## **Daniel Lucas**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2465134/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Structural organization of the bone marrow and its role in hematopoiesis. Current Opinion in Hematology, 2021, 28, 36-42.                                          | 2.5  | 28        |
| 2  | In situ mapping identifies distinct vascular niches for myelopoiesis. Nature, 2021, 590, 457-462.                                                                  | 27.8 | 74        |
| 3  | In memory of Paul Sylvain Frenette, a pioneering explorer of the hematopoietic stem cell niche who<br>left far too early. Experimental Hematology, 2021, , .       | 0.4  | 0         |
| 4  | In memory of a game-changing haematologist. Nature, 2021, 597, 31-31.                                                                                              | 27.8 | 0         |
| 5  | Paul S. Frenette (1965–2021). Cell, 2021, 184, 5073-5076.                                                                                                          | 28.9 | 1         |
| 6  | Paul S. Frenette (1965–2021). Developmental Cell, 2021, 56, 2688-2691.                                                                                             | 7.0  | 0         |
| 7  | Paul S. Frenette (1965–2021). Nature Cell Biology, 2021, 23, 1049-1050.                                                                                            | 10.3 | 0         |
| 8  | Paul S. Frenette (1965–2021). Cell Stem Cell, 2021, 28, 1686-1689.                                                                                                 | 11.1 | 0         |
| 9  | Anatomy of Hematopoiesis and Local Microenvironments in the Bone Marrow. Where to?. Frontiers in Immunology, 2021, 12, 768439.                                     | 4.8  | 6         |
| 10 | A young microenvironment promotes B-ALL in mice. Blood, 2021, 138, 1789-1790.                                                                                      | 1.4  | 0         |
| 11 | Unraveling bone marrow architecture. Nature Cell Biology, 2020, 22, 5-6.                                                                                           | 10.3 | 7         |
| 12 | The Role of the Bone Marrow Microenvironment in the Response to Infection. Frontiers in Immunology, 2020, 11, 585402.                                              | 4.8  | 14        |
| 13 | Hox11 expressing regional skeletal stem cells are progenitors for osteoblasts, chondrocytes and adipocytes throughout life. Nature Communications, 2019, 10, 3168. | 12.8 | 70        |
| 14 | Leukocyte Trafficking and Regulation of Murine Hematopoietic Stem Cells and Their Niches. Frontiers in Immunology, 2019, 10, 387.                                  | 4.8  | 13        |
| 15 | Neutrophils as regulators of the hematopoietic niche. Blood, 2019, 133, 2140-2148.                                                                                 | 1.4  | 40        |
| 16 | A Tie2-Notch1 signaling axis regulates regeneration of the endothelial bone marrow niche.<br>Haematologica, 2019, 104, 2164-2177.                                  | 3.5  | 17        |
| 17 | Granulocyte-derived TNFα promotes vascular and hematopoietic regeneration in the bone marrow.<br>Nature Medicine, 2018, 24, 95-102.                                | 30.7 | 78        |
| 18 | Dynamic Regulation of Hematopoietic Stem Cells by Bone Marrow Niches. Current Stem Cell Reports, 2018, 4, 201-208.                                                 | 1.6  | 17        |

| #  | Article                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Cholinergic Signals from the CNS Regulate G-CSF-Mediated HSC Mobilization from Bone Marrow via a<br>Glucocorticoid Signaling Relay. Cell Stem Cell, 2017, 20, 648-658.e4. | 11.1 | 68        |
| 20 | From the bedside to the bench: new discoveries on blood cell fate and function. Experimental Hematology, 2017, 47, 24-30.                                                 | 0.4  | 0         |
| 21 | The orphan nuclear receptor TR4 regulates erythroid cell proliferation and maturation. Blood, 2017, 130, 2537-2547.                                                       | 1.4  | 11        |
| 22 | Utility of CRISPR/Cas9 systems in hematology research. Experimental Hematology, 2017, 54, 1-3.                                                                            | 0.4  | 11        |
| 23 | The Bone Marrow Microenvironment for Hematopoietic Stem Cells. Advances in Experimental<br>Medicine and Biology, 2017, 1041, 5-18.                                        | 1.6  | 33        |
| 24 | Regionally Restricted Hox Function in Adult Bone Marrow Multipotent Mesenchymal Stem/Stromal<br>Cells. Developmental Cell, 2016, 39, 653-666.                             | 7.0  | 71        |
| 25 | Understanding hematopoiesis from a single-cell standpoint. Experimental Hematology, 2016, 44, 447-450.                                                                    | 0.4  | 5         |
| 26 | Two new routes to make blood: Hematopoietic specification from pluripotent cell lines versus reprogramming of somatic cells. Experimental Hematology, 2015, 43, 756-759.  | 0.4  | 5         |
| 27 | Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nature<br>Medicine, 2014, 20, 1315-1320.                                              | 30.7 | 483       |
| 28 | Megakaryocytes regulate hematopoietic stem cell quiescence via CXCL4 secretion. Experimental<br>Hematology, 2014, 42, S18.                                                | 0.4  | 3         |
| 29 | Reprogramming finds its niche. Nature, 2014, 511, 301-302.                                                                                                                | 27.8 | 5         |
| 30 | Polμ Deficiency Increases Resistance to Oxidative Damage and Delays Liver Aging. PLoS ONE, 2014, 9, e93074.                                                               | 2.5  | 6         |
| 31 | Peri-vascular megakaryocytes restrain hematopoietic stem cell proliferation. Experimental<br>Hematology, 2013, 41, S12.                                                   | 0.4  | 0         |
| 32 | Arteriolar niches maintain haematopoietic stem cell quiescence. Nature, 2013, 502, 637-643.                                                                               | 27.8 | 1,002     |
| 33 | Mesenchymal Stem Cell: Keystone of the Hematopoietic Stem Cell Niche and a Stepping-Stone for<br>Regenerative Medicine. Annual Review of Immunology, 2013, 31, 285-316.   | 21.8 | 381       |
| 34 | CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nature<br>Medicine, 2013, 19, 429-436.                                          | 30.7 | 370       |
| 35 | MSC Niche for Hematopoiesis. , 2013, , 91-106.                                                                                                                            |      | 0         |
| 36 | Tissue-Resident Macrophages Self-Maintain Locally throughout Adult Life with Minimal Contribution from Circulating Monocytes. Immunity, 2013, 38, 792-804.                | 14.3 | 1,767     |

| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nature<br>Medicine, 2013, 19, 695-703.                                                                  | 30.7 | 232       |
| 38 | Megakaryocytes Regulate Hematopoietic Stem Cell Quiescence Via PF4 Secretion. Blood, 2013, 122, 3-3.                                                                                      | 1.4  | 2         |
| 39 | Increased Learning and Brain Long-Term Potentiation in Aged Mice Lacking DNA Polymerase μ. PLoS ONE, 2013, 8, e53243.                                                                     | 2.5  | 17        |
| 40 | Norepinephrine reuptake inhibition promotes mobilization in mice: potential impact to rescue low stem cell yields. Blood, 2012, 119, 3962-3965.                                           | 1.4  | 86        |
| 41 | Adrenergic Nerves Govern Circadian Leukocyte Recruitment to Tissues. Immunity, 2012, 37, 290-301.                                                                                         | 14.3 | 406       |
| 42 | Trafficking of Stem Cells. Methods in Molecular Biology, 2011, 750, 3-24.                                                                                                                 | 0.9  | 23        |
| 43 | Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. Journal of Experimental Medicine, 2011, 208, 261-271. | 8.5  | 732       |
| 44 | Local Adrenergic Nerves Regulate Diurnal Leukocyte Adhesion: Impact In Sickle Cell Disease. Blood,<br>2011, 118, 1099-1099.                                                               | 1.4  | 6         |
| 45 | Leukocyte recruitment to the cremaster muscle exhibits circadian oscillations. FASEB Journal, 2010, 24, 355.6.                                                                            | 0.5  | 0         |
| 46 | Circadian Adrenergic Regulation of Bone Marrow Endothelial Adhesion Molecule Expression Impacts<br>Progenitor Recruitment and Engraftment Efficiency. Blood, 2010, 116, 398-398.          | 1.4  | 0         |
| 47 | Altered Hematopoiesis in Mice Lacking DNA Polymerase μ Is Due to Inefficient Double-Strand Break<br>Repair. PLoS Genetics, 2009, 5, e1000389.                                             | 3.5  | 33        |
| 48 | Haematopoietic stem cell release is regulated by circadian oscillations. Nature, 2008, 452, 442-447.                                                                                      | 27.8 | 1,103     |
| 49 | Mobilized Hematopoietic Stem Cell Yield Depends on Species-Specific Circadian Timing. Cell Stem Cell, 2008, 3, 364-366.                                                                   | 11.1 | 207       |
| 50 | Osteoblasts: yes, they can. Blood, 2008, 112, 455-455.                                                                                                                                    | 1.4  | 5         |
| 51 | In vivo site-specific recombination using the β-rec/sixsystem. BioTechniques, 2008, 45, 69-78.                                                                                            | 1.8  | 7         |
| 52 | The Sympathetic Nervous System Regulates Hematopoietic Stem and Progenitor Cell Homing and Engraftment Blood, 2008, 112, 1387-1387.                                                       | 1.4  | 1         |
| 53 | Circadian Expression of Endothelial Selectins, Regulated by the Sympathetic Nervous System, Controls<br>Peripheral Leukocyte Homeostasis. Blood, 2008, 112, 548-548.                      | 1.4  | 0         |
| 54 | Mobilized Hematopoietic Stem Cell Yield Depends on Species-Specific Circadian Timing. Blood, 2008, 112, 3494-3494.                                                                        | 1.4  | 1         |

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Circadian Traffic of Hematopoietic Stem Cells Is Orchestrated by the Molecular Clock and Mediated by β3 Adrenergic Signals from the Sympathetic Nervous System Blood, 2007, 110, 219-219.                 | 1.4  | 0         |
| 56 | SOCS up-regulation mobilizes autologous stem cells through CXCR4 blockade. Blood, 2006, 108, 3928-3937.                                                                                                   | 1.4  | 24        |
| 57 | Inducible model for Â-six-mediated site-specific recombination in mammalian cells. Nucleic Acids<br>Research, 2006, 34, e1-e1.                                                                            | 14.5 | 9         |
| 58 | Polymerase μ is up-regulated during the T cell-dependent immune response and its deficiency alters<br>developmental dynamics of spleen centroblasts. European Journal of Immunology, 2005, 35, 1601-1611. | 2.9  | 18        |
| 59 | Overexpression of human DNA polymerase  (Pol Â) in a Burkitt's lymphoma cell line affects the somatic hypermutation rate. Nucleic Acids Research, 2004, 32, 5861-5873.                                    | 14.5 | 35        |