Guoliang Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2465243/publications.pdf

Version: 2024-02-01

115 4,259 36 60
papers citations h-index g-index

115 115 115 6041 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Enhancement of piezoelectric catalysis of Na0.5Bi0.5TiO3 with electric poling for dye decomposition. Ceramics International, 2022, 48, 3695-3701.	4.8	31
2	Enhanced ferroelectric and piezoelectric response by MnO2 added Bi0.5(K0.2Na0.8)0.5TiO3 ceramics. Journal of Solid State Chemistry, 2022, 306, 122716.	2.9	11
3	Development and Prospects of Halide Perovskite Single Crystal Films. Advanced Electronic Materials, 2022, 8, .	5.1	6
4	Highly efficient piezo-catalysis of the heat-treated cellulose nanocrystal for dye decomposition driven by ultrasonic vibration. Separation and Purification Technology, 2022, 286, 120450.	7.9	38
5	Adhesive and high-sensitivity modified Ti3C2TX (MXene)-based organohydrogels with wide work temperature range for wearable sensors. Journal of Colloid and Interface Science, 2022, 613, 94-102.	9.4	34
6	Thermally Stable Piezoelectric Performance of MnO2 Inserted Pseudo-tetragonal Phase Existent CaBi2Nb2O9-based Ceramics. Materials Technology, 2022, 37, 2702-2710.	3.0	7
7	Dual Functions of Performance Improvement and Lead Leakage Mitigation of Perovskite Solar Cells Enabled by Phenylbenzimidazole Sulfonic Acid. Small Methods, 2022, 6, e2101257.	8.6	22
8	Modification of SnO ₂ with Phosphorusâ€Containing Lewis Acid for Highâ€Performance Planar Perovskite Solar Cells with Negligible Hysteresis. Solar Rrl, 2022, 6, .	5.8	17
9	Flexible multiâ€state nonvolatile antiferroelectric memory. Journal of the American Ceramic Society, 2022, 105, 6232-6240.	3.8	3
10	Robust Flexoâ€Catalysis in Centrosymmetric Nanoparticles. Advanced Materials Technologies, 2022, 7, .	5.8	6
11	The Enhancement of Photochromism and Luminescence Modulation Properties of Ferroelectric Ceramics via Chemical and Physical Strategies. Laser and Photonics Reviews, 2022, 16, .	8.7	13
12	Strong piezocatalysis in barium titanate/carbon hybrid nanocomposites for dye wastewater decomposition. Journal of Colloid and Interface Science, 2021, 586, 758-765.	9.4	71
13	Reversible and color controllable emissions in Er3+/Pr3+-codoped K0.5Na0.5NbO3 ceramics with splendid photochromic properties for anti-counterfeiting applications. Journal of the European Ceramic Society, 2021, 41, 1904-1916.	5 . 7	43
14	Covalently injectable chitosan/chondroitin sulfate hydrogel integrated gelatin/heparin microspheres for soft tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 149-157.	3.4	20
15	Ultrasensitive flexible magnetoelectric sensor. APL Materials, 2021, 9, .	5.1	25
16	The integration of diverse fluorescence performances of Sr2â^'SnO4:xSm3+ ceramics with an infinite luminescence modulation ratio. Chemical Engineering Journal, 2021, 410, 128287.	12.7	31
17	Piezoelectricity in Excess of 800 pC/N over 400 °C in BiScO ₃ –PbTiO ₃ –CaTiO ₃ Ceramics. ACS Applied Materials & Interfaces, 2021, 13, 33253-33261.	8.0	19
18	Giant Bulk Photostriction of Lead Halide Perovskite Single Crystals. ACS Applied Materials & Samp; Interfaces, 2021, 13, 32263-32269.	8.0	6

#	Article	IF	CITATIONS
19	Giant Bulk Photostriction and Accurate Photomechanical Actuation in Hybrid Perovskites. Advanced Optical Materials, 2021, 9, 2100837.	7.3	12
20	Synergetic effect of piezoelectricity and Ag deposition on photocatalytic performance of barium titanate perovskite. Solar Energy, 2021, 224, 455-461.	6.1	22
21	Stable piezoelectric response of 0-3 type CaBi2Nb2O9:xwt%BiFeO3 composites for high-temperature piezoelectric applications. Journal of Asian Ceramic Societies, 2021, 9, 312-322.	2.3	7
22	Giant modulation of photoluminescence in CsPbBr ₃ films through polarization switching of PMN-PT. Applied Physics Letters, 2021, 119, 252903.	3.3	0
23	Light-controlled molecular resistive switching ferroelectric heterojunction. Materials Today, 2020, 34, 51-57.	14.2	10
24	A review of flexible perovskite oxide ferroelectric films and their application. Journal of Materiomics, 2020, 6, 1-16.	5.7	136
25	Large Piezoelectricity in Ternary Leadâ€Free Single Crystals. Advanced Electronic Materials, 2020, 6, 1900949.	5.1	83
26	Enhanced photocatalytic efficiency in degrading organic dyes by coupling CdS nanowires with ZnFe2O4 nanoparticles. Solar Energy, 2020, 195, 271-277.	6.1	30
27	Doubly crosslinked biodegradable hydrogels based on gellan gum and chitosan for drug delivery and wound dressing. International Journal of Biological Macromolecules, 2020, 164, 2204-2214.	7. 5	68
28	Enhancing photoelectrochemical performance of the Bi ₂ MoO ₆ photoanode by ferroelectric polarization regulation. Nanoscale, 2020, 12, 18446-18454.	5.6	13
29	Compositionâ€dependent microstructure and electrical property of (1â^' <i>x</i>)SBNâ€ <i>x</i> BNBT solid solutions. Journal of the American Ceramic Society, 2020, 103, 6913-6921.	3.8	4
30	Highly Controllable and Silicon-Compatible Ferroelectric Photovoltaic Synapses for Neuromorphic Computing. IScience, 2020, 23, 101874.	4.1	32
31	Emergence of Ferroelectricity in Halide Perovskites. Small Methods, 2020, 4, 2000149.	8.6	95
32	Ferroelasticâ€Domainâ€Assisted Mechanical Switching of Ferroelectric Domains in Pb(Zr,Ti)O ₃ Thin Films. Advanced Electronic Materials, 2020, 6, 2000300.	5.1	12
33	Piezo-catalysis for nondestructive tooth whitening. Nature Communications, 2020, 11, 1328.	12.8	236
34	Constructing Asymmetrical Ni-Centered {NiN ₂ O ₄ } Octahedra in Layered Metal–Organic Structures for Near-Room-Temperature Single-Phase Magnetoelectricity. Journal of the American Chemical Society, 2020, 142, 12841-12849.	13.7	7
35	Strong tribo-catalysis of zinc oxide nanorods via triboelectrically-harvesting friction energy. Ceramics International, 2020, 46, 25293-25298.	4.8	46
36	Transition in temperature scaling behaviors and super temperature stable polarization in BiScO 3 –PbZrO 3 –PbTiO 3 system. Journal of the American Ceramic Society, 2020, 103, 3691-3697.	3.8	4

#	Article	IF	CITATIONS
37	Enhanced Performance of Organic Fieldâ€Effect Transistor Memory by Holeâ€Barrier Modulation with an Nâ€Type Organic Buffer Layer between Pentacene and Polymer Electret. Advanced Electronic Materials, 2020, 6, 1901184.	5.1	14
38	Enhanced Photoelectrochemical Performance by Interface Engineering in Ternary gâ€C ₃ N ₄ /TiO ₂ /PbTiO ₃ Films. Advanced Materials Interfaces, 2020, 7, 2000185.	3.7	11
39	Photoluminescence, thermoluminescence and reversible photoluminescence modulation of multifunctional optical materials Pr3+ doped K Na1-NbO3 ferroelectric ceramics. Journal of the European Ceramic Society, 2020, 40, 3946-3955.	5.7	38
40	Enhanced high permittivity and lowed dielectric loss in cellulose–fiber framework polymer microcomposites. Polymer Composites, 2019, 40, 1526-1535.	4.6	3
41	Giant Electric Biasâ€Induced Tunability of Photoluminescence and Photoresistance in Hybrid Perovskite Films on Ferroelectric Substrates. Advanced Optical Materials, 2019, 7, 1901092.	7.3	8
42	Nonvolatile Photoelectric Memory Induced by Interfacial Charge at a Ferroelectric PZTâ€Gated Black Phosphorus Transistor. Advanced Electronic Materials, 2019, 5, 1900458.	5.1	31
43	Covalent Chitosan ellulose Hydrogels via Schiffâ€Base Reaction Containing Macromolecular Microgels for pHâ€6ensitive Drug Delivery and Wound Dressing. Macromolecular Chemistry and Physics, 2019, 220, 1900399.	2.2	35
44	Flexible and Ultrasensitive Piezoelectric Composites Based on Highly (00l)â€Assembled BaTiO ₃ Microplatelets for Wearable Electronics Application. Advanced Materials Technologies, 2019, 4, 1900689.	5.8	9
45	Thickness dependence of domain size in 2D ferroelectric CuInP2S6 nanoflakes. AIP Advances, 2019, 9, .	1.3	19
46	Transparent, Flexible, Fatigue-Free, Optical-Read, and Nonvolatile Ferroelectric Memories. ACS Applied Materials & Samp; Interfaces, 2019, 11, 35169-35176.	8.0	35
47	Construction of all-solid-state Z-scheme 2D BiVO4/Ag/CdS composites with robust photoactivity and stability. Applied Surface Science, 2019, 498, 143900.	6.1	40
48	Photovoltaic, photo-impedance, and photo-capacitance effects of the flexible (111) BiFeO3 film. Applied Physics Letters, 2019, 115, .	3.3	26
49	Covalently polysaccharide-based alginate/chitosan hydrogel embedded alginate microspheres for BSA encapsulation and soft tissue engineering. International Journal of Biological Macromolecules, 2019, 127, 340-348.	7.5	93
50	Highâ€temperature multilayer actuators based on CuO added BiScO ₃ â€"PbTiO ₃ piezoceramics and Ag electrodes. Journal of the American Ceramic Society, 2019, 102, 5424-5431.	3.8	17
51	Magnetic and self-healing chitosan-alginate hydrogel encapsulated gelatin microspheres via covalent cross-linking for drug delivery. Materials Science and Engineering C, 2019, 101, 619-629.	7.3	149
52	Photonâ€Induced Reversible Phase Transition in CsPbBr ₃ Perovskite. Advanced Functional Materials, 2019, 29, 1807922.	14.9	56
53	Energy transduction ferroic materials. Materials Today, 2018, 21, 771-784.	14.2	30
54	Anti-parallel polarization switching in a triglycine sulfate organic ferroelectric insulator: The role of surface charges. Applied Physics Letters, 2018, 112, .	3.3	4

#	Article	IF	CITATIONS
55	0–3 type Bi3TaTiO9:40wt%BiFeO3 composite with improved high-temperature piezoelectric properties. Journal of Alloys and Compounds, 2018, 740, 1-6.	5.5	18
56	Magnetically Separable CdS/ZnFe ₂ O ₄ Composites with Highly Efficient Photocatalytic Activity and Photostability under Visible Light. ACS Applied Nano Materials, 2018, 1, 831-838.	5.0	47
57	Light-induced dilation in nanosheets of charge-transfer complexes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3776-3781.	7.1	20
58	Flexible memristors as electronic synapses for neuro-inspired computation based on scotch tape-exfoliated mica substrates. Nano Research, 2018, 11, 1183-1192.	10.4	91
59	Colossal Xâ€Rayâ€Induced Persistent Photoconductivity in Currentâ€Perpendicularâ€toâ€Plane Ferroelectric/Semiconductor Junctions. Advanced Functional Materials, 2018, 28, 1704337.	14.9	21
60	Self-Organized Ferroelectric Domains Controlled by a Constant Bias from the Atomic Force Microscopy Tip. ACS Applied Materials & Interfaces, 2018, 10, 40911-40917.	8.0	9
61	Inâ€Plane Ferroelectricity in Thin Flakes of Van der Waals Hybrid Perovskite. Advanced Materials, 2018, 30, e1803249.	21.0	76
62	Effects of LiNbO3 doping on the microstructures and electrical properties of BiScO3–PbTiO3 piezoelectric system. Journal of Materials Science: Materials in Electronics, 2018, 29, 18036-18044.	2.2	10
63	An Allâ€Inorganic, Transparent, Flexible, and Nonvolatile Resistive Memory. Advanced Electronic Materials, 2018, 4, 1800412.	5.1	25
64	Multifunctional Ag nanoparticles in heterostructured Ag2MoO4/Ag/AgBr cubes with boosted photocatalytic performances. Solar Energy, 2018, 170, 124-131.	6.1	44
65	Injectable polysaccharide hydrogel embedded with hydroxyapatite and calcium carbonate for drug delivery and bone tissue engineering. International Journal of Biological Macromolecules, 2018, 118, 1257-1266.	7.5	147
66	Flexible, Fatigue-Free, and Large-Scale Bi _{3.25} La _{0.75} Ti ₃ O ₁₂ Ferroelectric Memories. ACS Applied Materials & District Memories & District Memories. ACS Applied Materials & District Memories & District	8.0	35
67	Heterogeneous domain configurations in ferroelectric crystals during thermal depolarization. Journal of the American Ceramic Society, 2017, 100, 1751-1759.	3.8	10
68	Highâ€temperature piezoelectric properties of 0â€3 type CaBi ₄ Ti ₄ O ₁₅ : <i>x</i> Âwt%BiFeO ₃ composites. Journal of the American Ceramic Society, 2017, 100, 3522-3529.	3.8	29
69	Ultrathin Cs ₃ Bi ₂ I ₉ Nanosheets as an Electronic Memory Material for Flexible Memristors. Advanced Materials Interfaces, 2017, 4, 1700131.	3.7	90
70	Flexible, Semitransparent, and Inorganic Resistive Memory based on BaTi _{0.95} Co _{0.05} O ₃ Film. Advanced Materials, 2017, 29, 1700425.	21.0	89
71	Flexible PbZr _{0.52} Ti _{0.48} O ₃ Capacitors with Giant Piezoelectric Response and Dielectric Tunability. Advanced Electronic Materials, 2017, 3, 1600542.	5.1	80
72	Structural origin of room temperature poling enhanced piezoelectricity in modified Pb(Mg _{1/3} Nb _{2/3})O ₃ â€30%PbTiO ₃ crystals. Journal of the American Ceramic Society, 2017, 100, 4938-4944.	3.8	8

#	ARTICLE	IF	CITATIONS
73	Phase Transition in the Near-Surface Region of Ternary <mmi:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Pb</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mrow><mml:mi>In</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml< td=""><td>3.8 nn>1<td>15 1l:mn><mm< td=""></mm<></td></td></mml<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mmi:math>	3.8 nn>1 <td>15 1l:mn><mm< td=""></mm<></td>	15 1l:mn> <mm< td=""></mm<>
74	Highly Stretchable, Ultrasensitive, and Wearable Strain Sensors Based on Facilely Prepared Reduced Graphene Oxide Woven Fabrics in an Ethanol Flame. ACS Applied Materials & Samp; Interfaces, 2017, 9, 32054-32064.	8.0	156
75	Polarization dependent ferroelectric photovoltaic effects in BFTO/CuO thin films. Applied Physics Letters, 2017, 111, .	3.3	27
76	Chiral Molecular Ferroelectrics with Polarized Optical Effect and Electroresistive Switching. ACS Nano, 2017, 11, 11739-11745.	14.6	26
77	CuO added Pb _{0.92} Sr _{0.06} Ba _{0.02} (Mg _{1/3} Nb) Tj ETQq1 1 0 B, 2017, 26, 037702.	0.784314 1.4	rgBT /Overl 18
78	Ferroelectric BiFeO ₃ as an Oxide Dye in Highly Tunable Mesoporous All-Oxide Photovoltaic Heterojunctions. Small, 2017, 13, 1602355.	10.0	53
79	Ferroelectric Polarization Switching Dynamics and Domain Growth of Triglycine Sulfate and Imidazolium Perchlorate. Advanced Electronic Materials, 2016, 2, 1600038.	5.1	31
80	Encoding, training and retrieval in ferroelectric tunnel junctions. Scientific Reports, 2016, 6, 27022.	3.3	8
81	The enhanced photocurrent of epitaxial BiFeO3 film at 130 °C. Journal of Applied Physics, 2016, 119, .	2.5	28
82	Structural and electrical properties of multiferroic (1â^'x)BiFeO3â^'xBi0.5K0.5TiO3 ceramics. Journal of Alloys and Compounds, 2016, 678, 228-233.	5 . 5	16
83	Ferroic phase transitions and switching properties of modified BiFeO3–SrTiO3 multiferroic perovskites. Journal of Materials Science: Materials in Electronics, 2016, 27, 12067-12073. Fragile morphotropic phase boundary and phase stability in the near-surface region of the relaxor	2.2	12
84	ferroelectric < mml:math		

6

#	Article	IF	CITATIONS
91	Charge-Transfer Magnets: Multiferroicity of Carbon-Based Charge-Transfer Magnets (Adv. Mater.) Tj ETQq1 1 0.78	4314 rgB1 21.0	√Overlock
92	All-polymeric control of nanoferronics. Science Advances, 2015, 1, e1501264.	10.3	18
93	Room Temperature Multiferroicity of Charge Transfer Crystals. ACS Nano, 2015, 9, 9373-9379.	14.6	38
94	Flexible organic ferroelectric films with a large piezoelectric response. NPG Asia Materials, 2015, 7, e189-e189.	7.9	47
95	Hierarchical heterostructures of Ag nanoparticles decorated MnO ₂ nanowires as promising electrodes for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 1216-1221.	10.3	179
96	The development of BiFeO3-based ceramics. Science Bulletin, 2014, 59, 5161-5169.	1.7	40
97	Mechanism of polarization fatigue in BiFeO ₃ : The role of Schottky barrier. Applied Physics Letters, 2014, 104, 012903.	3.3	23
98	Facile synthesis of chain-like LiCoO2 nanowire arrays as three-dimensional cathode for microbatteries. NPG Asia Materials, 2014, 6, e126-e126.	7.9	90
99	Unipolar resistive switching of ZnO-single-wire memristors. Nanoscale Research Letters, 2014, 9, 381.	5.7	22
100	Improved ferroelectricity of (1â~x)Na0.5Bi0.5TiO3–xBaTiO3 ceramics rapidly sintered at low temperature. Ceramics International, 2014, 40, 11819-11824.	4.8	20
101	The Origin of Enhanced Room Temperature Ferromagnetism in Ba Doped BiFeO3. Journal of Superconductivity and Novel Magnetism, 2013, 26, 3309-3313.	1.8	13
102	Ferroelectric domain evolution with temperature in BaTiO3 film on (001) SrTiO3 substrate. Applied Physics Letters, 2013, 103, .	3.3	9
103	Effect of physisorption and chemisorption of water on resonant modes of rolled-up tubular microcavities. Nanoscale Research Letters, 2013, 8, 531.	5.7	11
104	Structural Evolving Sequence and Porous <scp><scp><scp><scp><scp>_{<scp><scp><scp><scp><scp><scp><scp><scp< td=""><td>_{8<td>ub><scp><</scp></td>}</td></scp<></scp></scp></scp></scp></scp></scp></scp>}</scp></scp></scp></scp></scp>	_{8<td>ub><scp><</scp></td>}	ub> <scp><</scp>
105	Upward ferroelectric self-polarization induced by compressive epitaxial strain in (001) BaTiO3 films. Journal of Applied Physics, 2013, 113, .	2.5	48
106	Temperature Gradient Introduced Ferroelectric Selfâ€Poling in <scp><scp>BiFeO</scp></scp> ₃ Ceramics. Journal of the American Ceramic Society, 2013, 96, 3788-3792.	3.8	23
107	Upward ferroelectric self-poling in (001) oriented PbZr0.2Ti0.8O3 epitaxial films with compressive strain. AIP Advances, 2013, 3, .	1.3	42
108	Coexistence of unipolar and bipolar resistive switching in BiFeO3 and Bi0.8Ca0.2FeO3 films. Journal of Applied Physics, 2012, 111, .	2.5	42

#	Article	IF	CITATIONS
109	Characterization and Manipulation of Mixed Phase Nanodomains in Highly Strained BiFeO < sub > 3 < / sub > Thin Films. ACS Nano, 2012, 6, 5388-5394.	14.6	72
110	Structure, ferroelectric and piezoelectric properties of multiferroic Bi0.875Sm0.125FeO3 ceramics. Journal of Alloys and Compounds, 2012, 541, 173-176.	5.5	47
111	Multiferroic properties of Bi1â^'xDyxFeO3 (x=0â€"0.2) ceramics at various temperatures. Materials Letters, 2012, 72, 160-163.	2.6	28
112	Structure, ferroelectricity and piezoelectricity evolutions of Bi1â^xSmxFeO3 at various temperatures. Solid State Communications, 2012, 152, 497-500.	1.9	33
113	Structure and piezoelectric properties of BiFeO3 and Bi0.92Dy0.08FeO3 multiferroics at high temperature. Solid State Communications, 2012, 152, 1194-1198.	1.9	11
114	Porous manganese oxide generated from lithiation/delithiation with improved electrochemical oxidation for supercapacitors. Journal of Materials Chemistry, 2011, 21, 15521.	6.7	45
115	Coupled Current Jumps and Domain Wall Creeps in a Defectâ€Engineered Ferroelectric Resistive Memory. Advanced Electronic Materials, 0, , 2101059.	5.1	5