Hirofumi Enomoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/246555/publications.pdf

Version: 2024-02-01

41 papers

945 citations 430874 18 h-index 30 g-index

41 all docs

41 docs citations

41 times ranked

949 citing authors

#	Article	IF	CITATIONS
1	Distribution Analysis of Anthocyanins, Sugars, and Organic Acids in Strawberry Fruits Using Matrix-Assisted Laser Desorption/Ionization-Imaging Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2018, 66, 4958-4965.	5.2	73
2	Imaging mass spectrometry-based histopathologic examination of atherosclerotic lesions. Atherosclerosis, 2011, 217, 427-432.	0.8	69
3	Improvement of Functional Properties of Whey Protein Isolate Through Glycation and Phosphorylation by Dry Heating. Journal of Dairy Science, 2005, 88, 4137-4145.	3.4	68
4	Visualization of anthocyanin species in rabbiteye blueberry Vaccinium ashei by matrix-assisted laser desorption/ionization imaging mass spectrometry. Analytical and Bioanalytical Chemistry, 2012, 403, 1885-1895.	3.7	68
5	Recent advances in phosphorylation of food proteins: A review. LWT - Food Science and Technology, 2010, 43, 1295-1300.	5.2	58
6	Glycation and Phosphorylation of \hat{l}^2 -Lactoglobulin by Dry-Heating: \hat{A} Effect on Protein Structure and Some Properties. Journal of Agricultural and Food Chemistry, 2007, 55, 2392-2398.	5.2	53
7	Glycation and phosphorylation of \hat{l}_{\pm} -lactalbumin by dry heating: Effect on protein structure and physiological functions. Journal of Dairy Science, 2009, 92, 3057-3068.	3.4	49
8	Distribution of Flavan-3-ol Species in Ripe Strawberry Fruit Revealed by Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging. Molecules, 2020, 25, 103.	3.8	36
9	Fruit setting rewires central metabolism via gibberellin cascades. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23970-23981.	7.1	34
10	Authenticity assessment of beef origin by principal component analysis of matrix-assisted laser desorption/ionization mass spectrometric data. Analytical and Bioanalytical Chemistry, 2011, 400, 1865-1871.	3.7	33
11	Visualisation of abscisic acid and 12-oxo-phytodienoic acid in immature Phaseolus vulgaris L. seeds using desorption electrospray ionisation-imaging mass spectrometry. Scientific Reports, 2017, 7, 42977.	3.3	33
12	Visualization of phosphatidylcholine, lysophosphatidylcholine and sphingomyelin in mouse tongue body by matrix-assisted laser desorption/ionization imaging mass spectrometry. Analytical and Bioanalytical Chemistry, 2011, 400, 1913-1921.	3.7	32
13	Phosphorylation of proteins by dry-heating in the presence of pyrophosphate and some characteristics of introduced phosphate groups. Food Chemistry, 2009, 114, 1036-1041.	8.2	31
14	Improvement of functional properties of whey soy protein phosphorylated by dry-heating in the presence of pyrophosphate. LWT - Food Science and Technology, 2010, 43, 919-925.	5.2	28
15	Derivatization for detection of abscisic acid and 12â€oxoâ€phytodienoic acid using matrixâ€ossisted laser desorption/ionization imaging mass spectrometry. Rapid Communications in Mass Spectrometry, 2018, 32, 1565-1572.	1.5	24
16	Improvement of Foaming Property of Egg White Protein by Phosphorylation through Dryâ€Heating in the Presence of Pyrophosphate. Journal of Food Science, 2009, 74, C68-72.	3.1	22
17	Phosphorylation of ovalbumin by dry-heating in the presence of pyrophosphate: Effect of carbohydrate chain on the phosphorylation level and heat stability. Food Chemistry, 2010, 122, 526-532.	8.2	22
18	Improvement of Functional Properties of Bovine Serum Albumin through Phosphorylation by Dryâ∈Heating in the Presence of Pyrophosphate. Journal of Food Science, 2008, 73, C84-91.	3.1	21

#	Article	IF	CITATIONS
19	Improvement of Functional Properties of Egg White Protein through Glycation and Phosphorylation by Dry-heating. Asian-Australasian Journal of Animal Sciences, 2009, 22, 591-597.	2.4	19
20	Novel Blotting Method for Mass Spectrometry Imaging of Metabolites in Strawberry Fruit by Desorption/Ionization Using Through Hole Alumina Membrane. Foods, 2020, 9, 408.	4.3	18
21	Unique Distribution of Diacyl-, Alkylacyl-, and Alkenylacyl-Phosphatidylcholine Species Visualized in Pork Chop Tissues by Matrix-Assisted Laser Desorption/Ionization–Mass Spectrometry Imaging. Foods, 2020, 9, 205.	4.3	16
22	Localization of Flavan-3-ol Species in Peanut Testa by Mass Spectrometry Imaging. Molecules, 2020, 25, 2373.	3.8	16
23	Tissueâ€Specific Distribution of Sphingomyelin Species in Pork Chop Revealed by Matrixâ€Assisted Laser Desorption/Ionization–Imaging Mass Spectrometry. Journal of Food Science, 2019, 84, 1758-1763.	3.1	14
24	Improvement of Functional Properties of Ovotransferrin by Phosphorylation through Dry-heating in the Presence of Pyrophosphate. Asian-Australasian Journal of Animal Sciences, 2008, 21, 596-602.	2.4	14
25	Unique distribution of ellagitannins in ripe strawberry fruit revealed by mass spectrometry imaging. Current Research in Food Science, 2021, 4, 821-828.	5. 8	14
26	Isolation, Evaluation, and Identification of Angiotensin I-Converting Enzyme Inhibitory Peptides from Game Meat. Foods, 2020, 9, 1168.	4.3	12
27	Adhesive film applications help to prepare strawberry fruit sections for desorption electrospray ionization-mass spectrometry imaging. Bioscience, Biotechnology and Biochemistry, 2021, 85, 1341-1347.	1.3	12
28	Mass Spectrometry Imaging of Flavonols and Ellagic Acid Glycosides in Ripe Strawberry Fruit. Molecules, 2020, 25, 4600.	3.8	11
29	Characteristics and Enhanced Antioxidant Activity of Egg White Protein Selenized by Dry-Heating in the Presence of Selenite. Journal of Agricultural and Food Chemistry, 2013, 61, 3131-3139.	5.2	7
30	Spatial Analysis of Phosphatidylinositol Molecular Species in Pork Chop Tissues Using Matrix-assisted Laser Desorption/ionization-Mass Spectrometry Imaging. Journal of Oleo Science, 2021, 70, 979-987.	1.4	6
31	Similar distribution of orally administered eicosapentaenoic acid and M2 macrophage marker in the hypoperfusion-induced abdominal aortic aneurysm wall. Food and Function, 2021, 12, 3469-3475.	4.6	6
32	Direct LC–ESI–MS/MS analysis of plant glucosylceramide and ceramide species with 8 <i>E</i> and 8 <i>Z</i> isomers of the long chain base. Bioscience, Biotechnology and Biochemistry, 2021, 85, 205-210.	1.3	6
33	Unique localization of jasmonic acid-related compounds in developing Phaseolus vulgaris L. (common) Tj ETQq1 1 Phytochemistry, 2021, 188, 112812.	0.784314 2.9	4 rgBT /Over 5
34	Investigation of the Chemical Composition and Functional Proteins of Chicken Gizzard Inner Lining. Food Science and Technology Research, 2018, 24, 893-901.	0.6	4
35	Distribution analysis of jasmonic acidâ€related compounds in developing Glycine max L. (soybean) seeds using mass spectrometry imaging and liquid chromatography–mass spectrometry. Phytochemical Analysis, 2021, , .	2.4	3
36	Functionality of liquid smoke as an antimicrobial in cooked meat products: liquid smoke suppresses spoilage-related lactic acid bacteria. Food Science and Technology Research, 2021, 27, 759-768.	0.6	3

#	Article	IF	CITATIONS
37	Mass spectrometry imaging of diacyl-, alkylacyl-, and plasmalogen-phosphatidylethanolamines in pork chop tissues. Journal of Food Measurement and Characterization, 2021, 15, 5047.	3.2	2
38	Production, Analysis and <i>in Vivo</i> Antihypertensive Evaluation of Novel Angiotensin-I-converting Enzyme Inhibitory Peptides from Porcine Brain. Food Science and Technology Research, 2018, 24, 541-550.	0.6	1
39	Effects of whey protein hydrolysate on growth promotion and immunomodulation in mouse pups in artificial rearing system. Animal Science Journal, 2020, 91, e13395.	1.4	1
40	Eicosapentaenoic acid is associated with the attenuation of dysfunctions of mesenchymal stem cells in the abdominal aortic aneurysm wall. Food and Function, 0 , , .	4.6	1
41	The application of mass spectrometry imaging for metabolite analysis in agricultural products. Mycotoxins, 2020, 70, 75-82.	0.2	0