Nick Thomas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2464391/publications.pdf Version: 2024-02-01

	36303	36028
10,727	51	97
citations	h-index	g-index
225	225	4007
235	235	4327
docs citations	times ranked	citing authors
	10,727 citations 235 docs citations	10,72751citationsh-index235235docs citationstimes ranked

#	Article	IF	CITATIONS
1	Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE). Journal of Geophysical Research, 2007, 112, .	3.3	1,253
2	Seasonal Flows on Warm Martian Slopes. Science, 2011, 333, 740-743.	12.6	451
3	On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko. Science, 2015, 347, aaa1044.	12.6	366
4	Dust measurements in the coma of comet 67P/Churyumov-Gerasimenko inbound to the Sun. Science, 2015, 347, aaa3905.	12.6	310
5	OSIRIS – The Scientific Camera System Onboard Rosetta. Space Science Reviews, 2007, 128, 433-506.	8.1	286
6	Distribution of Mid-Latitude Ground Ice on Mars from New Impact Craters. Science, 2009, 325, 1674-1676.	12.6	279
7	The morphological diversity of comet 67P/Churyumov-Gerasimenko. Science, 2015, 347, aaa0440.	12.6	259
8	The global shape, density and rotation of Comet 67P/Churyumov-Gerasimenko from preperihelion Rosetta/OSIRIS observations. Icarus, 2016, 277, 257-278.	2.5	252
9	Observations of Comet 19P/Borrelly by the Miniature Integrated Camera and Spectrometer Aboard Deep Space 1. Science, 2002, 296, 1087-1091.	12.6	208
10	Shape model, reference system definition, and cartographic mapping standards for comet 67P/Churyumov-Gerasimenko – Stereo-photogrammetric analysis of Rosetta/OSIRIS image data. Astronomy and Astrophysics, 2015, 583, A33.	5.1	188
11	Spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from the OSIRIS instrument onboard the ROSETTA spacecraft. Astronomy and Astrophysics, 2015, 583, A30.	5.1	188
12	Images of Asteroid 21 Lutetia: A Remnant Planetesimal from the Early Solar System. Science, 2011, 334, 487-490.	12.6	179
13	Insolation, erosion, and morphology of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A34.	5.1	173
14	The primordial nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 592, A63.	5.1	159
15	Large heterogeneities in comet 67P as revealed by active pits from sinkhole collapse. Nature, 2015, 523, 63-66.	27.8	158
16	Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images. Astronomy and Astrophysics, 2015, 583, A26.	5.1	153
17	Redistribution of particles across the nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A17.	5.1	149
18	Two independent and primitive envelopes of the bilobate nucleus of comet 67P. Nature, 2015, 526, 402-405.	27.8	141

#	Article	IF	CITATIONS
19	Ammonium salts are a reservoir of nitrogen on a cometary nucleus and possibly on some asteroids. Science, 2020, 367, .	12.6	115
20	Gravitational slopes, geomorphology, and material strengths of the nucleus of comet 67P/Churyumov-Gerasimenko from OSIRIS observations. Astronomy and Astrophysics, 2015, 583, A32.	5.1	113
21	Optical properties of the Martian aerosols as derived from Imager for Mars Pathfinder midday sky brightness data. Journal of Geophysical Research, 1999, 104, 9009-9017.	3.3	112
22	Summer fireworks on comet 67P. Monthly Notices of the Royal Astronomical Society, 2016, 462, S184-S194.	4.4	112
23	The Colour and Stereo Surface Imaging System (CaSSIS) for the ExoMars Trace Gas Orbiter. Space Science Reviews, 2017, 212, 1897-1944.	8.1	111
24	Seasonal mass transfer on the nucleus of comet 67P/Chuyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S357-S371.	4.4	111
25	Observations of periglacial landforms in Utopia Planitia with the High Resolution Imaging Science Experiment (HiRISE). Journal of Geophysical Research, 2009, 114, .	3.3	110
26	Observations of the northern seasonal polar cap on Mars: I. Spring sublimation activity and processes. Icarus, 2013, 225, 881-897.	2.5	109
27	The global meter-level shape model of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2017, 607, L1.	5.1	107
28	The morphology and surface processes of Comet 19/P Borrelly. Icarus, 2004, 167, 45-53.	2.5	102
29	Are fractured cliffs the source of cometary dust jets? Insights from OSIRIS/Rosetta at 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 587, A14.	5.1	102
30	The pristine interior of comet 67P revealed by the combined Aswan outburst and cliff collapse. Nature Astronomy, 2017, 1, .	10.1	100
31	OSIRIS observations of meter-sized exposures of H ₂ O ice at the surface of 67P/Churyumov-Gerasimenko and interpretation using laboratory experiments. Astronomy and Astrophysics, 2015, 583, A25.	5.1	97
32	Rosetta's comet 67P/Churyumov-Gerasimenko sheds its dusty mantle to reveal its icy nature. Science, 2016, 354, 1566-1570.	12.6	97
33	Color imaging of Mars by the High Resolution Imaging Science Experiment (HiRISE). Icarus, 2010, 205, 38-52.	2.5	89
34	Cometary Dust. Space Science Reviews, 2018, 214, 1.	8.1	88
35	Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images: The southern hemisphere. Astronomy and Astrophysics, 2016, 593, A110.	5.1	86
36	HiRISE observations of gas sublimation-driven activity in Mars' southern polar regions: I. Erosion of the surface. Icarus, 2010, 205, 283-295.	2.5	84

#	Article	IF	CITATIONS
37	The BepiColombo Laser Altimeter (BELA): Concept and baseline design. Planetary and Space Science, 2007, 55, 1398-1413.	1.7	80
38	BepiColombo - Mission Overview and Science Goals. Space Science Reviews, 2021, 217, 1.	8.1	76
39	Sublimation of water ice mixed with silicates and tholins: Evolution of surface texture and reflectance spectra, with implications for comets. Icarus, 2016, 267, 154-173.	2.5	73
40	Preliminary results on photometric properties of materials at the Sagan Memorial Station, Mars. Journal of Geophysical Research, 1999, 104, 8809-8830.	3.3	71
41	Fractures on comet 67P/Churyumovâ€Gerasimenko observed by Rosetta/OSIRIS. Geophysical Research Letters, 2015, 42, 5170-5178.	4.0	71
42	Scientific assessment of the quality of OSIRIS images. Astronomy and Astrophysics, 2015, 583, A46.	5.1	67
43	Detection of exposed H ₂ O ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 595, A102.	5.1	67
44	HiRISE observations of gas sublimation-driven activity in Mars' southern polar regions: II. Surficial deposits and their origins. Icarus, 2010, 205, 296-310.	2.5	63
45	Surface changes on comet 67P/Churyumov-Gerasimenko suggest a more active past. Science, 2017, 355, 1392-1395.	12.6	63
46	Dust-to-Gas and Refractory-to-Ice Mass Ratios of Comet 67P/Churyumov-Gerasimenko from Rosetta Observations. Space Science Reviews, 2020, 216, 1.	8.1	61
47	Temporal morphological changes in the Imhotep region of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A36.	5.1	60
48	Geomorphology of the Imhotep region on comet 67P/Churyumov-Gerasimenko from OSIRIS observations. Astronomy and Astrophysics, 2015, 583, A35.	5.1	59
49	The geomorphology of (21) Lutetia: Results from the OSIRIS imaging system onboard ESA's Rosetta spacecraft. Planetary and Space Science, 2012, 66, 96-124.	1.7	58
50	Sunset jets observed on comet 67P/Churyumov-Gerasimenko sustained by subsurface thermal lag. Astronomy and Astrophysics, 2016, 586, A7.	5.1	55
51	Spectral heterogeneity on Phobos and Deimos: HiRISE observations and comparisons to Mars Pathfinder results. Planetary and Space Science, 2011, 59, 1281-1292.	1.7	53
52	Comet 67P/Churyumov-Gerasimenko: Constraints on its origin from OSIRIS observations. Astronomy and Astrophysics, 2015, 583, A44.	5.1	53
53	Modelling observations of the inner gas and dust coma of comet 67P/Churyumov-Gerasimenko using ROSINA/COPS and OSIRIS data: First results. Astronomy and Astrophysics, 2016, 589, A90.	5.1	53
54	Acceleration of individual, decimetre-sized aggregates in the lower coma of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S78-S88.	4.4	52

Νιςκ Τηομας

#	Article	IF	CITATIONS
55	Seasonally active frostâ€dust avalanches on a north polar scarp of Mars captured by HiRISE. Geophysical Research Letters, 2008, 35, .	4.0	48
56	SIMBIO-SYS: Scientific Cameras and Spectrometer for the BepiColombo Mission. Space Science Reviews, 2020, 216, 1.	8.1	47
57	Evidence of sub-surface energy storage in comet 67P from the outburst of 2016 July 03. Monthly Notices of the Royal Astronomical Society, 2017, 469, s606-s625.	4.4	45
58	The scattering phase function of comet 67P/Churyumov–Gerasimenko coma as seen from the Rosetta/OSIRIS instrument. Monthly Notices of the Royal Astronomical Society, 2017, 469, S404-S415.	4.4	44
59	The cratering history of asteroid (21) Lutetia. Planetary and Space Science, 2012, 66, 87-95.	1.7	43
60	Seasonal erosion and restoration of the dust cover on comet 67P/Churyumov-Gerasimenko as observed by OSIRIS onboard Rosetta. Astronomy and Astrophysics, 2017, 604, A114.	5.1	43
61	Dust mass distribution around comet 67P/Churyumov–Gerasimenko determined via parallax measurements using Rosetta's OSIRIS cameras. Monthly Notices of the Royal Astronomical Society, 2017, 469, S276-S284.	4.4	43
62	Variegation of comet 67P/Churyumov-Gerasimenko in regions showing activity. Astronomy and Astrophysics, 2016, 586, A80.	5.1	43
63	Geological map and stratigraphy of asteroid 21 Lutetia. Planetary and Space Science, 2012, 66, 125-136.	1.7	42
64	Thermal inertia and roughness of the nucleus of comet 67P/Churyumov–Gerasimenko from MIRO and VIRTIS observations. Astronomy and Astrophysics, 2018, 616, A122.	5.1	42
65	Geomorphology and spectrophotometry of Philae's landing site on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A41.	5.1	41
66	The pebbles/boulders size distributions on Sais: Rosetta's final landing site on comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S636-S645.	4.4	40
67	Tensile strength of 67P/Churyumov–Gerasimenko nucleus material from overhangs. Astronomy and Astrophysics, 2018, 611, A33.	5.1	40
68	Large-scale dust jets in the coma of 67P/Churyumov-Gerasimenko as seen by the OSIRIS instrument onboard Rosetta. Astronomy and Astrophysics, 2015, 583, A9.	5.1	39
69	Thermal modelling of water activity on comet 67P/Churyumov-Gerasimenko with global dust mantle and plural dust-to-ice ratio. Monthly Notices of the Royal Astronomical Society, 2017, 469, S295-S311.	4.4	39
70	The northern hemisphere of asteroid (21) Lutetia—topography and orthoimages from Rosetta OSIRIS NAC image data. Planetary and Space Science, 2012, 66, 54-63.	1.7	36
71	Photometric properties of Mars soils analogs. Journal of Geophysical Research E: Planets, 2013, 118, 2045-2072.	3.6	36
72	VISâ€NIR reflectance of water ice/regolith analogue mixtures and implications for the detectability of ice mixed within planetary regoliths. Geophysical Research Letters, 2015, 42, 6205-6212.	4.0	36

#	Article	IF	CITATIONS
73	Sublimation of ice–tholins mixtures: A morphological and spectro-photometric study. Icarus, 2016, 266, 288-305.	2.5	35
74	Morphological and Spectral Diversity of the Clay-Bearing Unit at the ExoMars Landing Site Oxia Planum. Astrobiology, 2021, 21, 464-480.	3.0	35
75	Observations of Phobos, Deimos, and bright stars with the Imager for Mars Pathfinder. Journal of Geophysical Research, 1999, 104, 9055-9068.	3.3	34
76	Rosetta Radio Science Investigations (RSI). Space Science Reviews, 2007, 128, 599-627.	8.1	34
77	CAMAM: A Miniature Laser Ablation Ionisation Mass Spectrometer and Microscopeâ€Camera System for <i>In Situ</i> Investigation of the Composition and Morphology of Extraterrestrial Materials. Geostandards and Geoanalytical Research, 2014, 38, 441-466.	3.1	34
78	Observations and analysis of a curved jet in the coma of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 588, L3.	5.1	34
79	Morphology and dynamics of the jets of comet 67P/Churyumov-Gerasimenko: Early-phase development. Astronomy and Astrophysics, 2015, 583, A11.	5.1	33
80	Constraints on cometary surface evolution derived from a statistical analysis of 67P's topography. Monthly Notices of the Royal Astronomical Society, 2017, 469, S329-S338.	4.4	33
81	Meter-scale thermal contraction crack polygons on the nucleus of comet 67P/Churyumov-Gerasimenko. Icarus, 2018, 301, 173-188.	2.5	33
82	Regional unit definition for the nucleus of comet 67P/Churyumov-Gerasimenko on the SHAP7 model. Planetary and Space Science, 2018, 164, 19-36.	1.7	32
83	The highly active Anhur–Bes regions in the 67P/Churyumov–Gerasimenko comet: results from OSIRIS/ROSETTA observations. Monthly Notices of the Royal Astronomical Society, 2017, 469, S93-S107.	4.4	30
84	The Dust-to-Gas Ratio, Size Distribution, and Dust Fall-Back Fraction of Comet 67P/Churyumov-Gerasimenko: Inferences From Linking the Optical and Dynamical Properties of the Inner Comae. Frontiers in Physics, 2020, 8, .	2.1	30
85	The Holy Grail: A road map for unlocking the climate record stored within Mars' polar layered deposits. Planetary and Space Science, 2020, 184, 104841.	1.7	30
86	Polygonal cracks in the seasonal semiâ€ŧranslucent CO ₂ ice layer in Martian polar areas. Journal of Geophysical Research, 2012, 117, .	3.3	29
87	Overview of Lutetia's surface composition. Planetary and Space Science, 2012, 66, 23-30.	1.7	29
88	A porosity gradient in 67P/C-G nucleus suggested from CONSERT and SESAME-PP results: an interpretation based on new laboratory permittivity measurements of porous icy analogues. Monthly Notices of the Royal Astronomical Society, 2016, 462, S89-S98.	4.4	29
89	Experimenting with Mixtures of Water Ice and Dust as Analogues for Icy Planetary Material. Space Science Reviews, 2019, 215, 1.	8.1	29
90	Surface Morphology of Comets and Associated Evolutionary Processes: A Review of Rosetta's Observations of 67P/Churyumov–Gerasimenko. Space Science Reviews, 2019, 215, 1.	8.1	28

#	Article	IF	CITATIONS
91	Implications for the origin and evolution of Martian Recurring Slope Lineae at Hale crater from CaSSIS observations. Planetary and Space Science, 2020, 187, 104947.	1.7	28
92	HiRISE observations of gas sublimation-driven activity in Mars' southern polar regions: IV. Fluid dynamics models of CO2 jets. Icarus, 2011, 212, 66-85.	2.5	27
93	Geologic mapping of the Comet 67P/Churyumov–Gerasimenko's Northern hemisphere. Monthly Notices of the Royal Astronomical Society, 2016, 462, S352-S367.	4.4	27
94	PITS FORMATION FROM VOLATILE OUTGASSING ON 67P/CHURYUMOV–GERASIMENKO. Astrophysical Journal Letters, 2015, 814, L5.	8.3	26
95	The SCITEAS experiment: Optical characterizations of sublimating icy planetary analogues. Planetary and Space Science, 2015, 109-110, 106-122.	1.7	26
96	Decimetre-scaled spectrophotometric properties of the nucleus of comet 67P/Churyumov–Gerasimenko from OSIRIS observations. Monthly Notices of the Royal Astronomical Society, 2016, 462, S287-S303.	4.4	26
97	Cliffs versus plains: Can ROSINA/COPS and OSIRIS data of comet 67P/Churyumov-Gerasimenko in autumn 2014 constrain inhomogeneous outgassing?. Astronomy and Astrophysics, 2017, 605, A112.	5.1	26
98	Timescales of the Climate Record in the South Polar Ice Cap of Mars. Geophysical Research Letters, 2019, 46, 7268-7277.	4.0	26
99	Geodesy, Geophysics and Fundamental Physics Investigations of the BepiColombo Mission. Space Science Reviews, 2021, 217, 1.	8.1	25
100	Long-term survival of surface water ice on comet 67P. Monthly Notices of the Royal Astronomical Society, 2017, 469, S582-S597.	4.4	24
101	Thermal fracturing on comets. Astronomy and Astrophysics, 2018, 610, A76.	5.1	24
102	Osiris—The optical, spectroscopic and infrared remote imaging system for the Rosetta Orbiter. Advances in Space Research, 1998, 21, 1505-1515.	2.6	23
103	A Laser Altimeter Performance Model and Its Application to BELA. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44, 3308-3319.	6.3	23
104	Numerical thermal mathematical model correlation to thermal balance test using adaptive particle swarm optimization (APSO). Applied Thermal Engineering, 2012, 38, 168-174.	6.0	23
105	Sublimation of icy aggregates in the coma of comet 67P/Churyumov–Gerasimenko detected with the OSIRIS cameras on board <i>Rosetta</i> . Monthly Notices of the Royal Astronomical Society, 2016, 462, S57-S66.	4.4	23
106	Geomorphological mapping of comet 67P/Churyumov–Gerasimenko's Southern hemisphere. Monthly Notices of the Royal Astronomical Society, 2016, 462, S573-S592.	4.4	23
107	Experimental characterization of the opposition surge in fine-grained water–ice and high albedo ice analogs. Icarus, 2016, 264, 109-131.	2.5	23
108	Comparative study of the surface roughness of the Moon, Mars and Mercury. Planetary and Space Science, 2012, 73, 287-293.	1.7	22

#	Article	IF	CITATIONS
109	Physical properties and dynamical relation of the circular depressions on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2016, 591, A132.	5.1	22
110	A three-dimensional modelling of the layered structure of comet 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2017, 469, S741-S754.	4.4	22
111	On deviations from free-radial outflow in the inner coma of comet 67P/Churyumov–Gerasimenko. Icarus, 2018, 311, 1-22.	2.5	21
112	Spectrophotometry of the Khonsu region on the comet 67P/Churyumov–Gerasimenko using OSIRIS instrument images. Monthly Notices of the Royal Astronomical Society, 2016, 462, S274-S286.	4.4	20
113	Evidence for geologic processes on comets. Journal of Geophysical Research E: Planets, 2016, 121, 2194-2210.	3.6	20
114	A comparison of multiple Rosetta data sets and 3D model calculations of 67P/Churyumov-Gerasimenko coma around equinox (May 2015). Icarus, 2019, 328, 104-126.	2.5	20
115	Polarimetry of Water Ice Particles Providing Insights on Grain Size and Degree of Sintering on Icy Planetary Surfaces. Journal of Geophysical Research E: Planets, 2018, 123, 2564-2584.	3.6	19
116	CASTAway: An asteroid main belt tour and survey. Advances in Space Research, 2018, 62, 1998-2025.	2.6	18
117	Constraining models of activity on comet 67P/Churyumov-Gerasimenko with Rosetta trajectory, rotation, and water production measurements. Astronomy and Astrophysics, 2019, 630, A18.	5.1	18
118	An integrated exobiology package for the search for life on Mars. Advances in Space Research, 1999, 23, 301-308.	2.6	17
119	Retrieving optical depth from shadows in orbiter images of Mars. Icarus, 2011, 214, 447-461.	2.5	17
120	Space-qualified laser system for the BepiColombo Laser Altimeter. Applied Optics, 2013, 52, 8732.	1.8	17
121	Characterization of the permittivity of controlled porous water ice-dust mixtures to support the radar exploration of icy bodies. Journal of Geophysical Research E: Planets, 2016, 121, 2426-2443.	3.6	17
122	Single Image Super-Resolution Restoration of TGO CaSSIS Colour Images: Demonstration with Perseverance Rover Landing Site and Mars Science Targets. Remote Sensing, 2021, 13, 1777.	4.0	17
123	The geography of Oxia Planum. Journal of Maps, 2021, 17, 621-637.	2.0	16
124	Sub-surface CO ₂ gas flow in Mars' polar regions: Gas transport under constant production rate conditions. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	15
125	The Agilkia boulders/pebbles size–frequency distributions: OSIRIS and ROLIS joint observations of 67P surface. Monthly Notices of the Royal Astronomical Society, 2016, 462, S242-S252.	4.4	15
126	Exposed bright features on the comet 67P/Churyumov–Gerasimenko: distribution and evolution. Astronomy and Astrophysics, 2018, 613, A36.	5.1	15

#	Article	IF	CITATIONS
127	The BepiColombo Laser Altimeter. Space Science Reviews, 2021, 217, 1.	8.1	15
128	Thermal analysis of a reflective baffle designed for space applications. Acta Astronautica, 2011, 69, 323-334.	3.2	14
129	Optical depth of the Martian atmosphere and surface albedo from high-resolution orbiter images. Planetary and Space Science, 2012, 60, 287-296.	1.7	14
130	Lutetia× ³ s lineaments. Planetary and Space Science, 2014, 101, 186-195.	1.7	13
131	Towards New Comet Missions. Space Science Reviews, 2019, 215, 1.	8.1	13
132	The Ganymede laser altimeter (GALA): key objectives, instrument design, and performance. CEAS Space Journal, 2019, 11, 381-390.	2.3	13
133	3DPD: A photogrammetric pipeline for a PUSH frame stereo cameras. Planetary and Space Science, 2021, 198, 105165.	1.7	13
134	Loss of the Surface Layers of Comet Nuclei. Space Science Reviews, 2008, 138, 165-177.	8.1	12
135	BELA receiver performance modeling over the BepiColombo mission lifetime. Planetary and Space Science, 2010, 58, 309-318.	1.7	12
136	Observations of the northern seasonal polar cap on Mars II: HiRISE photometric analysis of evolution of northern polar dunes in spring. Icarus, 2013, 225, 898-910.	2.5	12
137	Permittivity measurements of porous matter in support of investigations of the surface and interior of 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A39.	5.1	12
138	3D Direct Simulation Monte Carlo Modelling of the Inner Gas Coma of Comet 67P/Churyumov–Gerasimenko: A Parameter Study. Earth, Moon and Planets, 2016, 117, 41-64.	0.6	12
139	Gas flow in near surface comet like porous structures: Application to 67P/Churyumov-Gerasimenko. Planetary and Space Science, 2018, 161, 57-67.	1.7	12
140	Rapid Single Image-Based DTM Estimation from ExoMars TGO CaSSIS Images Using Generative Adversarial U-Nets. Remote Sensing, 2021, 13, 2877.	4.0	12
141	Opposition effect on comet 67P/Churyumov-Gerasimenko using Rosetta-OSIRIS images. Astronomy and Astrophysics, 2017, 599, A11.	5.1	11
142	Multivariate statistical analysis of OSIRIS/Rosetta spectrophotometric data of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2017, 600, A115.	5.1	11
143	Water vapor deposition from the inner gas coma onto the nucleus of Comet 67P/Churyumov-Gerasimenko. Planetary and Space Science, 2018, 157, 1-9.	1.7	11
144	A laboratory-based dielectric model for the radar sounding of the martian subsurface. Icarus, 2019, 321, 960-973.	2.5	11

#	Article	IF	CITATIONS
145	Ultra-High-Resolution 1 m/pixel CaSSIS DTM Using Super-Resolution Restoration and Shape-from-Shading: Demonstration over Oxia Planum on Mars. Remote Sensing, 2021, 13, 2185.	4.0	11
146	The influence of recent major crater impacts on the surrounding surfaces of (21) Lutetia. Icarus, 2013, 226, 89-100.	2.5	10
147	On-Ground Performance and Calibration of the ExoMars Trace Gas Orbiter CaSSIS Imager. Space Science Reviews, 2017, 212, 1871-1896.	8.1	10
148	Dynamics of recent landslides (<20 My) on Mars: Insights from high-resolution topography on Earth and Mars and numerical modelling. Planetary and Space Science, 2021, 206, 105303.	1.7	10
149	The Ganymede Laser Altimeter (GALA) for the Jupiter Icy Moons Explorer (JUICE): Mission, science, and instrumentation of its receiver modules. Advances in Space Research, 2022, 69, 2283-2304.	2.6	10
150	A wide-beam continuous solar simulator for simulating the solar flux at the orbit of Mercury. Measurement Science and Technology, 2011, 22, 065903.	2.6	9
151	Geometric calibration of Colour and Stereo Surface Imaging System of ESA's Trace Gas Orbiter. Advances in Space Research, 2018, 61, 487-496.	2.6	9
152	Earth-Based Visible and Near-IR Imaging of Mercury. Space Science Reviews, 2007, 132, 351-397.	8.1	8
153	Characterization of OSIRIS NAC filters for the interpretation of multispectral data of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A45.	5.1	8
154	Regional surface morphology of comet 67P/Churyumov-Gerasimenko from Rosetta/OSIRIS images: The southern hemisphere (Corrigendum). Astronomy and Astrophysics, 2017, 598, C2.	5.1	8
155	Geomorphological and spectrophotometric analysis of Seth's circular niches on comet 67P/Churyumov–Gerasimenko using OSIRIS images. Monthly Notices of the Royal Astronomical Society, 2017, 469, S238-S251.	4.4	8
156	Topographic correction of HiRISE and CaSSIS images: Validation and application to color observations of Martian albedo features. Planetary and Space Science, 2021, 200, 105198.	1.7	8
157	Absolute calibration of the Colour and Stereo Surface Imaging System (CaSSIS). Planetary and Space Science, 2022, 211, 105394.	1.7	8
158	Multiband photometry of Martian Recurring Slope Lineae (RSL) and dust-removed features at Horowitz crater, Mars from TGO/CaSSIS color observations. Planetary and Space Science, 2022, 214, 105443.	1.7	8
159	Geology, in-situ resource-identification and engineering analysis of the Vernal crater area (Arabia) Tj ETQq1 1	0.784314 rg 1.7	BT ¦Overlock
160	Thermophysics of fractures on comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2017, 608, A121.	5.1	7
161	The big lobe of 67P/Churyumov–Gerasimenko comet: morphological and spectrophotometric evidences of layering as from OSIRIS data. Monthly Notices of the Royal Astronomical Society, 2018, 479, 1555-1568.	4.4	7
162	Porosity gradients as a means of driving lateral flows at cometary surfaces. Planetary and Space Science, 2020, 180, 104752.	1.7	7

#	Article	IF	CITATIONS
163	Limitations in the determination of surface emission distributions on comets through modelling of observational data - A case study based on Rosetta observations. Icarus, 2020, 346, 113742.	2.5	7
164	New constraints on the chemical composition and outgassing of 67P/Churyumov-Gerasimenko. Planetary and Space Science, 2021, 200, 105194.	1.7	7
165	Comparison of the dust distributions in the innermost comae of comets—1P/Halley and 19P/Borrelly spacecraft observations. Planetary and Space Science, 2007, 55, 974-985.	1.7	6
166	PERFORMANCE EVALUATION OF 3DPD, THE PHOTOGRAMMETRIC PIPELINE FOR THE CASSIS STEREO IMAGES. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-2/W13, 1443-1449.	0.2	6
167	CaSSIS color and multi-angular observations of Martian slope streaks. Planetary and Space Science, 2021, 209, 105373.	1.7	6
168	A CaSSIS and HiRISE map of the Clay-bearing Unit at the ExoMars 2022 landing site in Oxia Planum. Planetary and Space Science, 2022, 214, 105429.	1.7	6
169	Models of high velocity impacts into dust-covered ice: Application to Martian northern lowlands. Planetary and Space Science, 2010, 58, 1160-1168.	1.7	5
170	High accuracy alignment facility for the receiver and transmitter of the BepiColombo Laser Altimeter. Applied Optics, 2012, 51, 4907.	1.8	5
171	Measurement and stability of the pointing of the BepiColombo Laser Altimeter under thermal load. Acta Astronautica, 2014, 105, 171-180.	3.2	5
172	The BepiColombo Laser Altimeter (BELA): a post-launch summary. CEAS Space Journal, 2019, 11, 371-380.	2.3	5
173	Dayside-to-nightside dust coma brightness asymmetry and its implications for nightside activity at Comet 67P/Churyumov–Gerasimenko. Icarus, 2020, 351, 113968.	2.5	5
174	Reflectance study of ice and Mars soil simulant associations – I. H2O ice. Icarus, 2021, 358, 114169.	2.5	5
175	A PHOTOGRAMMETRIC PIPELINE FOR THE 3D RECONSTRUCTION OF CASSIS IMAGES ON BOARD EXOMARS TGO. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-3/W1, 133-139.	0.2	5
176	Polarimetric NIR reflectance measurements of regolith simulants at zero phase angle. Planetary and Space Science, 2008, 56, 1925-1938.	1.7	4
177	Electromagnetic compatibility of transmitter, receiver, and communication port of a space-qualified laser altimeter. , 2016, , .		4
178	Investigation of the Surface Composition by Laser Ablation/Ionization Mass Spectrometry. , 2021, , .		4
179	AMBITION – comet nucleus cryogenic sample return. Experimental Astronomy, 2022, 54, 1077-1128.	3.7	4
180	Photometric calibration of the Halley Multicolour Camera. Applied Optics, 1990, 29, 1503.	2.1	3

#	Article	IF	CITATIONS
181	Io Volcano Observer's (IVO) integrated approach to optimizing system design for radiation challenges. , 2012, , .		3
182	A comprehensive investigation of the Galilean moon, Io, by tracing mass and energy flows. Experimental Astronomy, 2022, 54, 791-807.	3.7	3
183	The effect of thermal conductivity on the outgassing and local gas dynamics from cometary nuclei. Astronomy and Astrophysics, 2021, 655, A20.	5.1	3
184	Subpixel-Scale Topography Retrieval of Mars Using Single-Image DTM Estimation and Super-Resolution Restoration. Remote Sensing, 2022, 14, 257.	4.0	3
185	A numerical model of dust particle impacts during a cometary encounter with application to ESA's Comet Interceptor mission. Acta Astronautica, 2022, 195, 243-250.	3.2	3
186	CaSSIS-based stereo products for Mars after three years in orbit. Planetary and Space Science, 2022, 219, 105515.	1.7	3
187	Observations of Martian aerosols with the Imager for Mars Pathfinder. Advances in Space Research, 1997, 19, 1271-1276.	2.6	2
188	Comprehensive in-orbit performance evaluation of the BepiColombo Laser Altimeter (BELA). Planetary and Space Science, 2021, 195, 105088.	1.7	2
189	Sample return of primitive matter from the outer Solar System. Experimental Astronomy, 0, , 1.	3.7	2
190	Near-infrared reflectance spectroscopy of sublimating salty ice analogues. Implications for icy moons. Planetary and Space Science, 2022, 211, 105391.	1.7	2
191	The BepiColombo Laser Altimeter (BeLA) power converter module (PCM): Concept and characterisation. Review of Scientific Instruments, 2017, 88, 034702.	1.3	1
192	The Importance of the Climate Record in the Martian Polar Layered Deposits. , 2021, 53, .		1
193	Mars and the ESA Science Programme - the case for Mars polar science. Experimental Astronomy, 2022, 54, 677-693.	3.7	1
194	Dust Emission from the Surface. Astronomy and Astrophysics Library, 2020, , 281-397.	0.1	1
195	Generation and Optimization of Spectral Cluster Maps to Enable Data Fusion of CaSSIS and CRISM Datasets. Remote Sensing, 2022, 14, 2524.	4.0	1
196	Dielectric Spectroscopy Measurements of Saline Aqueous Solutions in the VHF-UHF Bands: Toward a Dielectric Model of Icy Satellite Water Reservoirs. , 2018, , .		0
197	Future Investigations of Comets. Astronomy and Astrophysics Library, 2020, , 439-445.	0.1	0
198	Gas Emissions Near the Nucleus. Astronomy and Astrophysics Library, 2020, , 179-280.	0.1	0

#	Article	IF	CITATIONS
199	VIS spectroscopy of NaCl – water ice mixtures irradiated with 1 and 5ÂkeV electrons under Europa's conditions: Formation of colour centres and Na colloids. Icarus, 2022, 379, 114977.	2.5	0
200	Pre-landslide topographic reconstruction in Baetis Chaos, mars using a CaSSIS Digital Elevation Model, Planetary and Space Science, 2022, 218, 105505.	1.7	0
201	xmins:mml= http://www.w3.org/1998/Math/Math/MathML_altimg= si125.svg_display= inline id="d1e1871"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub> and H <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si125.svg" display="inline"</mml:math 	2.5	0

><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><