Michel Ponchet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2463455/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of PPMUCL1/2/3, Three Members of a New Oomycete-specific Mucin-like Protein Family Residing in Phytophthora parasitica Biofilm. Protist, 2014, 165, 275-292.	1.5	16
2	Transcriptome dynamics of Arabidopsis thaliana root penetration by the oomycete pathogen Phytophthora parasitica. BMC Genomics, 2014, 15, 538.	2.8	31
3	The <i><scp>P</scp>hytophthora parasitica </i> <scp>RXLR</scp> effector Penetrationâ€Specific Effector 1 favours <i><scp>A</scp>rabidopsis thaliana</i> infection by interfering with auxin physiology. New Phytologist, 2013, 199, 476-489.	7.3	69
4	Parental Transfer of the Antimicrobial Protein LBP/BPI Protects Biomphalaria glabrata Eggs against Oomycete Infections. PLoS Pathogens, 2013, 9, e1003792.	4.7	61
5	Biology and ecology of biofilms formed by a plant pathogen Phytophthora parasitica: From biochemical ecology to ecological engineering. Procedia Environmental Sciences, 2011, 9, 178-182.	1.4	12
6	Ecosystem Screening Approach for Pathogen-Associated Microorganisms Affecting Host Disease. Applied and Environmental Microbiology, 2011, 77, 6069-6075.	3.1	14
7	Imbalanced Lignin Biosynthesis Promotes the Sexual Reproduction of Homothallic Oomycete Pathogens. PLoS Pathogens, 2009, 5, e1000264.	4.7	80
8	(Homo)glutathione Depletion Modulates Host Gene Expression during the Symbiotic Interaction between <i>Medicago truncatula</i> and <i>Sinorhizobium meliloti</i> Â Â. Plant Physiology, 2009, 151, 1186-1196.	4.8	25
9	Strategies of attack and defense in plant–oomycete interactions, accentuated for Phytophthora parasitica Dastur (syn. P. Nicotianae Breda de Haan). Journal of Plant Physiology, 2008, 165, 83-94.	3.5	52
10	Silencing of acidic pathogenesis-related PR-1 genes increases extracellular Â-(1->3)-glucanase activity at the onset of tobacco defence reactions. Journal of Experimental Botany, 2008, 59, 1225-1239.	4.8	48
11	Structure of sylvaticin, a new α-elicitin-like protein from <i>Pythium sylvaticum</i> . Acta Crystallographica Section D: Biological Crystallography, 2007, 63, 1102-1108.	2.5	10
12	Specific Adduction of Plant Lipid Transfer Protein by an Allene Oxide Generated by 9-Lipoxygenase and Allene Oxide Synthase. Journal of Biological Chemistry, 2006, 281, 38981-38988.	3.4	59
13	Accessibility of tobacco lipid transfer protein cavity revealed by 15 N NMR relaxation studies and molecular dynamics simulations. Proteins: Structure, Function and Bioinformatics, 2006, 64, 124-132.	2.6	9
14	The combined action of 9 lipoxygenase and galactolipase is sufficient to bring about programmed cell death during tobacco hypersensitive response. Plant, Cell and Environment, 2005, 28, 1367-1378.	5.7	68
15	Solution structure of a tobacco lipid transfer protein exhibiting new biophysical and biological features. Proteins: Structure, Function and Bioinformatics, 2005, 59, 356-367.	2.6	37
16	Construction of Cryptogein Mutants, a Proteinaceous Elicitor fromPhytophthora, with Altered Abilities To Induce a Defense Reaction in Tobacco Cellsâ€. Biochemistry, 2005, 44, 6565-6572.	2.5	18
17	Modulation of the Biological Activity of a Tobacco LTP1 by Lipid Complexation. Molecular Biology of the Cell, 2004, 15, 5047-5052.	2.1	115
18	Purification, crystallization and preliminary X-ray studies of sylvaticin, an elicitin-like protein fromPythium sylvaticum. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 362-364.	2.5	2

MICHEL PONCHET

#	Article	IF	CITATIONS
19	Probing the Hydrophobic Cavity of Lipid Transfer Protein fromNicotianatabacumthrough Xenon-Based NMR Spectroscopy. Journal of the American Chemical Society, 2004, 126, 15738-15746.	13.7	45
20	Characterization of sterol uptake in leaf tissues of sugar beet. Planta, 2003, 218, 288-299.	3.2	3
21	A Tobacco S-like RNase Inhibits Hyphal Elongation of Plant Pathogens. Molecular Plant-Microbe Interactions, 2002, 15, 243-250.	2.6	59
22	From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanisms. Trends in Plant Science, 2002, 7, 293-296.	8.8	297
23	Lipoxygenase-mediated production of fatty acid hydroperoxides is a specific signature of the hypersensitive reaction in plants. Plant Physiology and Biochemistry, 2002, 40, 633-639.	5.8	56
24	The 1.45â€Ã resolution structure of the cryptogein–cholesterol complex: a close-up view of a sterol carrier protein (SCP) active site. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 1442-1447.	2.5	51
25	Mediation of Elicitin Activity on Tobacco Is Assumed by Elicitin-Sterol Complexes. Molecular Biology of the Cell, 2001, 12, 2825-2834.	2.1	103
26	Crystallization and preliminary X-ray studies of oligandrin, a sterol-carrier elicitor fromPythium oligandrum. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 1498-1500.	2.5	8
27	Oligandrin. A Proteinaceous Molecule Produced by the MycoparasitePythium oligandrum Induces Resistance to Phytophthora parasitica Infection in Tomato Plants. Plant Physiology, 2000, 124, 379-396.	4.8	122
28	Pathogen-Induced Elicitin Production in Transgenic Tobacco Generates a Hypersensitive Response and Nonspecific Disease Resistance. Plant Cell, 1999, 11, 223-235.	6.6	154
29	Elicitins trap and transfer sterols from micelles, liposomes and plant plasma membranes. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1419, 335-342.	2.6	64
30	Characterization of the Cryptogein Binding Sites on Plant Plasma Membranes. Journal of Biological Chemistry, 1999, 274, 34699-34705.	3.4	76
31	Pathogen-Induced Elicitin Production in Transgenic Tobacco Generates a Hypersensitive Response and Nonspecific Disease Resistance. Plant Cell, 1999, 11, 223.	6.6	10
32	Sesquiterpene cyclase is not a determining factor for elicitor- and pathogen-induced capsidiol accumulation in tobacco. Planta, 1998, 205, 467-476.	3.2	27
33	Elicitins, Proteinaceous Elicitors of Plant Defense, Are a New Class of Sterol Carrier Proteins. Biochemical and Biophysical Research Communications, 1998, 245, 133-139.	2.1	115
34	Comparison of Binding Properties and Early Biological Effects of Elicitins in Tobacco Cells. Plant Physiology, 1998, 118, 1317-1326.	4.8	55
35	The fungal elicitor cryptogein is a sterol carrier protein. FEBS Letters, 1997, 416, 190-192.	2.8	85
36	Characterization of border species among Pythiaceae: several Pythium isolates produce elicitins, typical proteins from Phytophthora spp Mycological Research, 1997, 101, 1459-1468.	2.5	76

MICHEL PONCHET

1

#	Article	IF	CITATIONS
37	Acquired resistance triggered by elicitins in tobacco and other plants. European Journal of Plant Pathology, 1996, 102, 181-192.	1.7	137
38	Dianthramides (N-benzoyl and N-paracoumarylanthranilic acid derivatives) from elicited tissues of Dianthus caryophyllus. Phytochemistry, 1988, 27, 725-730.	2.9	39
39	Separation and quantitative assay of three pathogenesis-related (b)proteins from tobacco mosaic virus hypersensitive nicotiana tabacum by reversed-phase high-performance liquid chromatography. Journal of Chromatography A, 1985, 318, 417-426.	3.7	7
40	Multiplication végétative <i>in vitro</i> , par prolifération de bourgeons, de deux espèces de <i>Serapias: S. olbia</i> Verguin et <i>S. pseudocordigera</i> Morie. (<i>Orchidaceae</i>). Bulletin De La Société Botanique De France Lettres Botaniques, 1985, 132, 289-300.	0.1	0
41	Dianthramides A and B, two N-benzoylanthranilic acid derivatives from elicited tissues of Dianthus caryophyllus. Phytochemistry, 1984, 23, 1901-1903.	2.9	33
42	Dosage immunoenzymatique du virus de la mosaÃ ⁻ que du tabac dans différents tissus de tabac cultivés «in vitro». Agronomy for Sustainable Development, 1983, 3, 983-988.	0.8	1
43	Separation and quantification of basic hydroxycinnamic amides and hydroxycinnamic acids by reversed-phase high-performance liquid chromatography. Journal of Chromatography A, 1982, 240, 397-404.	3.7	33
44	Apparition de substances de type phénolamide lors de l'interaction Dianthus caryophyllus L. var. « Scania » — Phytophthora parasitica Dastur. Agronomy for Sustainable Development, 1982, 2, 37-44.	0.8	8
45	Hydroxycinnamoyl acid amides and aromatic amines in the inflorescences of some araceae species. Phytochemistry, 1980, 21, 2865-2869.	2.9	74

46 The Millardetian Conjunction in the Modern World. , 0, , .