Dongxu Ke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2463201/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biomimetic 3D printed PCL/TCP/GelMA scaffolds with improved osteogenesis and angiogenesis for non-load bearing applications. Materialia, 2022, 21, 101339.	2.7	1
2	Evolution of 3D bioprinting-from the perspectives of bioprinting companies. Bioprinting, 2022, 25, e00193.	5.8	11
3	Release Kinetics and In Vitro Characterization of Sodium Percarbonate and Calcium Peroxide to Oxygenate Bioprinted Tissue Models. International Journal of Molecular Sciences, 2022, 23, 6842.	4.1	7
4	Adenosine-treated bioprinted muscle constructs prolong cell survival and improve tissue formation. Bio-Design and Manufacturing, 2021, 4, 441-451.	7.7	1
5	Bioprinted trachea constructs with patient-matched design, mechanical and biological properties. Biofabrication, 2020, 12, 015022.	7.1	34
6	Thermal Oxide Layer Enhances Crystallinity and Mechanical Properties for Plasma-Sprayed Hydroxyapatite Biomedical Coatings. ACS Applied Materials & Interfaces, 2020, 12, 33465-33472.	8.0	26
7	Bioprinting small diameter blood vessel constructs with an endothelial and smooth muscle cell bilayer in a single step. Biofabrication, 2020, 12, 045012.	7.1	73
8	Extrusion-Based Bioprinting: Current Standards and Relevancy for Human-Sized Tissue Fabrication. Methods in Molecular Biology, 2020, 2140, 65-92.	0.9	13
9	Current Challenges of Bioprinted Tissues Toward Clinical Translation. Tissue Engineering - Part B: Reviews, 2019, 25, 1-13.	4.8	29
10	Enhanced osteogenic protein expression on human osteoblast-osteoclast co-culture system using doped hydroxyapatite plasma coatings for orthopedic and dental applications. Materials Today Communications, 2019, 21, 100534.	1.9	12
11	Mechanical and biological properties of ZnO, SiO2, and Ag2O doped plasma sprayed hydroxyapatite coating for orthopaedic and dental applications. Acta Biomaterialia, 2019, 92, 325-335.	8.3	107
12	<i>In Vitro</i> Characterizations of Si ⁴⁺ and Zn ²⁺ Doped Plasma Sprayed Hydroxyapatite Coatings Using Osteoblast and Osteoclast Coculture. ACS Biomaterials Science and Engineering, 2019, 5, 1302-1310.	5.2	22
13	Effects of MgO, ZnO, SrO, and SiO2 in tricalcium phosphate scaffolds on in vitro gene expression and in vivo osteogenesis. Materials Science and Engineering C, 2019, 96, 10-19.	7.3	63
14	Compositionally graded doped hydroxyapatite coating on titanium using laser and plasma spray deposition for bone implants. Acta Biomaterialia, 2019, 84, 414-423.	8.3	121
15	Effects of pore distribution and chemistry on physical, mechanical, and biological properties of tricalcium phosphate scaffolds by binder-jet 3D printing. Additive Manufacturing, 2018, 22, 111-117.	3.0	45
16	Additive manufacturing of biomaterials. Progress in Materials Science, 2018, 93, 45-111.	32.8	502
17	Doped tricalcium phosphate bone tissue engineering scaffolds using sucrose as template and microwave sintering: enhancement of mechanical and biological properties. Materials Science and Engineering C, 2017, 78, 398-404.	7.3	20
18	A smartphone colorimetric reader integrated with an ambient light sensor and a 3D printed attachment for on-site detection of zearalenone. Analytical and Bioanalytical Chemistry, 2017, 409, 6567-6574.	3.7	48

#	Article	IF	CITATIONS
19	Effects of MgO and SiO ₂ on Plasma-Sprayed Hydroxyapatite Coating: An in Vivo Study in Rat Distal Femoral Defects. ACS Applied Materials & Interfaces, 2017, 9, 25731-25737.	8.0	52
20	Doped tricalcium phosphate scaffolds by thermal decomposition of naphthalene: Mechanical properties and <i>in vivo</i> osteogenesis in a rabbit femur model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1549-1559.	3.4	31