
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2463762/publications.pdf Version: 2024-02-01

NIKOLAL M SHADIRO

#	Article	IF	CITATIONS
1	High-Resolution Surface-Wave Tomography from Ambient Seismic Noise. Science, 2005, 307, 1615-1618.	12.6	1,785
2	Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 2007, 169, 1239-1260.	2.4	1,705
3	Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	1,103
4	Postseismic Relaxation Along the San Andreas Fault at Parkfield from Continuous Seismological Observations. Science, 2008, 321, 1478-1481.	12.6	590
5	Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle. Geophysical Journal International, 2002, 151, 88-105.	2.4	535
6	Towards forecasting volcanic eruptions using seismic noise. Nature Geoscience, 2008, 1, 126-130.	12.9	535
7	Ambient noise Rayleigh wave tomography across Europe. Geophysical Journal International, 2007, 168, 259-274.	2.4	486
8	A study of the seismic noise from its long-range correlation properties. Journal of Geophysical Research, 2006, 111, .	3.3	425
9	Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica. Earth and Planetary Science Letters, 2004, 223, 213-224.	4.4	392
10	Thinning and Flow of Tibetan Crust Constrained by Seismic Anisotropy. Science, 2004, 305, 233-236.	12.6	278
11	Mapping pressurized volcanic fluids from induced crustal seismic velocity drops. Science, 2014, 345, 80-82.	12.6	234
12	3-D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations. Geophysical Research Letters, 2007, 34, .	4.0	230
13	Broadband ambient noise surface wave tomography across the United States. Journal of Geophysical Research, 2008, 113, .	3.3	229
14	Global surface wave diffraction tomography. Journal of Geophysical Research, 2002, 107, ESE 4-1-ESE 4-13.	3.3	217
15	Crustal and upper mantle structure beneath Antarctica and surrounding oceans. Journal of Geophysical Research, 2001, 106, 30645-30670.	3.3	211
16	Correlation of random wavefields: An interdisciplinary review. Geophysics, 2006, 71, SI11-SI21.	2.6	194
17	Observation of Equipartition of Seismic Waves. Physical Review Letters, 2001, 86, 3447-3450.	7.8	189
18	Crossâ€correlation of random fields: mathematical approach and applications. Geophysical Prospecting, 2008. 56. 375-393.	1.9	186

#	Article	IF	CITATIONS
19	Seismic evidence for catastrophic slab loss beneath Kamchatka. Nature, 2002, 418, 763-767.	27.8	180
20	Surface wave tomography of the western United States from ambient seismic noise: Rayleigh wave group velocity maps. Geochemistry, Geophysics, Geosystems, 2007, 8, .	2.5	175
21	Structure of the crust and uppermost mantle beneath the western United States revealed by ambient noise and earthquake tomography. Journal of Geophysical Research, 2008, 113, .	3.3	175
22	A large magmatic sill complex beneath the Toba caldera. Science, 2014, 346, 617-619.	12.6	162
23	Origin of deep ocean microseisms by using teleseismic body waves. Journal of Geophysical Research, 2010, 115, .	3.3	158
24	Tomography of the Alpine region from observations of seismic ambient noise. Geophysical Journal International, 2009, 178, 338-350.	2.4	157
25	Cooling history of the Pacific lithosphere. Earth and Planetary Science Letters, 2004, 226, 69-84.	4.4	147
26	Nonvolcanic tremor observed in the Mexican subduction zone. Geophysical Research Letters, 2008, 35, .	4.0	140
27	Assessment of resolution and accuracy of the Moving Window Cross Spectral technique for monitoring crustal temporal variations using ambient seismic noise. Geophysical Journal International, 2011, 186, 867-882.	2.4	139
28	Slope instabilities in Dolomieu crater, Réunion Island: From seismic signals to rockfall characteristics. Journal of Geophysical Research, 2011, 116, .	3.3	137
29	Near-surface study at the Valhall oil field from ambient noise surface wave tomography. Geophysical Journal International, 2013, 193, 1627-1643.	2.4	125
30	Source location of the 26 sec microseism from cross-correlations of ambient seismic noise. Geophysical Research Letters, 2006, 33, n/a-n/a.	4.0	119
31	Thermodynamic constraints on seismic inversions. Geophysical Journal International, 2004, 157, 1175-1188.	2.4	117
32	Traveltime measurements from noise correlation: stability and detection of instrumental time-shifts. Geophysical Journal International, 2007, 171, 223-230.	2.4	116
33	Residence time of diffuse waves in the crust as a physical interpretation of codaQ: application to seismograms recorded in Mexico. Geophysical Journal International, 1999, 138, 343-352.	2.4	111
34	Real time monitoring of relative velocity changes using ambient seismic noise at the Piton de la Fournaise volcano (La Réunion) from January 2006 to June 2007. Journal of Volcanology and Geothermal Research, 2009, 184, 164-173.	2.1	107
35	Seismic evidence of nonlinear crustal deformation during a large slow slip event in Mexico. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	107
36	Automated identification, location, and volume estimation of rockfalls at Piton de la Fournaise volcano. Journal of Geophysical Research F: Earth Surface, 2014, 119, 1082-1105.	2.8	94

#	Article	IF	CITATIONS
37	Imaging the dynamics of magma propagation using radiated seismic intensity. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	90
38	Deep and shallow long-period volcanic seismicity linked by fluid-pressure transfer. Nature Geoscience, 2017, 10, 442-445.	12.9	90
39	Rapid Characterization of Large Volcanic Eruptions: Measuring the Impulse of the Hunga Tonga Ha'apai Explosion From Teleseismic Waves. Geophysical Research Letters, 2022, 49, .	4.0	90
40	New evidence for dislocation creep from 3-D geodynamic modeling of the Pacific upper mantle structure. Earth and Planetary Science Letters, 2005, 238, 146-155.	4.4	89
41	Using systematically characterized lowâ€frequency earthquakes as a fault probe in Guerrero, Mexico. Journal of Geophysical Research: Solid Earth, 2014, 119, 7686-7700.	3.4	89
42	The 2006 slow slip event and nonvolcanic tremor in the Mexican subduction zone. Geophysical Research Letters, 2010, 37, .	4.0	88
43	Ambient noise surface wave tomography to determine the shallow shear velocity structure at Valhall: depth inversion with a Neighbourhood Algorithm. Geophysical Journal International, 2014, 198, 1514-1525.	2.4	86
44	Uncovering the geodetic signature of silent slip through repeating earthquakes. Geophysical Research Letters, 2015, 42, 2774-2779.	4.0	86
45	Surface-wave propagation across the Mexican Volcanic Belt and the origin of the long-period seismic-wave amplification in the Valley of Mexico. Geophysical Journal International, 1997, 128, 151-166.	2.4	85
46	Threeâ€dimensional shear velocity anisotropic model of Piton de la Fournaise Volcano (La Réunion) Tj ETQq0 () 0.rgBT /C)verlock 10 Tf
47	The Energy Partitioning and the Diffusive Character of the Seismic Coda. Bulletin of the Seismological Society of America, 2000, 90, 655-665.	2.3	80
48	Along-fault pore-pressure evolution during a slow-slip event in Guerrero, Mexico. Earth and Planetary Science Letters, 2015, 413, 135-143.	4.4	80
49	Triggering of tremors and slow slip event in Guerrero, Mexico, by the 2010 Mw 8.8 Maule, Chile, earthquake. Journal of Geophysical Research, 2012, 117, .	3.3	77
50	Global oceanic microseism sources as seen by seismic arrays and predicted by wave action models. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	76
51	Detecting seasonal variations in seismic velocities within Los Angeles basin from correlations of ambient seismic noise. Geophysical Journal International, 2010, , .	2.4	73
52	Monitoring volcanoes using seismic noise correlations. Comptes Rendus - Geoscience, 2011, 343, 633-638.	1.2	73
53	Lowâ€frequency earthquakes in the Mexican Sweet Spot. Geophysical Research Letters, 2013, 40, 2661-2666.	4.0	73
54	The 14 November 2001 Kokoxili (Tibet) earthquake: Highâ€frequency seismic radiation originating from the transitions between subâ€Rayleigh and supershear rupture velocity regimes. Journal of Geophysical Research, 2008, 113, .	3.3	67

#	Article	IF	CITATIONS
55	Stratification of anisotropy in the Pacific upper mantle. Journal of Geophysical Research, 2004, 109, .	3.3	66
56	Temporal variations of nonâ€volcanic tremor (NVT) locations in the Mexican subduction zone: Finding the NVT sweet spot. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	66
57	Surface wave tomography of the Barents Sea and surrounding regions. Geophysical Journal International, 2007, 170, 441-459.	2.4	64
58	Detecting and locating volcanic tremors on the Klyuchevskoy group of volcanoes (Kamchatka) based on correlations of continuous seismic records. Geophysical Journal International, 2015, 203, 1001-1010.	2.4	57
59	Three different types of plumbing system beneath the neighboring active volcanoes of Tolbachik, Bezymianny, and Klyuchevskoy in Kamchatka. Journal of Geophysical Research: Solid Earth, 2017, 122, 3852-3874.	3.4	53
60	Slab portal beneath the western Aleutians. Geology, 2005, 33, 253.	4.4	50
61	First Results from the UnderVolc High Resolution Seismic and GPS Network Deployed on Piton de la Fournaise Volcano. Seismological Research Letters, 2012, 83, 97-102.	1.9	49
62	The feeder system of the Toba supervolcano from the slab to the shallow reservoir. Nature Communications, 2016, 7, 12228.	12.8	47
63	Structural context of the great Sumatraâ€Andaman Islands earthquake. Geophysical Research Letters, 2008, 35, .	4.0	45
64	Toward 4D Noiseâ€Based Seismic Probing of Volcanoes: Perspectives from a Largeâ€∢i>NExperiment on Piton de la Fournaise Volcano. Seismological Research Letters, 2016, 87, 15-25.	1.9	45
65	Timing of a large volcanic flank movement at Piton de la Fournaise Volcano using noise-based seismic monitoring and ground deformation measurements. Geophysical Journal International, 2013, 195, 1132-1140.	2.4	43
66	Lateral variation ofLgwave propagation in southern Mexico. Journal of Geophysical Research, 2002, 107, ESE 3-1-ESE 3-13.	3.3	42
67	Ability of a global three-dimensional model to locate regional events. Journal of Geophysical Research, 2003, 108, .	3.3	41
68	Automatic detection of low-frequency earthquakes (LFEs) based on a beamformed network response. Geophysical Journal International, 2014, 197, 1215-1223.	2.4	41
69	Characterization of rockfalls from seismic signal: Insights from laboratory experiments. Journal of Geophysical Research: Solid Earth, 2015, 120, 7102-7137.	3.4	41
70	Rupture history of September 30, 1999 intraplate earthquake of Oaxaca, Mexico (MW=7.5) from inversion of strong-motion data. Geophysical Research Letters, 2001, 28, 363-366.	4.0	40
71	Variations of crustal elastic properties during the 2009 L'Aquila earthquake inferred from cross-correlations of ambient seismic noise. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	40
72	Investigation of coseismic and postseismic processes using in situ measurements of seismic velocity variations in an underground mine. Geophysical Research Letters, 2015, 42, 9261-9269.	4.0	39

#	Article	IF	CITATIONS
73	4-D noise-based seismology at volcanoes: Ongoing efforts and perspectives. Journal of Volcanology and Geothermal Research, 2016, 321, 182-195.	2.1	39
74	Detecting seismic activity with a covariance matrix analysis of data recorded on seismic arrays. Geophysical Journal International, 2016, 204, 1430-1442.	2.4	38
75	Networkâ€Based Detection and Classification of Seismovolcanic Tremors: Example From the Klyuchevskoy Volcanic Group in Kamchatka. Journal of Geophysical Research: Solid Earth, 2018, 123, 564-582.	3.4	38
76	Identification of surface wave higher modes using a methodology based on seismic noise and coda waves. Geophysical Journal International, 2015, 203, 856-868.	2.4	37
77	Validation of Regional and Teleseismic Travel-Time Models by Relocating Ground-Truth Events. Bulletin of the Seismological Society of America, 2004, 94, 897-919.	2.3	35
78	Seismic noiseâ€based timeâ€lapse monitoring of the Valhall overburden. Geophysical Research Letters, 2014, 41, 4945-4952.	4.0	35
79	Wave-guide effects in subduction zones: Evidence from three-dimensional modeling. Geophysical Research Letters, 2000, 27, 433-436.	4.0	34
80	Surface wave dispersion across Tibet: Direct evidence for radial anisotropy in the crust. Geophysical Research Letters, 2010, 37, .	4.0	34
81	Helmholtz tomography of ambient noise surface wave data to estimate Scholte wave phase velocity at Valhall Life of the Field. Geophysics, 2013, 78, WA99-WA109.	2.6	33
82	Longâ€ŧerm dynamics of Piton de la Fournaise volcano from 13 years of seismic velocity change measurements and GPS observations. Journal of Geophysical Research: Solid Earth, 2014, 119, 7654-7666.	3.4	33
83	Asymmetric caldera-related structures in the area of the Avacha group of volcanoes in Kamchatka as revealed by ambient noise tomography and deep seismic sounding. Journal of Volcanology and Geothermal Research, 2014, 285, 36-46.	2.1	33
84	Is ambient noise tomography across ocean basins possible?. Geophysical Research Letters, 2006, 33, .	4.0	32
85	Bathymetry of the Pacific plate and its implications for thermal evolution of lithosphere and mantle dynamics. Journal of Geophysical Research, 2007, 112, .	3.3	32
86	Seismic velocity changes, strain rate and non-volcanic tremors during the 2009–2010 slow slip event in Guerrero, Mexico. Geophysical Journal International, 2014, 196, 447-460.	2.4	31
87	The evolving interaction of low-frequency earthquakes during transient slip. Science Advances, 2016, 2, e1501616.	10.3	31
88	Pre-processing ambient noise cross-correlations with equalizing the covariance matrix eigenspectrum. Geophysical Journal International, 2017, 210, 1432-1449.	2.4	31
89	Evidence of low Q below Popocatépetl Volcano, and its implication to seismic hazard in Mexico City. Geophysical Research Letters, 2000, 27, 2753-2756.	4.0	30
90	Size of Popocatepetl Volcano explosions (1997-2001) from waveform inversion. Geophysical Research Letters, 2001, 28, 4027-4030.	4.0	30

#	Article	IF	CITATIONS
91	A resolved mantle anomaly as the cause of the Australian-Antarctic Discordance. Journal of Geophysical Research, 2003, 108, .	3.3	30
92	Tectonic significance of an earthquake sequence in the Zacoalco half-graben, Jalisco, Mexico. Journal of South American Earth Sciences, 1999, 12, 557-565.	1.4	29
93	Upper mantle velocity-temperature conversion and composition determined from seismic refraction and heat flow. Journal of Geophysical Research, 2006, 111, .	3.3	29
94	Lowâ€Frequency Earthquakes and Pore Pressure Transients in Subduction Zones. Geophysical Research Letters, 2018, 45, 11,083.	4.0	29
95	Mantle and Crustal Sources of Magmatic Activity of Klyuchevskoy and Surrounding Volcanoes in Kamchatka Inferred From Earthquake Tomography. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020097.	3.4	29
96	Evidence of the dominance of higher-mode surface waves in the lake-bed zone of the Valley of Mexico. Geophysical Journal International, 2001, 147, 517-527.	2.4	27
97	Azimuthal anisotropy at Valhall: The Helmholtz equation approach. Geophysical Research Letters, 2013, 40, 2636-2641.	4.0	27
98	Spatio-temporal evolution of rockfall activity from 2007 to 2011 at the Piton de la Fournaise volcano inferred from seismic data. Journal of Volcanology and Geothermal Research, 2017, 333-334, 36-52.	2.1	27
99	Deep long period volcanic earthquakes generated by degassing of volatile-rich basaltic magmas. Nature Communications, 2020, 11, 3918.	12.8	27
100	Crustal structure of south-central Mexico estimated from the inversion of surface-wave dispersion curves using genetic and simulated annealing algorithms. Geofisica International, 2001, 40, 181-190.	0.2	27
101	Explaining global patterns of microbarom observations with wave action models. Geophysical Journal International, 2014, 199, 1328-1337.	2.4	26
102	A fast and simple diagnostic method for identifying tsunamigenic earthquakes. Geophysical Research Letters, 1998, 25, 3911-3914.	4.0	25
103	Lithospheric structure of the Canadian Shield inferred from inversion of surface-wave dispersion with thermodynamic a priori constraints. Geological Society Special Publication, 2004, 239, 175-194.	1.3	25
104	Joint inversion of the first overtone and fundamental mode for deep imaging at the Valhall oil field using ambient noise. Geophysical Journal International, 2018, 214, 122-132.	2.4	24
105	Depth Migration of Seismovolcanic Tremor Sources Below the Klyuchevskoy Volcanic Group (Kamchatka) Determined From a Networkâ€Based Analysis. Geophysical Research Letters, 2019, 46, 8018-8030.	4.0	24
106	Seismic, Ambient Noise Correlation. Encyclopedia of Earth Sciences Series, 2011, , 1230-1236.	0.1	24
107	Seismic channel waves in the accretionary prism of the Middle America Trench. Geophysical Research Letters, 1998, 25, 101-104.	4.0	23
108	Nouveaux développements de l'imagerie et du suivi temporel à partir du bruit sismique. Comptes Rendus - Geoscience, 2011, 343, 487-495.	1.2	23

#	Article	IF	CITATIONS
109	Magmatic and Sedimentary Structure beneath the Klyuchevskoy Volcanic Group, Kamchatka, From Ambient Noise Tomography. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018900.	3.4	23
110	Worldwide distribution of ages of the continental lithosphere derived from a global seismic tomographic model. Lithos, 2009, 109, 125-130.	1.4	22
111	Experimental validation of theoretical methods to estimate the energy radiated by elastic waves during an impact. Journal of Sound and Vibration, 2016, 362, 176-202.	3.9	22
112	The use of crustal higher modes to constrain crustal structure across Central Asia. Geophysical Journal International, 2005, 160, 961-972.	2.4	21
113	Structure of magma reservoirs beneath <scp>M</scp> erapi and surrounding volcanic centers of <scp>C</scp> entral <scp>J</scp> ava modeled from ambient noise tomography. Geochemistry, Geophysics, Geosystems, 2016, 17, 4195-4211.	2.5	21
114	Progressive reactivation of the volcanic plumbing system beneath Tolbachik volcano (Kamchatka,) Tj ETQq0 0 0 r	rgBT /Over 4.4	[.] lock 10 Tf 50
115	On the duration of seismic motion incident onto the Valley of Mexico for subduction zone earthquakes. Geophysical Journal International, 2002, 151, 501-510.	2.4	20
116	Joint inversion of the differential satellite interferometry and GPS data: A case study of Altai (Chuia) Earthquake of September 27, 2003. Izvestiya, Physics of the Solid Earth, 2010, 46, 91-103.	0.9	19
117	Radial anisotropy in Valhall: ambient noise-based studies of Scholte and Love waves. Geophysical Journal International, 2017, 208, 1524-1539.	2.4	17
118	Detection, Classification, and Location of Seismovolcanic Signals with Multicomponent Seismic Data: Example from the Piton de La Fournaise Volcano (La Réunion, France). Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019333.	3.4	17
119	Spatial coherence of the seismic wavefield continuously recorded by the USArray. Geophysical Research Letters, 2016, 43, 9644-9652.	4.0	16
120	Momentâ€Duration Scaling of Lowâ€Frequency Earthquakes in Guerrero, Mexico. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019099.	3.4	16
121	New approach to detect seismic surface waves in 1Hz-sampled GPS time series. Scientific Reports, 2011, 1, 44.	3.3	15
122	Detection and analysis of a transient energy burst with beamforming of multiple teleseismic phases. Geophysical Journal International, 2018, 212, 14-24.	2.4	14
123	Average shear-wave velocity structure of the Kamchatka peninsula from the dispersion of surface waves. Earth, Planets and Space, 2000, 52, 573-577.	2.5	13
124	Thermal remote sensing reveals communication between volcanoes of the Klyuchevskoy Volcanic Group. Scientific Reports, 2021, 11, 13090.	3.3	13
125	Episodicity and Migration of Low Frequency Earthquakes Modeled With Fast Fluid Pressure Transients in the Permeable Subduction Interface. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021894.	3.4	13
126	Seismic tremor reveals active trans-crustal magmatic system beneath Kamchatka volcanoes. Science Advances, 2022, 8, eabj1571.	10.3	13

#	ARTICLE	IF	CITATIONS
127	Crustal Structure below the Valley of Mexico Estimated from Receiver Functions. Bulletin of the Seismological Society of America, 2010, 100, 3304-3311.	2.3	12
128	Seismic Wave Diffusion in the Earth Lithosphere. , 1999, , 383-404.		11
129	Probing the underbelly of a supervolcano. Science, 2015, 348, 758-759.	12.6	11
130	Broad-band acceleration time histories synthesis by coupling low-frequency ambient seismic field and high-frequency stochastic modelling. Geophysical Journal International, 2014, 199, 1784-1797.	2.4	10
131	Repeating seismicity in the shallow crust modulated by transient stressÂperturbations. Tectonophysics, 2016, 687, 105-110.	2.2	9
132	Retrieving robust noise-based seismic velocity changes from sparse data sets: synthetic tests and application to Klyuchevskoy volcanic group (Kamchatka). Geophysical Journal International, 0, , .	2.4	9
133	RÉSIF-SI: A Distributed Information System for French Seismological Data. Seismological Research Letters, 2021, 92, 1832-1853.	1.9	9
134	Classification of volcanic tremors and earthquakes based on seismic correlation: application at Sakurajima volcano, Japan. Geophysical Journal International, 2022, 229, 1077-1097.	2.4	9
135	S-wave velocity model for several regions of the Kamchatka Peninsula from the cross correlations of ambient seismic noise. Izvestiya, Physics of the Solid Earth, 2017, 53, 341-352.	0.9	8
136	Seismic Tomography of Volcanoes. , 2021, , 1-18.		8
137	Studying shallow seafloor structure based on correlations of continuous seismic records. , 2009, , .		8
138	Multiple scattering of seismic waves. Ultrasonics, 2002, 40, 269-274.	3.9	7
139	Antipodal focusing of seismic waves observed with the USArray. Geophysical Journal International, 2014, 199, 1030-1042.	2.4	6
140	Seismic Tomography of Volcanoes. , 2015, , 3117-3134.		6
141	Understanding Kamchatka's Extraordinary Volcano Cluster. Eos, 2017, , .	0.1	6
142	Complexity of Deep Lowâ€Frequency Earthquake Activity in Shikoku (Japan) Imaged From the Analysis of Continuous Seismic Data. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022138.	3.4	6
143	Probabilistic Estimates of Hypocenters from the Data of Kamchatka Seismic Network Stations. Izvestiya, Physics of the Solid Earth, 2019, 55, 677-687.	0.9	5
144	Clustering of Long-Period Earthquakes Beneath Gorely Volcano (Kamchatka) during a Degassing Episode in 2013. Geosciences (Switzerland), 2020, 10, 230.	2.2	5

#	Article	IF	CITATIONS
145	Estimates of Lithospheric Failure Cycle Parameters from Regional Earthquake Catalogues. Izvestiya, Physics of the Solid Earth, 2019, 55, 701-718.	0.9	4
146	Recurrence of Deep Long-Period Earthquakes beneath the Klyuchevskoi Volcano Group, Kamchatka. Izvestiya, Physics of the Solid Earth, 2020, 56, 749-761.	0.9	4
147	Characterizing the oceanic ambient noise as recorded by the dense seismo-acoustic Kazakh network. Solid Earth, 2021, 12, 503-520.	2.8	4
148	Detecting and locating seismic events with using USArray as a large antenna. Advances in Geosciences, 0, 40, 27-30.	12.0	4
149	The Magma Feeding System of the Klyuchevskaya Group of Volcanoes (Kamchatka). Doklady Earth Sciences, 2020, 493, 627-631.	0.7	3
150	Effective seismic wave velocities and attenuation in partially molten rocks. Earth and Planetary Science Letters, 2021, 572, 117117.	4.4	3
151	Crustal and uppermost mantle structure in the Pacific, North American, and Eurasian Plate junction. Doklady Earth Sciences, 2009, 428, 1198-1201.	0.7	2
152	Peculiarities of Subduction in the Junction of the Kuril–Kamchatka and Aleutian Island Arcs. Doklady Earth Sciences, 2020, 494, 790-794.	0.7	2
153	Seismic, Ambient Noise Correlation. Encyclopedia of Earth Sciences Series, 2021, , 1557-1562.	0.1	1
154	Near Surface Structures and Anisotropy from Cross-correlations of Ambient Seismic Noise at the Valhall Oil Field. , 2012, , .		1
155	6. Imaging. , 2008, , 449-628.		0
156	4. Green's Function Reconstruction. , 2008, , 99-329.		0
157	Radial anisotropy in Valhall from ambient noise surface wave tomography of Scholte and Love wave. , 2015, , .		Ο
158	Seismic Coda Waves. , 2010, , .		0
159	Seismic, Ambient Noise Correlation. Encyclopedia of Earth Sciences Series, 2020, , 1-6.	0.1	0
160	A Joint Study of Seismicity and SAR Interferometry Observations for Assessing the Possibility of an Eruption of the Dormant Bolshaya Udina Volcano. Journal of Volcanology and Seismology, 2020, 14, 305-317.	0.7	0
161	On the Connection between the 2008–2009 Activation of the Koryakskii Volcano and Deep Magmatic Processes. Izvestiya, Physics of the Solid Earth, 2021, 57, 819-824.	0.9	0
162	Energy Classification of Acoustic Events Using the Coda of a Signal. Seismic Instruments, 2022, 58, 18-25.	0.3	0

#	Article	IF	CITATIONS
163	New Model of the Rupture Surface of the Mw = 7.8 Near Islands Aleutian Earthquake of July 17, 2017 Based on SAR Interferometry. Izvestiya, Physics of the Solid Earth, 2022, 58, 230-242.	0.9	о
164	The Structure of the Upper Crust beneath the Kambalny Volcano (South Kamchatka) Revealed from Ambient Noise Tomography. Doklady Earth Sciences, 2021, 501, 933-937.	0.7	0