, 2013, 117, 14920-14928.	1.5	210
24	Completely non-fused electron acceptor with 3D-interpenetrated crystalline structure enables efficient and stable organic solar cell. Nature Communications, 2021, 12, 5093.	5.8	210
25	A Tandem Organic Photovoltaic Cell with 19.6% Efficiency Enabled by Light Distribution Control. Advanced Materials, 2021, 33, e2102787.	11.1	210
26	Significant Influence of the Methoxyl Substitution Position on Optoelectronic Properties and Molecular Packing of Smallâ€Molecule Electron Acceptors for Photovoltaic Cells. Advanced Energy Materials, 2017, 7, 1700183.	10.2	184
27	Quenching to the Percolation Threshold in Organic Solar Cells. Joule, 2019, 3, 443-458.	11.7	183
28	Molecular design of a wide-band-gap conjugated polymer for efficient fullerene-free polymer solar cells. Energy and Environmental Science, 2017, 10, 546-551.	15.6	180
29	Fluorination vs. chlorination: a case study on high performance organic photovoltaic materials. Science China Chemistry, 2018, 61, 1328-1337.	4.2	177
30	Environmentally Friendly Solventâ€Processed Organic Solar Cells that are Highly Efficient and Adaptable for the Bladeâ€Coating Method. Advanced Materials, 2018, 30, 1704837.	11.1	173
31	MoOx and V2Ox as hole and electron transport layers through functionalized intercalation in normal and inverted organic optoelectronic devices. Light: Science and Applications, 2015, 4, e273-e273.	7.7	169
32	PBDTTTZ: A Broad Band Gap Conjugated Polymer with High Photovoltaic Performance in Polymer Solar Cells. Macromolecules, 2011, 44, 4035-4037.	2.2	159
33	Molecular design of a non-fullerene acceptor enables a P3HT-based organic solar cell with 9.46% efficiency. Energy and Environmental Science, 2020, 13, 2864-2869.	15.6	158
34	Greenâ€ S olventâ€Processed Allâ€Polymer Solar Cells Containing a Perylene Diimideâ€Based Acceptor with an Efficiency over 6.5%. Advanced Energy Materials, 2016, 6, 1501991.	10.2	157
35	Two Wellâ€Miscible Acceptors Work as One for Efficient Fullereneâ€Free Organic Solar Cells. Advanced Materials, 2017, 29, 1700437.	11.1	157
36	Modulating Molecular Orientation Enables Efficient Nonfullerene Small-Molecule Organic Solar Cells. Chemistry of Materials, 2018, 30, 2129-2134.	3.2	157

SHAOQING ZHANG

#	Article	IF	CITATIONS
37	Application of Two-Dimensional Conjugated Benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene in Quinoxaline-Based Photovoltaic Polymers. Macromolecules, 2012, 45, 3032-3038.	2.2	154
38	Over 11% Efficiency in Tandem Polymer Solar Cells Featured by a Lowâ€Bandâ€Gap Polymer with Fineâ€Tuned Properties. Advanced Materials, 2016, 28, 5133-5138.	11.1	144
39	A Fluorinated Polythiophene Derivative with Stabilized Backbone Conformation for Highly Efficient Fullerene and Non-Fullerene Polymer Solar Cells. Macromolecules, 2016, 49, 2993-3000.	2.2	141
40	15.3% efficiency all-small-molecule organic solar cells enabled by symmetric phenyl substitution. Science China Materials, 2020, 63, 1142-1150.	3.5	140
41	A Thiadiazoleâ€Based Conjugated Polymer with Ultradeep HOMO Level and Strong Electroluminescence Enables 18.6% Efficiency in Organic Solar Cell. Advanced Energy Materials, 2021, 11, 2101705.	10.2	125
42	Toward Efficient Polymer Solar Cells Processed by a Solutionâ€Processed Layerâ€By‣ayer Approach. Advanced Materials, 2018, 30, e1802499.	11.1	116
43	Enhanced Efficiency in Fullerene-Free Polymer Solar Cell by Incorporating Fine-designed Donor and Acceptor Materials. ACS Applied Materials & Interfaces, 2015, 7, 9274-9280.	4.0	110
44	Highly Efficient Photovoltaic Polymers Based on Benzodithiophene and Quinoxaline with Deeper HOMO Levels. Macromolecules, 2015, 48, 5172-5178.	2.2	104
45	Enhanced Photovoltaic Performance of Diketopyrrolopyrrole (DPP)-Based Polymers with Extended π Conjugation. Journal of Physical Chemistry C, 2013, 117, 9550-9557.	1.5	103
46	Achieving 12.8% Efficiency by Simultaneously Improving Openâ€Circuit Voltage and Shortâ€Circuit Current Density in Tandem Organic Solar Cells. Advanced Materials, 2017, 29, 1606340.	11.1	100
47	A universal halogen-free solvent system for highly efficient polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 12723-12729.	5.2	97
48	Enhanced charge extraction in organic solar cells through electron accumulation effects induced by metal nanoparticles. Energy and Environmental Science, 2013, 6, 3372.	15.6	95
49	Molecular Design and Morphology Control Towards Efficient Polymer Solar Cells Processed using Nonâ€aromatic and Nonâ€ehlorinated Solvents. Advanced Materials, 2014, 26, 2744-2749.	11.1	95
50	Improved Domain Size and Purity Enables Efficient Allâ€Smallâ€Molecule Ternary Solar Cells. Advanced Materials, 2017, 29, 1703777.	11.1	94
51	Room-temperature solution-processed molybdenum oxide as a hole transport layer with Ag nanoparticles for highly efficient inverted organic solar cells. Journal of Materials Chemistry A, 2013, 1, 6614.	5.2	89
52	Manipulation of Domain Purity and Orientational Ordering in High Performance All-Polymer Solar Cells. Chemistry of Materials, 2016, 28, 6178-6185.	3.2	87
53	Interfacial engineering and optical coupling for multicolored semitransparent inverted organic photovoltaics with a record efficiency of over 12%. Journal of Materials Chemistry A, 2019, 7, 15887-15894.	5.2	83
54	Realizing 11.3% efficiency in fullerene-free polymer solar cells by device optimization. Science China Chemistry, 2016, 59, 1574-1582.	4.2	78

#	Article	IF	CITATIONS
55	Selecting a Donor Polymer for Realizing Favorable Morphology in Efficient Nonâ€fullerene Acceptorâ€based Solar Cells. Small, 2014, 10, 4658-4663.	5.2	76
56	A Wide Bandgap Polymer with Strong π–π Interaction for Efficient Fullereneâ€Free Polymer Solar Cells. Advanced Energy Materials, 2016, 6, 1600742.	10.2	76
57	Recent advances in non-fullerene organic solar cells: from lab to fab. Chemical Communications, 2020, 56, 14337-14352.	2.2	75
58	High-Efficiency Nonfullerene Organic Solar Cells Enabled by 1000 nm Thick Active Layers with a Low Trap-State Density. ACS Applied Materials & Interfaces, 2020, 12, 18777-18784.	4.0	74
59	High Efficiency Organic Solar Cells Achieved by the Simultaneous Plasmonâ€Optical and Plasmonâ€Electrical Effects from Plasmonic Asymmetric Modes of Gold Nanostars. Small, 2016, 12, 5200-5207.	5.2	73
60	Reduced Nonradiative Energy Loss Caused by Aggregation of Nonfullerene Acceptor in Organic Solar Cells. Advanced Energy Materials, 2019, 9, 1901823.	10.2	72
61	A ternary organic solar cell with 300 nm thick active layer shows over 14% efficiency. Science China Chemistry, 2020, 63, 21-27.	4.2	72
62	A Highâ€Performance Nonfused Wideâ€Bandgap Acceptor for Versatile Photovoltaic Applications. Advanced Materials, 2022, 34, e2108090.	11.1	71
63	Molecular design revitalizes the low-cost PTV-polymer for highly efficient organic solar cells. National Science Review, 2021, 8, nwab031.	4.6	70
64	Ultrathin Polyaniline-based Buffer Layer for Highly Efficient Polymer Solar Cells with Wide Applicability. Scientific Reports, 2014, 4, 6570.	1.6	69
65	Enhancing the Performance of the Half Tin and Half Lead Perovskite Solar Cells by Suppression of the Bulk and Interfacial Charge Recombination. Advanced Materials, 2018, 30, e1803703.	11.1	65
66	Progress in Organic Solar Cells: Materials, Physics and Device Engineering. Chinese Journal of Chemistry, 2021, 39, 2607-2625.	2.6	62
67	Fluidic Manipulating of Printable Zinc Oxide for Flexible Organic Solar Cells. Advanced Materials, 2022, 34, e2106453.	11.1	62
68	Enhanced efficiency of polymer photovoltaic cells via the incorporation of a water-soluble naphthalene diimide derivative as a cathode interlayer. Journal of Materials Chemistry C, 2015, 3, 9565-9571.	2.7	60
69	Impact of Electrostatic Interaction on Bulk Morphology in Efficient Donor–Acceptor Photovoltaic Blends. Angewandte Chemie - International Edition, 2021, 60, 15988-15994.	7.2	60
70	Correlations among Chemical Structure, Backbone Conformation, and Morphology in Two Highly Efficient Photovoltaic Polymer Materials. Macromolecules, 2016, 49, 120-126.	2.2	59
71	Control of Mesoscale Morphology and Photovoltaic Performance in Diketopyrrolopyrroleâ€Based Small Band Gap Terpolymers. Advanced Energy Materials, 2017, 7, 1601138.	10.2	59
72	Exquisite modulation of ZnO nanoparticle electron transporting layer for high-performance fullerene-free organic solar cell with inverted structure. Journal of Materials Chemistry A, 2019, 7, 3570-3576.	5.2	58

SHAOQING ZHANG

#	Article	IF	CITATIONS
73	A Universal Nonhalogenated Polymer Donor for Highâ€Performance Organic Photovoltaic Cells. Advanced Materials, 2022, 34, e2105803.	11.1	53
74	Subtle side-chain tuning on terminal groups of small molecule electron acceptors for efficient fullerene-free polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 15175-15182.	5.2	52
75	A Novel Wideâ€Bandgap Polymer with Deep Ionization Potential Enables Exceeding 16% Efficiency in Ternary Nonfullerene Polymer Solar Cells. Advanced Functional Materials, 2020, 30, 1910466.	7.8	50
76	Influence of the backbone conformation of conjugated polymers on morphology and photovoltaic properties. Polymer Chemistry, 2014, 5, 1976-1981.	1.9	48
77	A polymer design strategy toward green solvent processed efficient non-fullerene polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 4324-4330.	5.2	48
78	The Effect of Processing Additives on Energetic Disorder in Highly Efficient Organic Photovoltaics: A Case Study on PBDTTTâ€Câ€T:PC ₇₁ BM. Advanced Materials, 2015, 27, 3868-3873.	11.1	46
79	Benzodifuran-alt-thienothiophene based low band gap copolymers: substituent effects on their molecular energy levels and photovoltaic properties. Polymer Chemistry, 2013, 4, 3047.	1.9	45
80	Competition between morphological attributes in the thermal annealing and additive processing of polymer solar cells. Journal of Materials Chemistry C, 2013, 1, 5023.	2.7	44
81	Over 1.1 eV Workfunction Tuning of Cesium Intercalated Metal Oxides for Functioning as Both Electron and Hole Transport Layers in Organic Optoelectronic Devices. Advanced Functional Materials, 2014, 24, 7348-7356.	7.8	44
82	Dialkylthio Substitution: An Effective Method to Modulate the Molecular Energy Levels of 2D-BDT Photovoltaic Polymers. ACS Applied Materials & Interfaces, 2016, 8, 3575-3583.	4.0	43
83	A Selfâ€Organized Poly(vinylpyrrolidone)â€Based Cathode Interlayer in Inverted Fullereneâ€Free Organic Solar Cells. Advanced Materials, 2019, 31, e1804657.	11.1	43
84	Achieving over 10 % Efficiency in Poly(3â€hexylthiophene)â€Based Organic Solar Cells via Solid Additives. ChemSusChem, 2021, 14, 3607-3613.	3.6	43
85	Perovskite-polymer hybrid solar cells with near-infrared external quantum efficiency over 40%. Science China Materials, 2015, 58, 953-960.	3.5	41
86	Molecular design toward efficient polymer solar cells processed by green solvents. Polymer Chemistry, 2015, 6, 4089-4095.	1.9	41
87	Selfâ€Assembled Quasiâ€3D Nanocomposite: A Novel pâ€īype Hole Transport Layer for High Performance Inverted Organic Solar Cells. Advanced Functional Materials, 2018, 28, 1706403.	7.8	39
88	Printable SnO2 cathode interlayer with up to 500 nm thickness-tolerance for high-performance and large-area organic solar cells. Science China Chemistry, 2020, 63, 957-965.	4.2	38
89	Low ost and efficient organic solar cells based on polythiophene―and poly(thiophene) Tj ETQq1 1 0.784314	rgBT /O∖ 5.2	verlock 10 Tf
90	Optimization of side chains in alkylthiothiophene-substituted benzo[1,2-b:4,5-b′]dithiophene-based photovoltaic polymers. Polymer Chemistry, 2015, 6, 2752-2760.	1.9	37

#	Article	IF	CITATIONS
91	Rational selection of solvents and fine tuning of morphologies toward highly efficient polymer solar cells fabricated using green solvents. RSC Advances, 2015, 5, 69567-69572.	1.7	37
92	Highly efficient planar perovskite solar cells achieved by simultaneous defect engineering and formation kinetic control. Journal of Materials Chemistry A, 2018, 6, 23865-23874.	5.2	37
93	Investigations of the Conjugated Polymers Based on Dithienogermole (DTC) Units for Photovoltaic Applications. Macromolecules, 2014, 47, 5558-5565.	2.2	34
94	Environmentally-friendly solvent processed fullerene-free organic solar cells enabled by screening halogen-free solvent additives. Science China Materials, 2017, 60, 697-706.	3.5	33
95	Low-cost and high-performance poly(thienylene vinylene) derivative donor for efficient versatile organic photovoltaic cells. Nano Energy, 2022, 100, 107463.	8.2	33
96	Toward reliable and accurate evaluation of polymer solar cells based on low band gap polymers. Journal of Materials Chemistry C, 2015, 3, 564-569.	2.7	32
97	Investigation of Conjugated Polymers Based on Naphtho[2,3- <i>c</i>]thiophene-4,9-dione in Fullerene-Based and Fullerene-Free Polymer Solar Cells. Macromolecules, 2017, 50, 1453-1462.	2.2	32
98	An Easily Accessible Cathode Buffer Layer for Achieving Multiple High Performance Polymer Photovoltaic Cells. Journal of Physical Chemistry C, 2015, 119, 27322-27329.	1.5	30
99	The effect of aggregation behavior on photovoltaic performances in benzodithiophene-thiazolothiazole-based wide band-gap conjugated polymers with side chain position changes. Polymer Chemistry, 2020, 11, 1629-1636.	1.9	30
100	Fluorination strategy enables greatly improved performance for organic solar cells based on polythiophene derivatives. Chinese Chemical Letters, 2021, 32, 2274-2278.	4.8	30
101	A Switchable Interconnecting Layer for High Performance Tandem Organic Solar Cell. Advanced Energy Materials, 2017, 7, 1701164.	10.2	29
102	Efficient Fullerene-Free Polymer Solar Cells Based on Alkylthio Substituted Conjugated Polymers. Journal of Physical Chemistry C, 2017, 121, 4825-4833.	1.5	28
103	Vacuum-assisted annealing method for high efficiency printable large-area polymer solar cell modules. Journal of Materials Chemistry C, 2019, 7, 3206-3211.	2.7	27
104	Design of wide-bandgap polymers with deeper ionization potential enables efficient ternary non-fullerene polymer solar cells with 13% efficiency. Journal of Materials Chemistry A, 2019, 7, 14153-14162.	5.2	27
105	Miscibility Control by Tuning Electrostatic Interactions in Bulk Heterojunction for Efficient Organic Solar Cells. , 2021, 3, 1276-1283.		26
106	Electroluminescent and Photovoltaic Properties of the Crosslinkable Poly(phenylene vinylene) Derivative with Side Chains Containing Vinyl Groups. Macromolecular Chemistry and Physics, 2005, 206, 1311-1318.	1.1	24
107	Low band-gap conjugated polymer based on diketopyrrolopyrrole units and its application in organic photovoltaic cells. Journal of Materials Chemistry A, 2017, 5, 10416-10423.	5.2	23
108	Influence of the replacement of alkoxyl with alkylthienyl on photovoltaic properties of two small molecule donors for organic solar cells. Science China Chemistry, 2017, 60, 1340-1348.	4.2	23

#	Article	IF	CITATIONS
109	Suppressing trap states and energy loss by optimizing vertical phase distribution through ternary strategy in organic solar cells. Science China Chemistry, 2021, 64, 599-607.	4.2	22
110	PTV-based p-type organic semiconductors: Candidates for low-cost photovoltaic donors with simple synthetic routes. Polymer, 2020, 209, 122900.	1.8	21
111	An inorganic molecule-induced electron transfer complex for highly efficient organic solar cells. Journal of Materials Chemistry A, 2020, 8, 5580-5586.	5.2	21
112	Optimization of active layer morphology by small-molecule donor design enables over 15% efficiency in small-molecule organic solar cells. Journal of Materials Chemistry A, 2021, 9, 13653-13660.	5.2	21
113	Optimizing polymer aggregation and blend morphology for boosting the photovoltaic performance of polymer solar cells via a random terpolymerization strategy. Journal of Energy Chemistry, 2021, 59, 30-37.	7.1	20
114	Modulation of terminal alkyl chain length enables over 15% efficiency in small-molecule organic solar cells. Science China Chemistry, 2021, 64, 1200-1207.	4.2	20
115	Influence of Large Steric Hinderance Substituent Position on Conformation and Charge Transfer Process for Nonâ€Fused Ring Acceptors. Small Methods, 2022, 6, e2200007.	4.6	20
116	Terthiophene based non-fused electron acceptors for efficient organic solar cells. Organic Electronics, 2022, 105, 106512.	1.4	17
117	A thieno[3,4-f]isoindole-5,7-dione based copolymer for polymer solar cells. Polymer Chemistry, 2013, 4, 536-541.	1.9	15
118	Study of photovoltaic performances for asymmetrical and symmetrical chlorinated thiophene-bridge-based conjugated polymers. Journal of Materials Chemistry C, 2020, 8, 2301-2306.	2.7	15
119	Quantifying <i>V</i> _{oc} loss induced by alkyl pendants of acceptors in organic solar cells. Journal of Materials Chemistry C, 2020, 8, 12568-12577.	2.7	14
120	Effects on the photovoltaic properties of copolymers with five-membered chalcogen-ï€-heterocycle bridges. Polymer Chemistry, 2020, 11, 5019-5028.	1.9	13
121	Design of ultra-high luminescent polymers for organic photovoltaic cells with low energy loss. Chemical Communications, 2021, 57, 9132-9135.	2.2	12
122	Effectively Improving Extinction Coefficient of Benzodithiophene and Benzodithiophenedioneâ€based Photovoltaic Polymer by Grafting Alkylthio Functional Groups. Chemistry - an Asian Journal, 2016, 11, 2650-2655.	1.7	11
123	Effect of solvent additive on active layer morphologies and photovoltaic performance of polymer solar cells based on PBDTTT-C-T/PC71BM. RSC Advances, 2016, 6, 51924-51931.	1.7	11
124	Impact of Electrostatic Interaction on Bulk Morphology in Efficient Donor–Acceptor Photovoltaic Blends. Angewandte Chemie, 2021, 133, 16124-16130.	1.6	11
125	Modulation of Building Block Size in Conjugated Polymers with D–A Structure for Polymer Solar Cells. Macromolecules, 2019, 52, 7929-7938.	2.2	10
126	Increased conjugated backbone twisting to improve carbonylated-functionalized polymer photovoltaic performance. Organic Chemistry Frontiers, 2020, 7, 261-266.	2.3	10

SHAOQING ZHANG

#	Article	IF	CITATIONS
127	Enhanced photovoltaic effect from naphtho[2,3- <i>c</i>]thiophene-4,9-dione-based polymers through alkyl side chain induced backbone distortion. Journal of Materials Chemistry A, 2020, 8, 14706-14712.	5.2	10
128	Suppressing Energetic Disorder Enables Efficient Indoor Organic Photovoltaic Cells With a PTV Derivative. Frontiers in Chemistry, 2021, 9, 684241.	1.8	9
129	The investigations of two conjugated polymers that show distinctly different photovoltaic properties in polymer solar cells. Organic Electronics, 2017, 44, 42-49.	1.4	7
130	Reduced Nonradiative Recombination Energy Loss Enabled Efficient Polymer Solar Cells via Tuning Alkyl Chain Positions on Pendent Benzene Units of Polymers. ACS Applied Materials & Interfaces, 2020, 12, 24184-24191.	4.0	7
131	Organic Solar Cells: High Efficiency Organic Solar Cells Achieved by the Simultaneous Plasmonâ€Optical and Plasmonâ€Electrical Effects from Plasmonic Asymmetric Modes of Gold Nanostars (Small 37/2016). Small, 2016, 12, 5102-5102.	5.2	4
132	Realizing Green Solvent Processable Non-fullerene Organic Solar Cells by Modulating the Side Groups of Conjugated Polymers. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2019, 35, 1391-1398.	2.2	2
133	Organic Solar Cells: A Switchable Interconnecting Layer for High Performance Tandem Organic Solar Cell (Adv. Energy Mater. 21/2017). Advanced Energy Materials, 2017, 7, .	10.2	0
134	Solar Cells: Enhancing the Performance of the Half Tin and Half Lead Perovskite Solar Cells by Suppression of the Bulk and Interfacial Charge Recombination (Adv. Mater. 35/2018). Advanced Materials, 2018, 30, 1870263.	11.1	0
135	Over 13% Efficiency in Blade-coated Organic Solar Cells. , 0, , .		0