Meizhen Qu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2465479/publications.pdf

Version: 2024-02-01

206112 257450 2,380 50 24 48 h-index citations g-index papers 51 51 51 3442 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Superparamagnetic Fe3O4 nanocrystals@graphene composites for energy storage devices. Journal of Materials Chemistry, 2011, 21, 5069.	6.7	336
2	The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi 0.8 Co 0.15 Al 0.05 O 2 cathode material. Journal of Power Sources, 2018, 374, 1-11.	7.8	234
3	Synthesis and superior anode performance of TiO2@reduced graphene oxide nanocomposites for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 9759.	6.7	136
4	Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ . Sustainable Energy and Fuels, 2018, 2, 413-421.	4.9	135
5	Effects of fluorine doping on structure, surface chemistry, and electrochemical performance of LiNi0.8Co0.15Al0.05O2. Electrochimica Acta, 2015, 174, 1122-1130.	5.2	134
6	Structural and electrochemical performances of Li4Ti5â^'xZrxO12 as anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2009, 487, L12-L17.	5.5	125
7	Designed synthesis of SnO2-polyaniline-reduced graphene oxide nanocomposites as an anode material for lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 17654.	6.7	117
8	High-capacity graphene oxide/graphite/carbon nanotube composites for use in Li-ion battery anodes. Carbon, 2014, 74, 153-162.	10.3	111
9	SnS2@reduced graphene oxide nanocomposites as anode materials with high capacity for rechargeable lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 23963.	6.7	97
10	AlF3 modification to suppress the gas generation of Li4Ti5O12 anode battery. Electrochimica Acta, 2014, 139, $104-110$.	5.2	77
11	Synthesis and Applications of \hat{I}^3 -Tungsten Oxide Hierarchical Nanostructures. Crystal Growth and Design, 2013, 13, 759-769.	3.0	75
12	SnO2–carbon–RGO heterogeneous electrode materials with enhanced anode performances in lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 2851.	6.7	65
13	Graphite/graphene oxide composite as high capacity and binder-free anode material for lithium ion batteries. Journal of Power Sources, 2013, 241, 619-626.	7.8	65
14	Preparation and characterization of silicon monoxide/graphite/carbon nanotubes composite as anode for lithium-ion batteries. Journal of Solid State Electrochemistry, 2012, 16, 1453-1460.	2.5	51
15	Improved electrochemical performances of LiNi0.6Co0.2Mn0.2O2 cathode material by reducing lithium residues with the coating of Prussian blue. Journal of Alloys and Compounds, 2019, 774, 451-460.	5.5	51
16	Graphene oxide/lithium titanate composite with binder-free as high capacity anode material for lithium-ion batteries. Journal of Power Sources, 2015, 273, 754-760.	7.8	47
17	Dual functional MgHPO4 surface modifier used to repair deteriorated Ni-Rich LiNi0.8Co0.15Al0.05O2 cathode material. Applied Surface Science, 2019, 465, 863-870.	6.1	46
18	Structural and electrochemical characteristics of SiO2 modified Li4Ti5O12 as anode for lithium-ion batteries. Journal of Alloys and Compounds, 2015, 637, 476-482.	5.5	45

#	Article	IF	CITATIONS
19	Enhancing cycle stability and storage property of LiNi 0.8 Co 0.15 Al 0.05 O 2 by using fast cooling method. Electrochimica Acta, 2017, 227, 225-234.	5.2	45
20	A Mn Fe based Prussian blue Analogue@Reduced graphene oxide composite as high capacity and superior rate capability anode for lithium-ion batteries. Carbon, 2019, 143, 706-713.	10.3	42
21	Lightâ€Switchable Singleâ€Walled Carbon Nanotubes Based on Host–Guest Chemistry. Advanced Functional Materials, 2013, 23, 5010-5018.	14.9	37
22	Effects of functional groups of graphene oxide on the electrochemical performance of lithium-ion batteries. RSC Advances, 2015, 5, 90041-90048.	3.6	34
23	The reaction mechanism of the Mg 2+ and F â¿¿ co-modification and its influence on the electrochemical performance of the Li 4 Ti 5 O 12 anode material. Electrochimica Acta, 2016, 188, 499-511.	5.2	28
24	Facile synthesis and high rate capability of Li4Ti5O12/C composite materials with controllable carbon content. Journal of Applied Electrochemistry, 2010, 40, 821-831.	2.9	26
25	A novel Li 4 Ti 5 O 12 /graphene/carbon nano-tubes hybrid material for high rate lithium ion batteries. Materials Letters, 2014, 133, 289-292.	2.6	23
26	Selfâ€Formed Protection Layer on a 3D Lithium Metal Anode for Ultrastable Lithium–Sulfur Batteries. ChemSusChem, 2019, 12, 2263-2270.	6.8	22
27	MOF-derived Co9S8/C hollow polyhedra grown on 3D graphene aerogel as efficient polysulfide mediator for long-life Li-S batteries. Materials Letters, 2020, 277, 128331.	2.6	19
28	Effects of Charge Cutoff Potential on an Electrolyte Additive for LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ â€"Mesocarbon Microbead Full Cells. Energy Technology, 2019, 7, 1800981.	3.8	17
29	Improving cyclic stability of LiNi0.6Co0.2Mn0.2O2-SiOx/graphite full cell using tris(trimethylsilyl)phosphite and fluoroethylene carbonate as combinative electrolyte additive. lonics, 2020, 26, 2247-2257.	2.4	17
30	Reduced irreversible capacities of graphene oxide-based anodes used for lithium ion batteries via alkali treatment. Journal of Energy Chemistry, 2019, 37, 73-81.	12.9	16
31	In Situ Wrapping SiO with Carbon Nanotubes as Anode Material for Highâ€Performance Li–Ion Batteries. ChemistrySelect, 2019, 4, 2918-2925.	1.5	13
32	Water-Soluble Polymer Assists Multisize Three-Dimensional Microspheres as a High-Performance Si Anode for Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 9673-9681.	5.1	13
33	Facile Sprayâ€Drying Synthesis of Dualâ€Shell Structure Si@SiO _{<i>x</i>} @Graphite/Graphene as Stable Anode for Liâ€Ion Batteries. Energy Technology, 2019, 7, 1900464.	3.8	12
34	SiO/CNTs: A new anode composition for lithium-ion battery. Science in China Series B: Chemistry, 2009, 52, 2047-2050.	0.8	9
35	The Synergetic Effect of LiMg _{0.5} Mn _{1.5} O ₄ Coating and Mg ²⁺ Doping on Improving Electrochemical Performances of Highâ€Voltage LiNi _{0.5} Mn _{1.5} O ₄ by Solâ€Gel Selfâ€Combustion Method. ChemistrySelect, 2020. 5, 2593-2601.	1.5	9
36	Carbon Nanofibers Grown on Carbon Felt as a Reinforced Current Collector for Highâ€Performance Lithiumâ [~] Sulfur Batteries. ChemElectroChem, 2018, 5, 3293-3299.	3.4	7

#	Article	IF	CITATIONS
37	Pomegranate-Like Structured Si@SiOx Composites With High-Capacity for Lithium-Ion Batteries. Frontiers in Chemistry, 2020, 8, 666.	3.6	7
38	Role of mesopores on the electrochemical performance of LiCoO2 composite cathodes for lithium ion batteries. Ionics, 2011, 17, 697-703.	2.4	6
39	Modification of Li ₄ Ti ₅ O ₁₂ Anodes Using Epoxyâ€Functionalized Silane to Improve Electrochemical Performance in Lithiumâ€Ion Batteries. Energy Technology, 2020, 8, 1900786.	3.8	6
40	Gasâ€Induced Reversible Dispersion/Aggregation of Graphene. ChemNanoMat, 2015, 1, 438-444.	2.8	5
41	Improving the Cyclic Stability of LiNi 0.5 Mn 1.5 O 4 at High Cutoff Voltage by Using Pyrene as a Novel Additive. Energy Technology, 2020, 8, 2000671.	3.8	4
42	<i>N</i> , <i>O</i> -Bis(trimethylsilyl)trifluoroacetamide as an Effective Interface Film Additive on Lithium Anodes. ACS Applied Materials & Samp; Interfaces, 2022, 14, 5447-5458.	8.0	4
43	Micro/nano-structure construct of carbon fibers reinforced graphene/CNT matrix composites for Li-S batteries. Diamond and Related Materials, 2022, 123, 108888.	3.9	4
44	7â€Hydroxycoumarin as a Novel Filmâ€Forming Additive for LiNi 0.5 Mn 1.5 O 4 Cathode at Elevated Temperature. ChemElectroChem, 2020, 7, 4655-4662.	3.4	3
45	Surface Modification of Li 1.144 Ni 0.136 Co 0.136 Mn 0.544 O 2 by Hybrid Protection Layer with Enhanced Rate Capability. Energy Technology, 2020, 8, 1901133.	3.8	2
46	The Synergetic Effect of Inorganic and Organic Compounds Hydrolyzed by Tetrabutyl Titanate on Improving Dispersion and Electrochemical Performance of Li 4 Ti 5 O 12 Anode Material. ChemistrySelect, 2020, 5, 9531-9539.	1.5	1
47	Improving electrochemical performances of LiNi0.5Mn1.5O4 by Fe2O3 coating with Prussian blue as precursor. lonics, 2021, 27, 973-981.	2.4	1
48	Improving the Cyclic Stability of LiNi 0.5 Mn 1.5 O 4 Cathode by Modifying the Interface Film with 8â€Hydroxyquinoline. ChemistrySelect, 2021, 6, 3988-3994.	1.5	1
49	Smart Nanotubes: Light-Switchable Single-Walled Carbon Nanotubes Based on Host-Guest Chemistry (Adv. Funct. Mater. 40/2013). Advanced Functional Materials, 2013, 23, 5009-5009.	14.9	0
50	[<i>tert</i> -Butyl(diphenyl)silyl] trifluoromethanesulfonate acts as an effective additive for high-voltage lithium metal batteries. Materials Chemistry Frontiers, 0, , .	5.9	0