Dongbo Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2464050/publications.pdf

Version: 2024-02-01

210 papers

13,806 citations

68 h-index 26613

g-index

212 all docs 212 docs citations

times ranked

212

8359 citing authors

#	Article	IF	CITATIONS
1	2D/2D FeNi-layered double hydroxide/bimetal-MOFs nanosheets for enhanced photo-Fenton degradation of antibiotics: Performance and synergetic degradation mechanism. Chemosphere, 2022, 287, 132061.	8.2	35
2	Revealing the mechanisms of rhamnolipid enhanced hydrogen production from dark fermentation of waste activated sludge. Science of the Total Environment, 2022, 806, 150347.	8.0	9
3	Response of soil protozoa to acid mine drainage in a contaminated terrace. Journal of Hazardous Materials, 2022, 421, 126790.	12.4	33
4	Peroxymonosulfate (PMS) activation by mackinawite for the degradation of organic pollutants: Underappreciated role of dissolved sulfur derivatives. Science of the Total Environment, 2022, 811, 151421.	8.0	22
5	The degradation of allyl isothiocyanate and its impact on methane production from anaerobic co-digestion of kitchen waste and waste activated sludge. Bioresource Technology, 2022, 347, 126366.	9.6	6
6	One-pot synthesis of oxygen-vacancy-rich Cu-doped UiO-66 for collaborative adsorption and photocatalytic degradation of ciprofloxacin. Science of the Total Environment, 2022, 815, 151962.	8.0	31
7	Insights into the synergy between functional microbes and dissolved oxygen partition in the single-stage partial nitritation-anammox granules system. Bioresource Technology, 2022, 347, 126364.	9.6	39
8	Insights into how poly aluminum chloride and poly ferric sulfate affect methane production from anaerobic digestion of waste activated sludge. Science of the Total Environment, 2022, 811, 151413.	8.0	20
9	Revealing the intrinsic drawbacks of waste activated sludge for efficient anaerobic digestion and the potential mitigation strategies. Bioresource Technology, 2022, 345, 126482.	9.6	25
10	Facile synthesis of Mn, Ce co-doped g-C3N4 composite for peroxymonosulfate activation towards organic contaminant degradation. Chemosphere, 2022, 293, 133472.	8.2	41
11	Constructing crystalline needle-mushroom-like/ amorphous nanosheet carbon nitride homojunction by molten salt method for photocatalytic degradation of tetracycline hydrochloride. Journal of Materials Science: Materials in Electronics, 2022, 33, 6043-6058.	2.2	4
12	Effect of lignin on short-chain fatty acids production from anaerobic fermentation of waste activated sludge. Water Research, 2022, 212, 118082.	11.3	48
13	High-performance photocatalytic decomposition of PFOA by BiOX/TiO2 heterojunctions: Self-induced inner electric fields and band alignment. Journal of Hazardous Materials, 2022, 430, 128195.	12.4	43
14	Evaluating the effect of diclofenac on hydrogen production by anaerobic fermentation of waste activated sludge. Journal of Environmental Management, 2022, 308, 114641.	7.8	11
15	New insights into different surfactants' impacts on sludge fermentation: Focusing on the particular metabolic processes and microbial genetic traits. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	6.0	39
16	Enhanced the Synergistic Effect of Tetracycline Adsorption and Photocatalytic Degradation on a Mesoporous Carbon Nitride. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 1567-1581.	3.7	0
17	Co-doped Fe-MIL-100 as an adsorbent for tetracycline removal from aqueous solution. Environmental Science and Pollution Research, 2022, 29, 55026-55038.	5.3	6
18	Enhancing Methane Production from Anaerobic Digestion of Waste Activated Sludge through a Novel Sodium Percarbonate (SPC) Pretreatment: Reaction Kinetics and Mechanisms. ACS ES&T Engineering, 2022, 2, 1326-1340.	7.6	35

#	Article	IF	CITATIONS
19	ZIF-8-derived photocatalyst membrane for water decontamination: From static adsorption-degradation to dynamic flow removal. Science of the Total Environment, 2022, 824, 153865.	8.0	10
20	Long-term effects of Cu(II) on denitrification in hydrogen-based membrane biofilm reactor: Performance, extracellular polymeric substances and microbial communities. Science of the Total Environment, 2022, 830, 154526.	8.0	17
21	Sulfite-based pretreatment promotes volatile fatty acids production from microalgae: Performance, mechanism, and implication. Bioresource Technology, 2022, 354, 127179.	9.6	8
22	Ferric chloride aiding nitrite pretreatment for the enhancement of the quantity and quality of short-chain fatty acids production in waste activated sludge. Water Research, 2022, 219, 118569.	11.3	12
23	Mechanism and Origin of Stereoselectivity of Ni-Catalyzed Cyclization/Carboxylation of Bromoalkynes with CO ₂ . Journal of Organic Chemistry, 2022, 87, 8342-8350.	3.2	4
24	Synthesis of porous pinecone-like structure via facile carbon quantum dots modulation: A promising approach for improving the photocatalytic capability of carbon nitride. Journal of Environmental Chemical Engineering, 2022, 10, 107757.	6.7	9
25	Understanding the interaction between triclocarban and denitrifiers. Journal of Hazardous Materials, 2021, 401, 123343.	12.4	16
26	Efficient degradation of bisphenol A via peroxydisulfate activation using in-situ N-doped carbon nanoparticles: Structure-function relationship and reaction mechanism. Journal of Colloid and Interface Science, 2021, 586, 551-562.	9.4	52
27	Biohythane production and microbial characteristics of two alternating mesophilic and thermophilic two-stage anaerobic co-digesters fed with rice straw and pig manure. Bioresource Technology, 2021, 320, 124303.	9.6	45
28	Denitrifying biofilm processes for wastewater treatment: developments and perspectives. Environmental Science: Water Research and Technology, 2021, 7, 40-67.	2.4	12
29	Electro-assisted autohydrogenotrophic reduction of perchlorate and microbial community in a dual-chamber biofilm-electrode reactor. Chemosphere, 2021, 264, 128548.	8.2	8
30	Triclosan facilitates the recovery of volatile fatty acids from waste activated sludge. Science of the Total Environment, 2021, 754, 142336.	8.0	12
31	Mechanistic insights into the effect of poly ferric sulfate on anaerobic digestion of waste activated sludge. Water Research, 2021, 189, 116645.	11.3	95
32	In-situ growth of \hat{I}^2 -Bi2O3 nanosheets on g-C3N4 to construct direct Z-scheme heterojunction with enhanced photocatalytic activities. Journal of Alloys and Compounds, 2021, 859, 157795.	5.5	54
33	Template-free synthesis of high specific surface area gauze-like porous graphitic carbon nitride for efficient photocatalytic degradation of tetracycline hydrochloride. Journal of Materials Science, 2021, 56, 4641-4653.	3.7	6
34	Understanding the fate and impact of capsaicin in anaerobic co-digestion of food waste and waste activated sludge. Water Research, 2021, 188, 116539.	11.3	99
35	Self-assembly synthesis of petal-like Cl-doped g-C3N4 nanosheets with tunable band structure for enhanced photocatalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125780.	4.7	26
36	<i>In situ</i> chemical oxidation: peroxide or persulfate coupled with membrane technology for wastewater treatment. Journal of Materials Chemistry A, 2021, 9, 11944-11960.	10.3	69

#	Article	IF	CITATIONS
37	The fate and impact of coagulants/flocculants in sludge treatment systems. Environmental Science: Water Research and Technology, 2021, 7, 1387-1401.	2.4	6
38	Improving Medium-Chain Fatty Acid Production from Anaerobic Fermentation of Waste Activated Sludge Using Free Ammonia. ACS ES&T Engineering, 2021, 1, 478-489.	7.6	33
39	Synthesis of mesoporous carbon nitride by molten salt-assisted silica aerogel for Rhodamine B adsorption and photocatalytic degradation. Journal of Materials Science, 2021, 56, 11248-11265.	3.7	18
40	Facile synthesis of $\hat{l}\pm /\hat{l}^2$ -Bi2O3 hetero-phase junction by a solvothermal method for enhanced photocatalytic activities. Molecular Catalysis, 2021, 503, 111431.	2.0	11
41	Highly selective electrochemical nitrate reduction using copper phosphide self-supported copper foam electrode: Performance, mechanism, and application. Water Research, 2021, 193, 116881.	11.3	121
42	The impact and fate of clarithromycin in anaerobic digestion of waste activated sludge for biogas production. Environmental Research, 2021, 195, 110792.	7.5	27
43	Different activation methods in sulfate radical-based oxidation for organic pollutants degradation: Catalytic mechanism and toxicity assessment of degradation intermediates. Science of the Total Environment, 2021, 772, 145522.	8.0	123
44	Unveiling the different faces of chlortetracycline in fermentative volatile fatty acid production from waste activated sludge. Bioresource Technology, 2021, 329, 124875.	9.6	9
45	TGF- \hat{l}^21 Facilitates TAp63 \hat{l}^\pm Protein Lysosomal Degradation to Promote Pancreatic Cancer Cell Migration. Biology, 2021, 10, 597.	2.8	5
46	Tonalide facilitates methane production from anaerobic digestion of waste activated sludge. Science of the Total Environment, 2021, 779, 146195.	8.0	11
47	Digestion liquid based alkaline pretreatment of waste activated sludge promotes methane production from anaerobic digestion. Water Research, 2021, 199, 117198.	11.3	63
48	Improving nutrients removal and energy recovery from wastes using hydrochar. Science of the Total Environment, 2021, 783, 146980.	8.0	22
49	Enhancing methane production from anaerobic digestion of waste activated sludge with addition of sodium lauroyl sarcosinate. Bioresource Technology, 2021, 336, 125321.	9.6	11
50	Recent advances in partial denitrification-anaerobic ammonium oxidation process for mainstream municipal wastewater treatment. Chemosphere, 2021, 278, 130436.	8.2	88
51	Crystal phase transition of \hat{l}^2 -Bi2O3 and its enhanced photocatalytic activities for tetracycline hydrochloride. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127068.	4.7	17
52	In-depth research on percarbonate expediting zero-valent iron corrosion for conditioning anaerobically digested sludge. Journal of Hazardous Materials, 2021, 419, 126389.	12.4	23
53	A critical review on the application of biochar in environmental pollution remediation: Role of persistent free radicals (PFRs). Journal of Environmental Sciences, 2021, 108, 201-216.	6.1	76
54	Enhancing autotrophic nitrogen removal with a novel dissolved oxygen-differentiated airlift internal circulation reactor: Long-term operational performance and microbial characteristics. Journal of Environmental Management, 2021, 296, 113271.	7.8	46

#	Article	IF	CITATIONS
55	Photocatalytic degradation of tetracycline by metal-organic frameworks modified with Bi2WO6 nanosheet under direct sunlight. Chemosphere, 2021, 284, 131386.	8.2	64
56	Effect of sodium dodecylbenzene sulfonate on hydrogen production from dark fermentation of waste activated sludge. Science of the Total Environment, 2021, 799, 149383.	8.0	30
57	How Does Chitosan Affect Methane Production in Anaerobic Digestion?. Environmental Science & Emp; Technology, 2021, 55, 15843-15852.	10.0	76
58	The effects of thiosulfinates on methane production from anaerobic co-digestion of waste activated sludge and food waste and mitigate method. Journal of Hazardous Materials, 2020, 384, 121363.	12.4	27
59	Potential influences of exogenous pollutants occurred in waste activated sludge on anaerobic digestion: A review. Journal of Hazardous Materials, 2020, 383, 121176.	12.4	182
60	Synergistic adsorption and electrocatalytic reduction of bromate by Pd/N-doped loofah sponge-derived biochar electrode. Journal of Hazardous Materials, 2020, 386, 121651.	12.4	49
61	Impact of coexistence of sludge flocs on nitrous oxide production in a granule-based nitrification system: A model-based evaluation. Water Research, 2020, 170, 115312.	11.3	14
62	Insights into the toxicity of troclocarban to anaerobic digestion: Sludge characteristics and methane production. Journal of Hazardous Materials, 2020, 385, 121615.	12.4	27
63	A "bottle-around-ship―like method synthesized yolk-shell Ag3PO4@MIL-53(Fe) Z-scheme photocatalysts for enhanced tetracycline removal. Journal of Colloid and Interface Science, 2020, 561, 501-511.	9.4	67
64	Enhanced dewaterability of anaerobically digested sludge by in-situ free nitrous acid treatment. Water Research, 2020, 169, 115264.	11.3	73
65	Interaction between perfluorooctanoic acid and aerobic granular sludge. Water Research, 2020, 169, 115249.	11.3	75
66	New insight into modification of extracellular polymeric substances extracted from waste activated sludge by homogeneous Fe(II)/persulfate process. Chemosphere, 2020, 247, 125804.	8.2	24
67	How does synthetic musks affect methane production from the anaerobic digestion of waste activated sludge?. Science of the Total Environment, 2020, 713, 136594.	8.0	8
68	Enhanced dark fermentative hydrogen production from waste activated sludge by combining potassium ferrate with alkaline pretreatment. Science of the Total Environment, 2020, 707, 136105.	8.0	39
69	The inhibitory effect of thiosulfinate on volatile fatty acid and hydrogen production from anaerobic co-fermentation of food waste and waste activated sludge. Bioresource Technology, 2020, 297, 122428.	9.6	15
70	Nitrous oxide production from wastewater treatment: The potential as energy resource rather than potent greenhouse gas. Journal of Hazardous Materials, 2020, 387, 121694.	12.4	26
71	Heterogeneous activation of persulfate by Ag doped BiFeO3 composites for tetracycline degradation. Journal of Colloid and Interface Science, 2020, 566, 33-45.	9.4	66
72	Influence of low voltage electric field stimulation on hydrogen generation from anaerobic digestion of waste activated sludge. Science of the Total Environment, 2020, 704, 135849.	8.0	15

#	Article	IF	Citations
73	New perspectives on microbial communities and biological nitrogen removal processes in wastewater treatment systems. Bioresource Technology, 2020, 297, 122491.	9.6	78
74	Enhancement of short-chain fatty acids production from microalgae by potassium ferrate addition: Feasibility, mechanisms and implications. Bioresource Technology, 2020, 318, 124266.	9.6	44
75	Photochemical decomposition of perfluorochemicals in contaminated water. Water Research, 2020, 186, 116311.	11.3	37
76	A Critical Review on Nitrous Oxide Production by Ammonia-Oxidizing Archaea. Environmental Science & En	10.0	47
77	The fate of triclocarban in activated sludge and its influence on biological wastewater treatment system. Journal of Environmental Management, 2020, 276, 111237.	7.8	9
78	Recent advances in nitrous oxide production and mitigation in wastewater treatment. Water Research, 2020, 184, 116168.	11.3	61
79	Calcium peroxide eliminates grease inhibition and promotes short-chain fatty acids production during anaerobic fermentation of food waste. Bioresource Technology, 2020, 316, 123947.	9.6	15
80	Enhanced anaerobic co-digestion of waste activated sludge and food waste by sulfidated microscale zerovalent iron: Insights in direct interspecies electron transfer mechanism. Bioresource Technology, 2020, 316, 123901.	9.6	67
81	Octylphenol facilitates fermentative volatile fatty acids recovery from waste activated sludge. Science of the Total Environment, 2020, 729, 139035.	8.0	15
82	The fate and impact of TCC in nitrifying cultures. Water Research, 2020, 178, 115851.	11.3	28
83	Performance and Mechanism of Potassium Ferrate(VI) Enhancing Dark Fermentative Hydrogen Accumulation from Waste Activated Sludge. ACS Sustainable Chemistry and Engineering, 2020, 8, 8681-8691.	6.7	25
84	Peroxide/Zero-valent iron (Fe0) pretreatment for promoting dewaterability of anaerobically digested sludge: A mechanistic study. Journal of Hazardous Materials, 2020, 400, 123112.	12.4	49
85	Influence of chlortetracycline as an antibiotic residue on nitrous oxide emissions from wastewater treatment. Bioresource Technology, 2020, 313, 123696.	9.6	12
86	Recent advances in conjugated microporous polymers for photocatalysis: designs, applications, and prospects. Journal of Materials Chemistry A, 2020, 8, 6434-6470.	10.3	140
87	Enhanced high-quality biomethane production from anaerobic digestion of primary sludge by corn stover biochar. Bioresource Technology, 2020, 306, 123159.	9.6	83
88	Electrochemical Cr(VI) removal from aqueous media using titanium as anode: Simultaneous indirect electrochemical reduction of Cr(VI) and in-situ precipitation of Cr(III). Chemosphere, 2020, 260, 127537.	8.2	71
89	Exploring the linkage between free nitrous acid accumulation and nitrous oxide emissions in a novel static/oxic/anoxic process. Bioresource Technology, 2020, 304, 123011.	9.6	19
90	Fe(II) catalyzing sodium percarbonate facilitates the dewaterability of waste activated sludge: Performance, mechanism, and implication. Water Research, 2020, 174, 115626.	11.3	150

#	Article	IF	Citations
91	Norfloxacin-induced effect on enhanced biological phosphorus removal from wastewater after long-term exposure. Journal of Hazardous Materials, 2020, 392, 122336.	12.4	21
92	Sludge Incineration Bottom Ash Enhances Anaerobic Digestion of Primary Sludge toward Highly Efficient Sludge Anaerobic Codigestion. ACS Sustainable Chemistry and Engineering, 2020, 8, 3005-3012.	6.7	15
93	Enhanced volatile fatty acids production from waste activated sludge with synchronous phosphorus fixation and pathogens inactivation by calcium hypochlorite stimulation. Science of the Total Environment, 2020, 712, 136500.	8.0	47
94	Effect of citric acid on extracellular polymeric substances disruption and cell lysis in the waste activated sludge by pH regulation. Bioresource Technology, 2020, 302, 122859.	9.6	31
95	Influence of roxithromycin as antibiotic residue on volatile fatty acids recovery in anaerobic fermentation of waste activated sludge. Journal of Hazardous Materials, 2020, 394, 122570.	12.4	50
96	Modified MIL-100(Fe) for enhanced photocatalytic degradation of tetracycline under visible-light irradiation. Journal of Colloid and Interface Science, 2020, 574, 364-376.	9.4	100
97	Revealing the mechanisms of Triclosan affecting of methane production from waste activated sludge. Bioresource Technology, 2020, 312, 123505.	9.6	18
98	Advances in enhanced volatile fatty acid production from anaerobic fermentation of waste activated sludge. Science of the Total Environment, 2019, 694, 133741.	8.0	149
99	The underlying mechanism of calcium peroxide pretreatment enhancing methane production from anaerobic digestion of waste activated sludge. Water Research, 2019, 164, 114934.	11.3	184
100	Land reclamation threatens sandpipers. Science, 2019, 365, 454-454.	12.6	0
101	Reducing nitrous oxide emission in a sequencing batch reactor operated as static/aerobic/anoxic (SOA) process. Science of the Total Environment, 2019, 693, 133619.	8.0	6
102	Microwave pretreatment of polyacrylamide flocculated waste activated sludge: Effect on anaerobic digestion and polyacrylamide degradation. Bioresource Technology, 2019, 290, 121776.	9.6	31
103	How does zero valent iron activating peroxydisulfate improve the dewatering of anaerobically digested sludge?. Water Research, 2019, 163, 114912.	11.3	124
104	China's highways threaten wild camels. Science, 2019, 364, 1242-1242.	12.6	3
105	Evaluating the effect of biochar on mesophilic anaerobic digestion of waste activated sludge and microbial diversity. Bioresource Technology, 2019, 294, 122235.	9.6	48
106	Biogas production from anaerobic co-digestion of waste activated sludge: co-substrates and influencing parameters. Reviews in Environmental Science and Biotechnology, 2019, 18, 771-793.	8.1	59
107	Modeling effects of H2S on electron competition among nitrogen oxide reduction and N2O accumulation during denitrification. Environmental Science: Water Research and Technology, 2019, 5, 533-542.	2.4	2
108	Effect of poly aluminum chloride on dark fermentative hydrogen accumulation from waste activated sludge. Water Research, 2019, 153, 217-228.	11.3	93

#	Article	IF	CITATIONS
109	Enhanced methane production from waste activated sludge by combining calcium peroxide with ultrasonic: Performance, mechanism, and implication. Bioresource Technology, 2019, 279, 108-116.	9.6	52
110	Heterogeneous activation of peroxymonosulfate using Mn-Fe layered double hydroxide: Performance and mechanism for organic pollutant degradation. Science of the Total Environment, 2019, 663, 453-464.	8.0	151
111	Nitrate addition improves hydrogen production from acidic fermentation of waste activated sludge. Chemosphere, 2019, 235, 814-824.	8.2	18
112	Effect of clarithromycin on the production of volatile fatty acids from waste activated sludge anaerobic fermentation. Bioresource Technology, 2019, 288, 121598.	9.6	54
113	Persulfate and zero valent iron combined conditioning as a sustainable technique for enhancing dewaterability of aerobically digested sludge. Chemosphere, 2019, 232, 45-53.	8.2	39
114	Enhanced ciprofloxacin removal by sludge-derived biochar: Effect of humic acid. Chemosphere, 2019, 231, 495-501.	8.2	53
115	Heterotrophic denitrifiers growing on soluble microbial products contribute to nitrous oxide production in anammox biofilm: Model evaluation. Journal of Environmental Management, 2019, 242, 309-314.	7.8	14
116	Biological perchlorate reduction: which electron donor we can choose? Environmental Science and Pollution Research, 2019, 26, 16906-16922.	5.3	18
117	Enhanced hydrogen accumulation from waste activated sludge by combining ultrasonic and free nitrous acid pretreatment: Performance, mechanism, and implication. Bioresource Technology, 2019, 285, 121363.	9.6	28
118	Sulfate radical-mediated degradation of phenol and methylene blue by manganese oxide octahedral molecular sieve (OMS-2) activation of peroxymonosulfate. Environmental Science and Pollution Research, 2019, 26, 12963-12974.	5.3	8
119	A critical review of volatile fatty acids produced from waste activated sludge: enhanced strategies and its applications. Environmental Science and Pollution Research, 2019, 26, 13984-13998.	5.3	89
120	Heat pretreatment assists free ammonia to enhance hydrogen production from waste activated sludge. Bioresource Technology, 2019, 283, 316-325.	9.6	65
121	Effects of free nitrous acid and freezing co-pretreatment on sludge short-chain fatty acids production and dewaterability. Science of the Total Environment, 2019, 669, 600-607.	8.0	21
122	Influence of surfactants on anaerobic digestion of waste activated sludge: acid and methane production and pollution removal. Critical Reviews in Biotechnology, 2019, 39, 746-757.	9.0	47
123	Metal–Organic Framework Supported Palladium Nanoparticles: Applications and Mechanisms. Particle and Particle Systems Characterization, 2019, 36, 1800557.	2.3	22
124	Indirect electrochemical reduction of nitrate in water using zero-valent titanium anode: Factors, kinetics, and mechanism. Water Research, 2019, 157, 191-200.	11.3	95
125	Free nitrous acid-based nitrifying sludge treatment in a two-sludge system obtains high polyhydroxyalkanoates accumulation and satisfied biological nutrients removal. Bioresource Technology, 2019, 284, 16-24.	9.6	20
126	Enhanced short-chain fatty acids production from waste activated sludge by sophorolipid: Performance, mechanism, and implication. Bioresource Technology, 2019, 284, 456-465.	9.6	91

#	Article	IF	Citations
127	Thermal-alkaline pretreatment of polyacrylamide flocculated waste activated sludge: Process optimization and effects on anaerobic digestion and polyacrylamide degradation. Bioresource Technology, 2019, 281, 158-167.	9.6	68
128	Effect of triclocarban on hydrogen production from dark fermentation of waste activated sludge. Bioresource Technology, 2019, 279, 307-316.	9.6	60
129	Unveiling the mechanisms of how cationic polyacrylamide affects short-chain fatty acids accumulation during long-term anaerobic fermentation of waste activated sludge. Water Research, 2019, 155, 142-151.	11.3	159
130	Free ammonia aids ultrasound pretreatment to enhance short-chain fatty acids production from waste activated sludge. Bioresource Technology, 2019, 275, 163-171.	9.6	88
131	The roles of free ammonia (FA) in biological wastewater treatment processes: A review. Environment International, 2019, 123, 10-19.	10.0	294
132	Various cell architectures of capacitive deionization: Recent advances and future trends. Water Research, 2019, 150, 225-251.	11.3	298
133	Enhanced Short-Chain Fatty Acids from Waste Activated Sludge by Heat–CaO ₂ Advanced Thermal Hydrolysis Pretreatment: Parameter Optimization, Mechanisms, and Implications. ACS Sustainable Chemistry and Engineering, 2019, 7, 3544-3555.	6.7	71
134	Mechanisms of peroxymonosulfate pretreatment enhancing production of short-chain fatty acids from waste activated sludge. Water Research, 2019, 148, 239-249.	11.3	188
135	Pretreatment of landfill leachate in near-neutral pH condition by persulfate activated Fe-C micro-electrolysis system. Chemosphere, 2019, 216, 749-756.	8.2	47
136	Hydrated lanthanum oxide-modified diatomite as highly efficient adsorbent for low-concentration phosphate removal from secondary effluents. Journal of Environmental Management, 2019, 231, 370-379.	7.8	140
137	Enhanced volatile fatty acids production from waste activated sludge anaerobic fermentation by adding tofu residue. Bioresource Technology, 2019, 274, 430-438.	9.6	55
138	Substrate Diffusion within Biofilms Significantly Influencing the Electron Competition during Denitrification. Environmental Science & Environmental S	10.0	31
139	Free Ammonia Pretreatment To Improve Bio-hydrogen Production from Anaerobic Dark Fermentation of Microalgae. ACS Sustainable Chemistry and Engineering, 2019, 7, 1642-1647.	6.7	34
140	Facile synthesis of In2S3/UiO-66 composite with enhanced adsorption performance and photocatalytic activity for the removal of tetracycline under visible light irradiation. Journal of Colloid and Interface Science, 2019, 535, 444-457.	9.4	120
141	Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs. Journal of Colloid and Interface Science, 2018, 519, 273-284.	9.4	552
142	Enhanced short-chain fatty acids production from waste activated sludge by combining calcium peroxide with free ammonia pretreatment. Bioresource Technology, 2018, 262, 114-123.	9.6	85
143	Mechanisms of Persistence of the Ammonia-Oxidizing Bacteria <i>Nitrosomonas</i> to the Biocide Free Nitrous Acid. Environmental Science & Environmenta	10.0	52
144	Kinetic assessment of simultaneous removal of arsenite, chlorate and nitrate under autotrophic and mixotrophic conditions. Science of the Total Environment, 2018, 628-629, 85-93.	8.0	7

#	Article	IF	Citations
145	Free ammonia enhances dark fermentative hydrogen production from waste activated sludge. Water Research, 2018, 133, 272-281.	11.3	163
146	Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge. Water Research, 2018, 130, 281-290.	11.3	156
147	Effect of acetate to glycerol ratio on enhanced biological phosphorus removal. Chemosphere, 2018, 196, 78-86.	8.2	47
148	Effect of diclofenac on the production of volatile fatty acids from anaerobic fermentation of waste activated sludge. Bioresource Technology, 2018, 254, 7-15.	9.6	80
149	Free ammonia-based sludge treatment reduces sludge production in the wastewater treatment process. Chemosphere, 2018, 205, 484-492.	8.2	44
150	Recyclable zero-valent iron activating peroxymonosulfate synchronously combined with thermal treatment enhances sludge dewaterability by altering physicochemical and biological properties. Bioresource Technology, 2018, 262, 294-301.	9.6	115
151	Supramolecular self-assembled carbon nitride for the degradation of tetracycline hydrochloride. Journal of Materials Science: Materials in Electronics, 2018, 29, 9380-9386.	2.2	28
152	Densities of FAMEs or FAEEs with ethanol at temperatures from 283.15 to 318.15 K. Physics and Chemistry of Liquids, 2018, 56, 33-42.	1.2	11
153	Novel stepwise pH control strategy to improve short chain fatty acid production from sludge anaerobic fermentation. Bioresource Technology, 2018, 249, 431-438.	9.6	67
154	Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge. Bioresource Technology, 2018, 247, 537-544.	9.6	297
155	Modeling electron competition among nitrogen oxides reduction and N ₂ O accumulation in hydrogenotrophic denitrification. Biotechnology and Bioengineering, 2018, 115, 978-988.	3.3	12
156	Clarifying the Role of Free Ammonia in the Production of Short-Chain Fatty Acids from Waste Activated Sludge Anaerobic Fermentation. ACS Sustainable Chemistry and Engineering, 2018, 6, 14104-14113.	6.7	73
157	Sulfate radical induced degradation of Methyl Violet azo dye with CuFe layered doubled hydroxide as heterogeneous photoactivator of persulfate. Journal of Environmental Management, 2018, 227, 406-414.	7.8	77
158	Free ammonia-based pretreatment enhances phosphorus release and recovery from waste activated sludge. Chemosphere, 2018, 213, 276-284.	8.2	70
159	Free Ammonia-Based Pretreatment Promotes Short-Chain Fatty Acid Production from Waste Activated Sludge. ACS Sustainable Chemistry and Engineering, 2018, 6, 9120-9129.	6.7	79
160	Feasibility of enhancing short-chain fatty acids production from sludge anaerobic fermentation at free nitrous acid pretreatment: Role and significance of Tea saponin. Bioresource Technology, 2018, 254, 194-202.	9.6	79
161	How does free ammonia-based sludge pretreatment improve methane production from anaerobic digestion of waste activated sludge. Chemosphere, 2018, 206, 491-501.	8.2	50
162	Synergistic effect of free nitrite acid integrated with biosurfactant alkyl polyglucose on sludge anaerobic fermentation. Waste Management, 2018, 78, 310-317.	7.4	17

#	Article	IF	Citations
163	Free Ammonia Pretreatment to Enhance Biodegradation of Anaerobically Digested Sludge in Post Aerobic Digestion. ACS Sustainable Chemistry and Engineering, 2018, 6, 11836-11842.	6.7	6
164	Enhanced dewaterability of waste activated sludge with Fe(II)-activated hypochlorite treatment. Environmental Science and Pollution Research, 2018, 25, 27628-27638.	5.3	32
165	Improved methane production from waste activated sludge by combining free ammonia with heat pretreatment: Performance, mechanisms and applications. Bioresource Technology, 2018, 268, 230-236.	9.6	77
166	Sulfamethazine (SMZ) affects fermentative short-chain fatty acids production from waste activated sludge. Science of the Total Environment, 2018, 639, 1471-1479.	8.0	51
167	Feasibility of enhancing short-chain fatty acids production from waste activated sludge after free ammonia pretreatment: Role and significance of rhamnolipid. Bioresource Technology, 2018, 267, 141-148.	9.6	70
168	Free nitrous acid promotes hydrogen production from dark fermentation of waste activated sludge. Water Research, 2018, 145, 113-124.	11.3	137
169	Perchlorate bioreduction linked to methane oxidation in a membrane biofilm reactor: Performance and microbial community structure. Journal of Hazardous Materials, 2018, 357, 244-252.	12.4	36
170	The fate of cyanuric acid in biological wastewater treatment system and its impact on biological nutrient removal. Journal of Environmental Management, 2018, 206, 901-909.	7.8	24
171	Adsorption of phosphate from aqueous solution using iron-zirconium modified activated carbon nanofiber: Performance and mechanism. Journal of Colloid and Interface Science, 2017, 493, 17-23.	9.4	267
172	Is denitrifying anaerobic methane oxidation-centered technologies a solution for the sustainable operation of wastewater treatment Plants?. Bioresource Technology, 2017, 234, 456-465.	9.6	117
173	Wastewater Opportunities for Denitrifying Anaerobic Methane Oxidation. Trends in Biotechnology, 2017, 35, 799-802.	9.3	85
174	Modeling aerobic biotransformation of vinyl chloride by vinyl chloride-assimilating bacteria, methanotrophs and ethenotrophs. Journal of Hazardous Materials, 2017, 332, 97-103.	12.4	3
175	Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation. Bioresource Technology, 2017, 238, 343-351.	9.6	73
176	Phase Equilibria of <i>trans</i> -1,3,3,3-Tetrafluoropropene with Three Imidazolium Ionic Liquids. Journal of Chemical & Data, 2017, 62, 1825-1831.	1.9	22
177	Potential impact of salinity on methane production from food waste anaerobic digestion. Waste Management, 2017, 67, 308-314.	7.4	123
178	Improved degradation of anaerobically digested sludge during post aerobic digestion using ultrasonic pretreatment. Environmental Science: Water Research and Technology, 2017, 3, 857-864.	2.4	8
179	Effects of different ratios of glucose to acetate on phosphorus removal and microbial community of enhanced biological phosphorus removal (EBPR) system. Environmental Science and Pollution Research, 2017, 24, 4494-4505.	5.3	18
180	Volumetric Properties of 1-Butyl-3-methylimidazolium Chloride with Organic Solvents. Journal of Chemical & Che	1.9	10

#	Article	IF	Citations
181	Triclocarban enhances short-chain fatty acids production from anaerobic fermentation of waste activated sludge. Water Research, 2017, 127, 150-161.	11.3	150
182	Aged refuse enhances anaerobic digestion of waste activated sludge. Water Research, 2017, 123, 724-733.	11.3	136
183	Evaluating the potential impact of hydrochar on the production of short-chain fatty acid from sludge anaerobic digestion. Bioresource Technology, 2017, 246, 234-241.	9.6	52
184	Understanding and mitigating the toxicity of cadmium to the anaerobic fermentation of waste activated sludge. Water Research, 2017, 124, 269-279.	11.3	157
185	Free nitrous acid-based nitrifying sludge treatment in a two-sludge system enhances nutrient removal from low-carbon wastewater. Bioresource Technology, 2017, 244, 920-928.	9.6	83
186	Effect of ciprofloxacin on biological nitrogen and phosphorus removal from wastewater. Science of the Total Environment, 2017, 605-606, 368-375.	8.0	127
187	The behavior of melamine in biological wastewater treatment system. Journal of Hazardous Materials, 2017, 322, 445-453.	12.4	41
188	Effective adsorption/electrocatalytic degradation of perchlorate using Pd/Pt supported on N-doped activated carbon fiber cathode. Journal of Hazardous Materials, 2017, 323, 602-610.	12.4	50
189	Hierarchical assembly of graphene-bridged Ag3PO4/Ag/BiVO4 (040) Z-scheme photocatalyst: An efficient, sustainable and heterogeneous catalyst with enhanced visible-light photoactivity towards tetracycline degradation under visible light irradiation. Applied Catalysis B: Environmental, 2017, 200, 330-342.	20.2	752
190	Effect of nickel on the flocculability, settleability, and dewaterability of activated sludge. Bioresource Technology, 2017, 224, 188-196.	9.6	55
191	Assessment of Heterotrophic Growth Supported by Soluble Microbial Products in Anammox Biofilm using Multidimensional Modeling. Scientific Reports, 2016, 6, 27576.	3.3	24
192	Improved biological phosphorus removal induced by an oxic/extended-idle process using glycerol and acetate at equal fractions. RSC Advances, 2016, 6, 86165-86173.	3.6	12
193	Evaluation of Nitrous Oxide Emission from Sulfide- and Sulfur-Based Autotrophic Denitrification Processes. Environmental Science & Environmental Scien	10.0	85
194	Advanced landfill leachate treatment using iron-carbon microelectrolysis- Fenton process: Process optimization and column experiments. Journal of Hazardous Materials, 2016, 318, 460-467.	12.4	83
195	Revealing the Underlying Mechanisms of How Sodium Chloride Affects Short-Chain Fatty Acid Production from the Cofermentation of Waste Activated Sludge and Food Waste. ACS Sustainable Chemistry and Engineering, 2016, 4, 4675-4684.	6.7	92
196	Combined Effect of Free Nitrous Acid Pretreatment and Sodium Dodecylbenzene Sulfonate on Short-Chain Fatty Acid Production from Waste Activated Sludge. Scientific Reports, 2016, 6, 21622.	3.3	31
197	Enhanced Photocatalytic Degradation of Tetracycline by Agl/BiVO ₄ Heterojunction under Visible-Light Irradiation: Mineralization Efficiency and Mechanism. ACS Applied Materials & Amp; Interfaces, 2016, 8, 32887-32900.	8.0	407
198	Self-assembly Z-scheme heterostructured photocatalyst of Ag ₂ 0@Ag-modified bismuth vanadate for efficient photocatalytic degradation of single and dual organic pollutants under visible light irradiation. RSC Advances, 2016, 6, 60291-60307.	3 . 6	39

#	Article	IF	CITATIONS
199	Photo-reduction of bromate in drinking water by metallic Ag and reduced graphene oxide (RGO) jointly modified BiVO4 under visible light irradiation. Water Research, 2016, 101, 555-563.	11.3	170
200	An efficient and green pretreatment to stimulate short-chain fatty acids production from waste activated sludge anaerobic fermentation using free nitrous acid. Chemosphere, 2016, 144, 160-167.	8.2	137
201	Complete bromate and nitrate reduction using hydrogen as the sole electron donor in a rotating biofilm-electrode reactor. Journal of Hazardous Materials, 2016, 307, 82-90.	12.4	25
202	Enhanced dewaterability of waste activated sludge by Fe(II)-activated peroxymonosulfate oxidation. Bioresource Technology, 2016, 206, 134-140.	9.6	179
203	An efficient process for wastewater treatment to mitigate free nitrous acid generation and its inhibition on biological phosphorus removal. Scientific Reports, 2015, 5, 8602.	3.3	28
204	Enhanced production of short-chain fatty acid from food waste stimulated by alkyl polyglycosides and its mechanism. Waste Management, 2015, 46, 133-139.	7.4	51
205	Effect of polyhydroxyalkanoates on dark fermentative hydrogen production from waste activated sludge. Water Research, 2015, 73, 311-322.	11.3	88
206	Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge. Water Research, 2015, 78, 111-120.	11.3	189
207	How Does Poly(hydroxyalkanoate) Affect Methane Production from the Anaerobic Digestion of Waste-Activated Sludge?. Environmental Science & Environment	10.0	125
208	Inducing mechanism of biological phosphorus removal driven by the aerobic/extendedâ€idle regime. Biotechnology and Bioengineering, 2012, 109, 2798-2807.	3.3	47
209	Effect and mechanism of carbon sources on phosphorus uptake by microorganisms in sequencing batch reactors with the single-stage oxic process. Science in China Series B: Chemistry, 2009, 52, 2358-2365.	0.8	5
210	Effect of wet surface treated nano-SiO2 on mechanical properties of polypropylene composite. Journal Wuhan University of Technology, Materials Science Edition, 2008, 23, 354-357.	1.0	5