
## Mingxing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/246222/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films.<br>Applied Surface Science, 2000, 158, 134-140.                                                                                                                                                                | 3.1  | 1,227     |
| 2  | Generation and electric control of spin–valley-coupled circular photogalvanic current in WSe2.<br>Nature Nanotechnology, 2014, 9, 851-857.                                                                                                                                                                     | 15.6 | 278       |
| 3  | Robustness of topological order and formation of quantum well states in topological insulators exposed to ambient environment. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3694-3698.                                                                          | 3.3  | 158       |
| 4  | Molecular beam epitaxy growth of GaN, AlN and InN. Progress in Crystal Growth and Characterization of Materials, 2004, 48-49, 42-103.                                                                                                                                                                          | 1.8  | 153       |
| 5  | Nitrogen doped ZnO film grown by the plasma-assisted metal-organic chemical vapor deposition.<br>Journal of Crystal Growth, 2001, 226, 123-129.                                                                                                                                                                | 0.7  | 123       |
| 6  | Polarity and Its Influence on Growth Mechanism during MOVPE Growth of GaN Sub-micrometer Rods.<br>Crystal Growth and Design, 2011, 11, 1573-1577.                                                                                                                                                              | 1.4  | 113       |
| 7  | Proposal and achievement of novel structure InNâ^•GaN multiple quantum wells consisting of 1 ML and fractional monolayer InN wells inserted in GaN matrix. Applied Physics Letters, 2007, 90, 073101.                                                                                                          | 1.5  | 111       |
| 8  | High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography.<br>Scientific Reports, 2016, 6, 35934.                                                                                                                                                                    | 1.6  | 110       |
| 9  | X-ray photoelectron spectroscopy study of ZnO films grown by metal-organic chemical vapor deposition. Journal of Crystal Growth, 2003, 252, 180-183.                                                                                                                                                           | 0.7  | 101       |
| 10 | Physical origin of Davydov splitting and resonant Raman spectroscopy of Davydov components in<br>multilayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi<br>mathvariant="normal"&gt;MoTe<mml:mn>2</mml:mn></mml:mi<br></mml:msub></mml:math> . Physical<br>Review B, 2016, 93, . | 1.1  | 93        |
| 11 | Crystal growth of undoped ZnO films on Si substrates under different sputtering conditions. Journal of Crystal Growth, 2002, 243, 439-443.                                                                                                                                                                     | 0.7  | 85        |
| 12 | High-Electron-Mobility InN Layers Grown by Boundary-Temperature-Controlled Epitaxy. Applied Physics<br>Express, 2012, 5, 015502.                                                                                                                                                                               | 1.1  | 84        |
| 13 | Effect of post-thermal annealing on properties of ZnO thin film grown on c-Al2O3 by metal-organic chemical vapor deposition. Journal of Crystal Growth, 2003, 252, 275-278.                                                                                                                                    | 0.7  | 75        |
| 14 | Phonon lifetimes and phonon decay in InN. Applied Physics Letters, 2005, 86, 223501.                                                                                                                                                                                                                           | 1.5  | 75        |
| 15 | Highâ€Outputâ€Power Ultraviolet Light Source from Quasiâ€2D GaN Quantum Structure. Advanced<br>Materials, 2016, 28, 7978-7983.                                                                                                                                                                                 | 11.1 | 72        |
| 16 | Effect of epitaxial temperature on N-polar InN films grown by molecular beam epitaxy. Journal of<br>Applied Physics, 2006, 99, 073512.                                                                                                                                                                         | 1.1  | 69        |
| 17 | Polarity control of ZnO films grown on nitrided c-sapphire by molecular-beam epitaxy. Applied Physics<br>Letters, 2005, 86, 011921.                                                                                                                                                                            | 1.5  | 68        |
| 18 | Step-Flow Growth of In-Polar InN by Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 2006, 45, L730-L733.                                                                                                                                                                                          | 0.8  | 67        |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Systematic study on p-type doping control of InN with different Mg concentrations in both In and N polarities. Applied Physics Letters, 2007, 91, 242111.                                                                   | 1.5 | 67        |
| 20 | Secâ€Eliminating the SARSâ€CoVâ€2 by AlGaN Based High Power Deep Ultraviolet Light Source. Advanced<br>Functional Materials, 2021, 31, 2008452.                                                                             | 7.8 | 67        |
| 21 | Threading dislocations in In-polar InN films and their effects on surface morphology and electrical properties. Applied Physics Letters, 2007, 90, 151901.                                                                  | 1.5 | 66        |
| 22 | Efficient silicon quantum dots light emitting diodes with an inverted device structure. Journal of Materials Chemistry C, 2016, 4, 673-677.                                                                                 | 2.7 | 64        |
| 23 | Growth and properties of Mg-doped In-polar InN films. Applied Physics Letters, 2007, 90, 201913.                                                                                                                            | 1.5 | 62        |
| 24 | Hole mobility in Mg-doped p-type InN films. Applied Physics Letters, 2008, 92, .                                                                                                                                            | 1.5 | 58        |
| 25 | High mobility AlGaN/GaN heterostructures grown on Si substrates using a large lattice-mismatch induced stress control technology. Applied Physics Letters, 2015, 106, .                                                     | 1.5 | 55        |
| 26 | Experimental determination of strain-free Raman frequencies and deformation potentials for the E2 high and A1(LO) modes in hexagonal InN. Applied Physics Letters, 2006, 89, 171907.                                        | 1.5 | 53        |
| 27 | Epitaxial growth of AlN films on sapphire via a multilayer structure adopting a low- and high-temperature alternation technique. CrystEngComm, 2015, 17, 7496-7499.                                                         | 1.3 | 53        |
| 28 | Growth of high quality and uniformity AlGaN/GaN heterostructures on Si substrates using a single<br>AlGaN layer with low Al composition. Scientific Reports, 2016, 6, 23020.                                                | 1.6 | 52        |
| 29 | Identification of Helicity-Dependent Photocurrents from Topological Surface States in Bi2Se3 Gated by Ionic Liquid. Scientific Reports, 2014, 4, 4889.                                                                      | 1.6 | 51        |
| 30 | Epitaxy of Singleâ€Crystalline GaN Film on CMOSâ€Compatible Si(100) Substrate Buffered by Graphene.<br>Advanced Functional Materials, 2019, 29, 1905056.                                                                    | 7.8 | 51        |
| 31 | High-temperature annealing induced evolution of strain in AlN epitaxial films grown on sapphire substrates. Applied Physics Letters, 2019, 114, .                                                                           | 1.5 | 51        |
| 32 | Fabrication and characterization of novel monolayer InN quantum wells in a GaN matrix. Journal of<br>Vacuum Science & Technology B, 2008, 26, 1551.                                                                         | 1.3 | 50        |
| 33 | Recent advances and challenges for successful pâ€ŧype control of InN films with Mg acceptor doping by<br>molecular beam epitaxy. Physica Status Solidi (A) Applications and Materials Science, 2010, 207,<br>1011-1023.     | 0.8 | 48        |
| 34 | The discrepancies between theory and experiment in the optical emission of monolayer In(Ga)N<br>quantum wells revisited by transmission electron microscopy. Applied Physics Letters, 2014, 104, .                          | 1.5 | 48        |
| 35 | High conductive gate leakage current channels induced by In segregation around screw- and<br>mixed-type threading dislocations in lattice-matched InxAl1a^'xN/GaN heterostructures. Applied Physics<br>Letters, 2010, 97, . | 1.5 | 47        |
| 36 | Unambiguous Identification of Carbon Location on the N Site in Semi-insulating GaN. Physical Review<br>Letters, 2018, 121, 145505.                                                                                          | 2.9 | 45        |

| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Influence of strain on the band gap energy of wurtzite InN. Physica Status Solidi (B): Basic Research,<br>2009, 246, 1177-1180.                                                           | 0.7  | 44        |
| 38 | Rashba and Dresselhaus spin-orbit coupling in GaN-based heterostructures probed by the circular photogalvanic effect under uniaxial strain. Applied Physics Letters, 2010, 97, .          | 1.5  | 43        |
| 39 | k-space imaging of anisotropic 2D electron gas in GaN/GaAlN high-electron-mobility transistor<br>heterostructures. Nature Communications, 2018, 9, 2653.                                  | 5.8  | 43        |
| 40 | Deep Ultraviolet Light Source from Ultrathin GaN/AlN MQW Structures with Output Power Over 2<br>Watt. Advanced Optical Materials, 2019, 7, 1801763.                                       | 3.6  | 43        |
| 41 | InN Thin Film Lattice Dynamics by Grazing Incidence Inelastic X-Ray Scattering. Physical Review Letters, 2011, 106, 205501.                                                               | 2.9  | 41        |
| 42 | Tunable Surface Electron Spin Splitting with Electric Double-Layer Transistors Based on InN. Nano<br>Letters, 2013, 13, 2024-2029.                                                        | 4.5  | 41        |
| 43 | Grapheneâ€Assisted Epitaxy of Nitrogen Lattice Polarity GaN Films on Nonâ€Polar Sapphire Substrates for<br>Green Light Emitting Diodes. Advanced Functional Materials, 2020, 30, 2001283. | 7.8  | 41        |
| 44 | Molecular Beam Epitaxy Growth of Single-Domain and High-Quality ZnO Layers on Nitrided (0001)<br>Sapphire Surface. Japanese Journal of Applied Physics, 2003, 42, L99-L101.               | 0.8  | 39        |
| 45 | Preparation of H2 and LPG gas sensor. Sensors and Actuators B: Chemical, 2002, 84, 95-97.                                                                                                 | 4.0  | 38        |
| 46 | Elastically frustrated rehybridization: Origin of chemical order and compositional limits in InGaN quantum wells. Physical Review Materials, 2018, 2, .                                   | 0.9  | 36        |
| 47 | Lattice-Polarity-Driven Epitaxy of Hexagonal Semiconductor Nanowires. Nano Letters, 2016, 16, 1328-1334.                                                                                  | 4.5  | 35        |
| 48 | Polarity inversion in high Mg-doped In-polar InN epitaxial layers. Applied Physics Letters, 2007, 91, .                                                                                   | 1.5  | 34        |
| 49 | High quality AlN epilayers grown on nitrided sapphire by metal organic chemical vapor deposition.<br>Scientific Reports, 2017, 7, 42747.                                                  | 1.6  | 33        |
| 50 | Deepâ€Ultraviolet Microâ€LEDs Exhibiting High Output Power and High Modulation Bandwidth<br>Simultaneously. Advanced Materials, 2022, 34, e2109765.                                       | 11.1 | 33        |
| 51 | ZnO thin film grown on silicon by metal-organic chemical vapor deposition. Journal of Crystal<br>Growth, 2002, 243, 13-18.                                                                | 0.7  | 32        |
| 52 | Advances in InN epitaxy and its material control by MBE towards novel InN-based QWs. Journal of Crystal Growth, 2009, 311, 2073-2079.                                                     | 0.7  | 32        |
| 53 | Temperature-controlled epitaxy of InxGa1-xN alloys and their band gap bowing. Journal of Applied Physics, 2011, 110, 113514.                                                              | 1.1  | 32        |
| 54 | Residual stress in AlN films grown on sapphire substrates by molecular beam epitaxy. Superlattices and Microstructures, 2016, 93, 27-31.                                                  | 1.4  | 32        |

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Repeatable Room Temperature Negative Differential Resistance in AlN/GaN Resonant Tunneling Diodes<br>Grown on Sapphire. Advanced Electronic Materials, 2019, 5, 1800651.                  | 2.6 | 32        |
| 56 | Realization of low dislocation density AlN on a small-coalescence-area nano-patterned sapphire substrate. CrystEngComm, 2019, 21, 2490-2494.                                              | 1.3 | 31        |
| 57 | Hole mobility in wurtzite InN. Applied Physics Letters, 2011, 98, .                                                                                                                       | 1.5 | 30        |
| 58 | High performance of AlGaN deep-ultraviolet light emitting diodes due to improved vertical carrier transport by delta-accelerating quantum barriers. Applied Physics Letters, 2019, 114, . | 1.5 | 30        |
| 59 | Demonstration of epitaxial growth of strain-relaxed GaN films on graphene/SiC substrates for long wavelength light-emitting diodes. Light: Science and Applications, 2021, 10, 117.       | 7.7 | 30        |
| 60 | Influence of annealing on ZnO thin film grown by plasma-assisted MOCVD. Vacuum, 2003, 69, 473-476.                                                                                        | 1.6 | 28        |
| 61 | The origin and evolution of V-defects in InxAl1â^'xN epilayers grown by metalorganic chemical vapor<br>deposition. Applied Physics Letters, 2009, 95, .                                   | 1.5 | 28        |
| 62 | Performance enhancement mechanisms of passivated InN/GaN-heterostructured ion-selective field-effect-transistor pH sensors. Sensors and Actuators B: Chemical, 2013, 181, 810-815.        | 4.0 | 28        |
| 63 | Tuning the graphene work function by uniaxial strain. Applied Physics Letters, 2015, 106, .                                                                                               | 1.5 | 28        |
| 64 | Crystal quality evolution of AlN films <i>via</i> high-temperature annealing under ambient<br>N <sub>2</sub> conditions. CrystEngComm, 2018, 20, 6613-6617.                               | 1.3 | 28        |
| 65 | Hexagonal BNâ€Assisted Epitaxy of Strain Released GaN Films for True Green Lightâ€Emitting Diodes.<br>Advanced Science, 2020, 7, 2000917.                                                 | 5.6 | 28        |
| 66 | Fabrication and properties of coherent-structure In-polarity InNâ^•In0.7Ga0.3N multiquantum wells emitting at around 1.55î¼m. Journal of Applied Physics, 2007, 102, 083539.              | 1.1 | 26        |
| 67 | Search for free holes in InN:Mg-interplay between surface layer and Mg-acceptor doped interior.<br>Journal of Applied Physics, 2009, 105, 123713.                                         | 1.1 | 26        |
| 68 | Photoluminescence and pressure effects in short period InN/nGaN superlattices. Journal of Applied Physics, 2013, 113, 123101.                                                             | 1.1 | 26        |
| 69 | Large-Scale Synthesis and Systematic Photoluminescence Properties of Monolayer MoS2 on Fused<br>Silica. ACS Applied Materials & Interfaces, 2016, 8, 18570-18576.                         | 4.0 | 26        |
| 70 | Effect of electron distribution in InN films on infrared reflectance spectrum of longitudinal optical phonon-plasmon interaction region. Journal of Applied Physics, 2008, 103, 053515.   | 1.1 | 25        |
| 71 | Anomalous Hall mobility kink observed in Mg-doped InN: Demonstration of p-type conduction. Applied<br>Physics Letters, 2010, 97, .                                                        | 1.5 | 25        |
| 72 | Shear strain induced modulation to the transport properties of graphene. Applied Physics Letters, 2014, 105, .                                                                            | 1.5 | 25        |

| #  | Article                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Revealing of the transition from n- to p-type conduction of InN:Mg by photoconductivity effect measurement. Scientific Reports, 2015, 4, 4371.                                          | 1.6 | 25        |
| 74 | Mechanism of stress-driven composition evolution during hetero-epitaxy in a ternary AlGaN system.<br>Scientific Reports, 2016, 6, 25124.                                                | 1.6 | 25        |
| 75 | Performance improvement of AlGaN-based deep-ultraviolet light-emitting diodes by inserting single spike barriers. Superlattices and Microstructures, 2016, 100, 941-946.                | 1.4 | 25        |
| 76 | Vacancy-type defects in Mg-doped InN probed by means of positron annihilation. Journal of Applied Physics, 2009, 105, .                                                                 | 1.1 | 24        |
| 77 | Observation of the photoinduced anomalous Hall effect in GaN-based heterostructures. Applied Physics Letters, 2011, 98, .                                                               | 1.5 | 24        |
| 78 | Identifying a doping type of semiconductor nanowires by photoassisted kelvin probe force microscopy as exemplified for GaN nanowires. Optical Materials Express, 2017, 7, 904.          | 1.6 | 24        |
| 79 | <i>β</i> -Ga <sub>2</sub> O <sub>3</sub> thin film grown on sapphire substrate by plasma-assisted<br>molecular beam epitaxy. Journal of Semiconductors, 2019, 40, 012802.               | 2.0 | 24        |
| 80 | Infrared analysis of hole properties of Mg-doped p-type InN films. Applied Physics Letters, 2008, 93, 231903.                                                                           | 1.5 | 23        |
| 81 | Effect of Mg doping on enhancement of terahertz emission from InN with different lattice polarities.<br>Applied Physics Letters, 2010, 96, .                                            | 1.5 | 23        |
| 82 | Evidence of Type-II Band Alignment in III-nitride Semiconductors: Experimental and theoretical investigation for In0.17Al0.83N/GaN heterostructures. Scientific Reports, 2014, 4, 6521. | 1.6 | 23        |
| 83 | Al diffusion at AlN/Si interface and its suppression through substrate nitridation. Applied Physics<br>Letters, 2020, 116, .                                                            | 1.5 | 23        |
| 84 | Infrared to vacuum-ultraviolet ellipsometry and optical Hall-effect study of free-charge carrier parameters in Mg-doped InN. Journal of Applied Physics, 2013, 113, .                   | 1.1 | 22        |
| 85 | Origin of Improved Optical Quality of Monolayer Molybdenum Disulfide Grown on Hexagonal Boron<br>Nitride Substrate. Small, 2016, 12, 198-203.                                           | 5.2 | 22        |
| 86 | High-electron-mobility InN epilayers grown on silicon substrate. Applied Physics Letters, 2018, 112, .                                                                                  | 1.5 | 22        |
| 87 | Sub-nanometer ultrathin epitaxy of AlGaN and its application in efficient doping. Light: Science and Applications, 2022, 11, 71.                                                        | 7.7 | 22        |
| 88 | Strain effects on InxAl1â^'xN crystalline quality grown on GaN templates by metalorganic chemical vapor deposition. Journal of Applied Physics, 2010, 107, .                            | 1.1 | 21        |
| 89 | Experimental Evidence of Large Bandgap Energy in Atomically Thin AlN. Advanced Functional Materials, 2019, 29, 1902608.                                                                 | 7.8 | 21        |
| 90 | Growth of In-polar and N-polar InN nanocolumns on GaN templates by molecular beam epitaxy. Physica<br>Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1561-1565        | 0.8 | 20        |

| #   | Article                                                                                                                                                                                                                                                                                                                                                    | IF      | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|
| 91  | Broadening factors of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt; <mml:mrow> <mml:msub> <mml:mi> E </mml:mi> <mml:mn> 1 </mml:mn> </mml:msub> <mml:mro<br>coupled modes of hexagonal InN investigated by infrared reflectance measurements. Physical Review<br/>B, 2007, 76, .</mml:mro<br></mml:mrow></mml:math> | ow}∢mml | :mo>(     |
| 92  | Vacancy-type defects in In <i>x</i> Ga1– <i>x</i> N alloys probed using a monoenergetic positron beam.<br>Journal of Applied Physics, 2012, 112, .                                                                                                                                                                                                         | 1.1     | 20        |
| 93  | Free and bound excitonic effects in Al0.5Ga0.5N/Al0.35Ga0.65N MQWs with different Si-doping levels in the well layers. Scientific Reports, 2015, 5, 13046.                                                                                                                                                                                                 | 1.6     | 20        |
| 94  | Performance improvement of AlGaN-based deep-ultraviolet light-emitting diodes via asymmetric step-like AlGaN quantum wells. Superlattices and Microstructures, 2017, 104, 240-246.                                                                                                                                                                         | 1.4     | 20        |
| 95  | Single-photon emission from isolated monolayer islands of InGaN. Light: Science and Applications, 2020, 9, 159.                                                                                                                                                                                                                                            | 7.7     | 20        |
| 96  | Vacancy-engineering-induced dislocation inclination in III-nitrides on Si substrates. Physical Review<br>Materials, 2020, 4, .                                                                                                                                                                                                                             | 0.9     | 20        |
| 97  | Excitonic localization at macrostep edges in AlGaN/AlGaN multiple quantum wells. Superlattices and Microstructures, 2017, 104, 397-401.                                                                                                                                                                                                                    | 1.4     | 19        |
| 98  | Lattice Polarity Manipulation of Quasiâ€vdW Epitaxial GaN Films on Graphene Through Interface Atomic<br>Configuration. Advanced Materials, 2022, 34, e2106814.                                                                                                                                                                                             | 11.1    | 19        |
| 99  | Drive High Power UVCâ€LED Wafer into Lowâ€Cost 4â€Inch Era: Effect of Strain Modulation. Advanced<br>Functional Materials, 0, , 2112111.                                                                                                                                                                                                                   | 7.8     | 19        |
| 100 | Structural and optical properties of ZnO film by plasma-assisted MOCVD. Optical and Quantum Electronics, 2002, 34, 883-891.                                                                                                                                                                                                                                | 1.5     | 18        |
| 101 | Strong circular photogalvanic effect in ZnO epitaxial films. Applied Physics Letters, 2010, 97, .                                                                                                                                                                                                                                                          | 1.5     | 18        |
| 102 | Electronic structure of GalnN semiconductors investigated by x-ray absorption spectroscopy. Applied Physics Letters, 2011, 98, .                                                                                                                                                                                                                           | 1.5     | 18        |
| 103 | Multi-bands photoconductive response in AlGaN/GaN multiple quantum wells. Applied Physics Letters, 2014, 104, 172108.                                                                                                                                                                                                                                      | 1.5     | 18        |
| 104 | Local surface plasmon enhanced polarization and internal quantum efficiency of deep ultraviolet emissions from AlGaN-based quantum wells. Scientific Reports, 2017, 7, 2358.                                                                                                                                                                               | 1.6     | 18        |
| 105 | Highâ€Mobility Twoâ€Dimensional Electron Gas at InGaN/InN Heterointerface Grown by Molecular Beam<br>Epitaxy. Advanced Science, 2018, 5, 1800844.                                                                                                                                                                                                          | 5.6     | 18        |
| 106 | Singleâ€photon emission from a further confined InGaN/GaN quantum disc via reverseâ€reaction growth.<br>Quantum Engineering, 2019, 1, e20.                                                                                                                                                                                                                 | 1.2     | 18        |
| 107 | Anomalous linear photogalvanic effect observed in a GaN-based two-dimensional electron gas.<br>Physical Review B, 2011, 84, .                                                                                                                                                                                                                              | 1.1     | 17        |
| 108 | Temperature sensitive photoconductivity observed in InN layers. Applied Physics Letters, 2013, 102, .                                                                                                                                                                                                                                                      | 1.5     | 17        |

| #   | Article                                                                                                                                                                                                     | IF        | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| 109 | Effect of injection current on the optical polarization of AlGaN-based ultraviolet light-emitting diodes. Optics Express, 2014, 22, 19589.                                                                  | 1.7       | 17        |
| 110 | Electronic properties of polycrystalline graphene under large local strain. Applied Physics Letters, 2014, 104, .                                                                                           | 1.5       | 17        |
| 111 | Positive temperature coefficient of photovoltaic efficiency in solar cells based on InGaN/GaN MQWs.<br>Applied Physics Letters, 2016, 109, .                                                                | 1.5       | 17        |
| 112 | Lattice‧ymmetryâ€Driven Epitaxy of Hierarchical GaN Nanotripods. Advanced Functional Materials, 2017,<br>27, 1604854.                                                                                       | 7.8       | 17        |
| 113 | Repeatable asymmetric resonant tunneling in AlGaN/GaN double barrier structures grown on sapphire. Applied Physics Letters, 2019, 114, .                                                                    | 1.5       | 17        |
| 114 | Greatly enhanced performance of AlGaN-based deep ultraviolet light emitting diodes by introducing a polarization modulated electron blocking layer. Optics Express, 2019, 27, A1458.                        | 1.7       | 17        |
| 115 | Effect of Precise Control of V/III Ratio on In-Rich InGaN Epitaxial Growth. Japanese Journal of Applied Physics, 2006, 45, L1259-L1262.                                                                     | 0.8       | 16        |
| 116 | Terahertz electroluminescence of surface plasmons from nanostructured InN layers. Applied Physics<br>Letters, 2010, 96, .                                                                                   | 1.5       | 16        |
| 117 | Detection of spin-orbit coupling of surface electron layer via reciprocal spin Hall effect in InN films.<br>Applied Physics Letters, 2012, 101, .                                                           | 1.5       | 16        |
| 118 | Effect of Mg doping on the structural and free-charge carrier properties of InN films. Journal of Applied Physics, 2014, 115, 163504.                                                                       | 1.1       | 16        |
| 119 | Controlled bunching approach for achieving high efficiency active region in AlGaN-based deep<br>ultraviolet light-emitting devices with dual-band emission. Applied Physics Letters, 2020, 116, .           | 1.5       | 16        |
| 120 | Thermally annealed wafer-scale h-BN films grown on sapphire substrate by molecular beam epitaxy.<br>Applied Physics Letters, 2020, 116, .                                                                   | 1.5       | 16        |
| 121 | In situ spectroscopic ellipsometry in plasma-assisted molecular beam epitaxy of InN under different surface stoichiometries. Journal of Applied Physics, 2006, 99, 044913.                                  | 1.1       | 15        |
| 122 | Molecular beam epitaxy of single-crystalline aluminum film for low threshold ultraviolet plasmonic nanolasers. Applied Physics Letters, 2018, 112, .                                                        | 1.5       | 15        |
| 123 | Improved light extraction efficiency of AlGaN deep-ultraviolet light emitting diodes combining<br>Ag-nanodots/Al reflective electrode with highly transparent p-type layer. Optics Express, 2021, 29, 2394. | 1.7       | 15        |
| 124 | Exciton emission of quasi-2D InGaN in GaN matrix grown by molecular beam epitaxy. Scientific Reports,<br>2017, 7, 46420.                                                                                    | 1.6       | 14        |
| 125 | Colorâ€Tunable 3D InGaN/GaN Multiâ€Quantumâ€Well Lightâ€Emittingâ€Diode Based on Microfacet Emission a<br>Programmable Driving Power Supply. Advanced Optical Materials, 2021, 9, .                         | nd<br>3.6 | 14        |
| 126 | Realization of high efficiency AlGaN-based multiple quantum wells grown on nano-patterned sapphire substrates. CrystEngComm, 2021, 23, 1201-1206.                                                           | 1.3       | 14        |

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Anisotropic damping of longitudinal optical phonon-plasmon coupling modes of InN films. Applied<br>Physics Letters, 2008, 92, .                                                                                      | 1.5 | 13        |
| 128 | Lattice polarity detection of InN by circular photogalvanic effect. Applied Physics Letters, 2009, 95, .                                                                                                             | 1.5 | 13        |
| 129 | Magnetotransport properties of lattice-matched In0.18Al0.82N/AlN/GaN heterostructures. Journal of Applied Physics, 2011, 109, 016102.                                                                                | 1.1 | 13        |
| 130 | Effect of polarization on intersubband transition in AlGaN/GaN multiple quantum wells. Applied Physics Letters, 2013, 102, .                                                                                         | 1.5 | 13        |
| 131 | Effect of Grain Boundary Scattering on Electron Mobility of N-Polarity InN Films. Applied Physics<br>Express, 2013, 6, 021001.                                                                                       | 1.1 | 13        |
| 132 | Intersubband Transition in GaN/InGaN Multiple Quantum Wells. Scientific Reports, 2015, 5, 11485.                                                                                                                     | 1.6 | 13        |
| 133 | High-quality AlN epitaxy on sapphire substrates with sputtered buffer layers. Superlattices and Microstructures, 2017, 105, 34-38.                                                                                   | 1.4 | 13        |
| 134 | Stress evolution in AlN growth on nano-patterned sapphire substrates. Applied Physics Express, 2020, 13, 015504.                                                                                                     | 1.1 | 13        |
| 135 | Influence of high-energy local orbitals and electron-phonon interactions on the band gaps and optical absorption spectra of hexagonal boron nitride. Physical Review B, 2020, 102, .                                 | 1.1 | 13        |
| 136 | High quality AlN film grown on a nano-concave-circle patterned Si substrate with an AlN seed layer.<br>Applied Physics Letters, 2020, 117, .                                                                         | 1.5 | 13        |
| 137 | A GaN/AlN quantum cascade detector with a broad response from the mid-infrared (4.1 μm) to the visible<br>(550 nm) spectral range. Applied Physics Letters, 2020, 116, 171102.                                       | 1.5 | 13        |
| 138 | Two-step growth of ZnO thin films on diamond/Si by low-pressure metal-organic chemical vapour deposition. Journal Physics D: Applied Physics, 2002, 35, L74-L76.                                                     | 1.3 | 12        |
| 139 | Cathodoluminescence Study on Spatial Luminescence Properties of InN/GaN Multiple Quantum Wells<br>Consisting of 1-Monolayer-Thick InN Wells/GaN Matrix. Journal of Electronic Materials, 2008, 37,<br>597-602.       | 1.0 | 12        |
| 140 | Intersubband transitions at atmospheric window in AlxGa1â^'xN/GaN multiple quantum wells grown on<br>GaN/sapphire templates adopting AlN/GaN superlattices interlayer. Applied Physics Letters, 2011, 98,<br>132105. | 1.5 | 12        |
| 141 | Deep donor state in InN: Temperature-dependent electron transport in the electron accumulation layers and its influence on Hall-effect measurements. Applied Physics Letters, 2011, 99, 182107.                      | 1.5 | 12        |
| 142 | Dependence of Mg acceptor levels in InN on doping density and temperature. Journal of Applied Physics, 2011, 110, .                                                                                                  | 1.1 | 12        |
| 143 | Elastic properties of indium nitrides grown on sapphire substrates determined by nano-indentation: In comparison with other nitrides. AIP Advances, 2015, 5, .                                                       | 0.6 | 12        |
| 144 | Period size effect induced crystalline quality improvement of AlN on a nano-patterned sapphire substrate. Japanese Journal of Applied Physics, 2019, 58, 100912.                                                     | 0.8 | 12        |

| #   | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Direct evidence of hydrogen interaction with carbon: C–H complex in semi-insulating GaN. Applied<br>Physics Letters, 2020, 116, .                                                                                                            | 1.5 | 12        |
| 146 | Controlling Phaseâ€Coherent Electron Transport in Illâ€Nitrides: Toward Room Temperature Negative<br>Differential Resistance in AlGaN/GaN Double Barrier Structures. Advanced Functional Materials, 2021,<br>31, 2007216.                    | 7.8 | 12        |
| 147 | High quality GaN-on-SiC with low thermal boundary resistance by employing an ultrathin AlGaN<br>buffer layer. Applied Physics Letters, 2021, 118, .                                                                                          | 1.5 | 12        |
| 148 | Characteristics of InAs quantum dots on GaAs/InP with different InAs coverage. Journal of Vacuum<br>Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics<br>Processing and Phenomena, 2000, 18, 2523. | 1.6 | 11        |
| 149 | Abnormal magnetic-field dependence of Hall coefficient in InN epilayers. Applied Physics Letters, 2009, 95, .                                                                                                                                | 1.5 | 11        |
| 150 | Identification of the main contributions to the conductivity of epitaxial InN. Physical Review B, 2011, 84, .                                                                                                                                | 1.1 | 11        |
| 151 | Determination of the surface band bending in In <sub><i>x</i></sub> Ga <sub>1â^'<i>x</i></sub> N films by<br>hard x-ray photoemission spectroscopy. Science and Technology of Advanced Materials, 2013, 14,<br>015007.                       | 2.8 | 11        |
| 152 | Strain effect on the optical polarization properties of c-plane Al_026Ga_074N/GaN superlattices. Optics Express, 2014, 22, 6322.                                                                                                             | 1.7 | 11        |
| 153 | Enhanced transport properties in InAlGaN/AlN/GaN heterostructures on Si (111) substrates: The role of interface quality. Applied Physics Letters, 2017, 110, .                                                                               | 1.5 | 11        |
| 154 | Single photon source based on an InGaN quantum dot in a site-controlled optical horn structure.<br>Applied Physics Letters, 2019, 115, .                                                                                                     | 1.5 | 11        |
| 155 | Dominant Influence of Interface Roughness Scattering on the Performance of GaN Terahertz<br>Quantum Cascade Lasers. Nanoscale Research Letters, 2019, 14, 206.                                                                               | 3.1 | 11        |
| 156 | Three Subband Occupation of the Twoâ€Ðimensional Electron Gas in Ultrathin Barrier AlN/GaN<br>Heterostructures. Advanced Functional Materials, 2020, 30, 2004450.                                                                            | 7.8 | 11        |
| 157 | Electrical Spin Injection into the 2D Electron Gas in AlN/GaN Heterostructures with Ultrathin AlN<br>Tunnel Barrier. Advanced Functional Materials, 2021, 31, 2009771.                                                                       | 7.8 | 11        |
| 158 | Control of dislocations in heteroepitaxial AlN films by extrinsic supersaturated vacancies introduced through thermal desorption of heteroatoms. Applied Physics Letters, 2021, 118, .                                                       | 1.5 | 11        |
| 159 | Growth of High Mobility InN Film on Gaâ€Polar GaN Substrate by Molecular Beam Epitaxy for<br>Optoelectronic Device Applications. Advanced Materials Interfaces, 2023, 10, .                                                                  | 1.9 | 11        |
| 160 | Four-inch high quality crack-free AlN layer grown on a high-temperature annealed AlN template by<br>MOCVD. Journal of Semiconductors, 2021, 42, 122804.                                                                                      | 2.0 | 11        |
| 161 | In situ spectroscopic ellipsometry and RHEED monitored growth of InN nanocolumns by molecular beam epitaxy. Journal of Crystal Growth, 2007, 301-302, 496-499.                                                                               | 0.7 | 10        |
| 162 | Effect of GaN interlayer on polarity control of epitaxial ZnO thin films grown by molecular beam<br>epitaxy. Applied Physics Letters, 2010, 97, 151908.                                                                                      | 1.5 | 10        |

| #   | Article                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Ionic liquid gated electric-double-layer transistors based on Mg-doped InN epitaxial films. Applied<br>Physics Letters, 2013, 103, .                                                             | 1.5 | 10        |
| 164 | Formation of p-n-p junction with ionic liquid gate in graphene. Applied Physics Letters, 2014, 104, .                                                                                            | 1.5 | 10        |
| 165 | Mid-infrared Photoconductive Response in AlGaN/GaN Step Quantum Wells. Scientific Reports, 2015, 5, 14386.                                                                                       | 1.6 | 10        |
| 166 | Study on AlGaN P-I-N-I-N solar-blind avalanche photodiodes with Al0.45Ga0.55N multiplication layer.<br>Electronic Materials Letters, 2015, 11, 1053-1058.                                        | 1.0 | 10        |
| 167 | Effect of indium droplets on growth of InGaN film by molecular beam epitaxy. Superlattices and Microstructures, 2018, 113, 650-656.                                                              | 1.4 | 10        |
| 168 | Improved Ohmic contacts to plasma etched high Al fraction n-AlGaN by active surface pretreatment.<br>Applied Physics Letters, 2021, 118, .                                                       | 1.5 | 10        |
| 169 | Monolayer-Scale GaN/AlN Multiple Quantum Wells for High Power e-Beam Pumped UV-Emitters in the 240–270 nm Spectral Range. Nanomaterials, 2021, 11, 2553.                                         | 1.9 | 10        |
| 170 | Rotation-domains suppression and polarity control of ZnO epilayers grown on skillfully treated<br>c-Al2O3 surfaces. Physica Status Solidi (B): Basic Research, 2004, 241, 620-623.               | 0.7 | 9         |
| 171 | Carrier recombination processes in In-polar n-InN in regions of low residual electron density. Journal of Applied Physics, 2009, 106, .                                                          | 1.1 | 8         |
| 172 | Influence of ultrathin AlN interlayer on the microstructure and the electrical transport properties of AlxGa1â^'xN/GaN heterostructures. Journal of Applied Physics, 2009, 106, .                | 1.1 | 8         |
| 173 | Large magnetoresistance effect in InN epilayers. Physical Review B, 2010, 82, .                                                                                                                  | 1.1 | 8         |
| 174 | Vertical leakage induced current degradation and relevant traps with large lattice relaxation in AlGaN/GaN heterostructures on Si. Applied Physics Letters, 2018, 112, 032104.                   | 1.5 | 8         |
| 175 | The sapphire substrate pretreatment effects on high-temperature annealed AlN templates in deep<br>ultraviolet light emitting diodes. CrystEngComm, 2019, 21, 4632-4636.                          | 1.3 | 8         |
| 176 | Influence of intrinsic or extrinsic doping on lattice locations of carbon in semi-insulating GaN.<br>Applied Physics Express, 2019, 12, 061002.                                                  | 1.1 | 8         |
| 177 | III-nitrides based resonant tunneling diodes. Journal Physics D: Applied Physics, 2020, 53, 253002.                                                                                              | 1.3 | 8         |
| 178 | Individually resolved luminescence from closely stacked GaN/AlN quantum wells. Photonics Research, 2020, 8, 610.                                                                                 | 3.4 | 8         |
| 179 | Correlation between electrical properties and growth dynamics for Si-doped Al-rich AlGaN grown by metal-organic chemical vapor deposition. Superlattices and Microstructures, 2022, 163, 107141. | 1.4 | 8         |
| 180 | Carrier recombination processes in Mg-doped N-polar InN films. Applied Physics Letters, 2011, 98, .                                                                                              | 1.5 | 7         |

| #   | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Coexistence of free holes and electrons in InN:Mg with In- and N-growth polarities. Journal of Applied Physics, 2012, 111, 093719.                                                                                          | 1.1 | 7         |
| 182 | Correlation between switching to n-type conductivity and structural defects in highly Mg-doped InN.<br>Applied Physics Letters, 2015, 106, 232102.                                                                          | 1.5 | 7         |
| 183 | Photoconductivity in In_xGa_1-xN epilayers. Optical Materials Express, 2016, 6, 815.                                                                                                                                        | 1.6 | 7         |
| 184 | Edge Dislocations Triggered Surface Instability in Tensile Epitaxial Hexagonal Nitride Semiconductor.<br>ACS Applied Materials & Interfaces, 2016, 8, 34108-34114.                                                          | 4.0 | 7         |
| 185 | Growth of high quality n-Al 0.5 Ga 0.5 N thick films by MOCVD. Materials Letters, 2016, 176, 298-300.                                                                                                                       | 1.3 | 7         |
| 186 | Nanopatterned sapphire substrate to enhance the efficiency of AlGaN-based UVC light source tube with CNT electron-beam. Journal of Materials Chemistry C, 2020, 8, 17336-17341.                                             | 2.7 | 7         |
| 187 | Investigation of carrier compensation traps in n <b>â~²</b> -GaN drift layer by high-temperature<br>deep-level transient spectroscopy. Applied Physics Letters, 2020, 117, .                                                | 1.5 | 7         |
| 188 | Reduced thermal boundary conductance in GaN-based electronic devices introduced by metal bonding<br>layer. Nano Research, 2021, 14, 3616-3620.                                                                              | 5.8 | 7         |
| 189 | Full-composition-graded InxGa1â^'xN films grown by molecular beam epitaxy. Applied Physics Letters, 2020, 117, 182101.                                                                                                      | 1.5 | 7         |
| 190 | Temperature-dependent growth and characterization of N-polar InN films by molecular beam epitaxy.<br>Physica Status Solidi (B): Basic Research, 2006, 243, 1456-1460.                                                       | 0.7 | 6         |
| 191 | Alloy composition fluctuation and band edge energy structure of In-rich InxGa1–xN layers<br>investigated by systematic spectroscopy. Physica Status Solidi C: Current Topics in Solid State Physics,<br>2007, 4, 2428-2432. | 0.8 | 6         |
| 192 | Structural differences in Mg-doped InN - indication of polytypism. Physica Status Solidi C: Current<br>Topics in Solid State Physics, 2010, 7, 2025-2028.                                                                   | 0.8 | 6         |
| 193 | GaN-based substrates and optoelectronic materials and devices. Science Bulletin, 2014, 59, 1201-1218.                                                                                                                       | 1.7 | 6         |
| 194 | Reflectance difference spectroscopy microscope for circular defects on InN films. Optics Express, 2016, 24, 15059.                                                                                                          | 1.7 | 6         |
| 195 | Hot electron induced non-saturation current behavior at high electric field in InAlN/GaN heterostructures with ultrathin barrier. Scientific Reports, 2016, 6, 37415.                                                       | 1.6 | 6         |
| 196 | Origin of the wide band gap from 0.6 to 2.3 eV in photovoltaic material InN: quantum confinement from surface nanostructure. Journal of Materials Chemistry A, 2016, 4, 17412-17418.                                        | 5.2 | 6         |
| 197 | High-resistance GaN epilayers with low dislocation density via growth mode modification. Journal of<br>Crystal Growth, 2016, 450, 160-163.                                                                                  | 0.7 | 6         |
| 198 | Performance improvement of AlGaN-based deep-ultraviolet light-emitting diodes via Si-doping design of quantum barriers. Superlattices and Microstructures, 2017, 109, 687-692.                                              | 1.4 | 6         |

| #   | Article                                                                                                                                                                                                  | IF                             | CITATIONS                  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------|
| 199 | Migration of carbon from Ga sites to N sites in GaN: a combined PAS and hybrid DFT study. Japanese<br>Journal of Applied Physics, 2019, 58, 090901.                                                      | 0.8                            | 6                          |
| 200 | Microstructure and dislocation evolution in composition gradient AlGaN grown by MOCVD.<br>Superlattices and Microstructures, 2021, 152, 106842.                                                          | 1.4                            | 6                          |
| 201 | Effect of unintentional nitrogen incorporation on n-type doping of<br>β-Ga <sub>2</sub> O <sub>3</sub> grown by molecular beam epitaxy. CrystEngComm, 2022, 24, 269-274.                                 | 1.3                            | 6                          |
| 202 | Polarizationâ€Drivenâ€Orientation Selective Growth of Singleâ€Crystalline IIIâ€Nitride Semiconductors on<br>Arbitrary Substrates. Advanced Functional Materials, 2022, 32, .                             | 7.8                            | 6                          |
| 203 | Regulation of surface kinetics: rapid growth of n-AlGaN with high conductivity for deep-ultraviolet light emitters. CrystEngComm, 2022, 24, 4251-4255.                                                   | 1.3                            | 6                          |
| 204 | Polarity control of ZnO films grown with high temperature N-polar GaN intermediate layers by<br>plasma-assisted molecular beam epitaxy. Physica Status Solidi (B): Basic Research, 2004, 241, 2835-2838. | 0.7                            | 5                          |
| 205 | MBE-grown ZnO film on sapphire substrate with double buffer layers. Physica Status Solidi C: Current<br>Topics in Solid State Physics, 2004, 1, 1022-1025.                                               | 0.8                            | 5                          |
| 206 | Hole density and anisotropic mobility of Mg-doped InN from the analysis of LO phonon-hole plasmon properties. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S397-S400.        | 0.8                            | 5                          |
| 207 | Hysteresis phenomena of the two dimensional electron gas density in lattice-matched InAlN/GaN heterostructures. Applied Physics Letters, 2015, 107, 052102.                                              | 1.5                            | 5                          |
| 208 | Spatial identification of traps in AlGaN/GaN heterostructures by the combination of lateral and vertical electrical stress measurements. Applied Physics Letters, 2016, 108, 042107.                     | 1.5                            | 5                          |
| 209 | Effect of stress on the Al composition evolution in AlGaN grown using metal organic vapor phase epitaxy. Applied Physics Express, 2016, 9, 051001.                                                       | 1.1                            | 5                          |
| 210 | Improvement of p -type conductivity in Al-rich AlGaN substituted by Mg Ga $\hat{I}$ -doping (AlN) m /(GaN) n ( m) Tj ET                                                                                  | ΓQqQ <u>Q</u> 0 r <sub>ξ</sub> | gBT <sub>5</sub> /Overlock |
| 211 | High quality and uniformity GaN grown on 150Âmm Si substrate using in-situ NH 3 pulse flow cleaning process. Superlattices and Microstructures, 2017, 104, 112-117.                                      | 1.4                            | 5                          |
| 212 | Electrical properties of surface and interface layers of the N- and In-polar undoped and Mg-doped InN<br>layers grown by PA MBE. Applied Physics Letters, 2018, 112, 022104.                             | 1.5                            | 5                          |
| 213 | Planar anisotropic Shubnikov-de-Haas oscillations of two-dimensional electron gas in AlN/GaN<br>heterostructure. Applied Physics Letters, 2019, 115, 152107.                                             | 1.5                            | 5                          |
| 214 | High-mobility nâ^'-GaN drift layer grown on Si substrates. Applied Physics Letters, 2021, 118, .                                                                                                         | 1.5                            | 5                          |
| 215 | Anisotropic strain relaxation and high quality AlGaN/GaN heterostructures on Si (110) substrates.<br>Applied Physics Letters, 2017, 110, .                                                               | 1.5                            | 5                          |
|     |                                                                                                                                                                                                          |                                |                            |

| #   | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Atomicâ€Scale Investigation of the Latticeâ€Asymmetryâ€Driven Anisotropic Sublimation in GaN. Advanced<br>Science, 2022, 9, .                                                                                                                           | 5.6 | 5         |
| 218 | Highâ€Efficiency Eâ€Beam Pumped Deepâ€Ultraviolet Surface Emitter Based on AlGaN Ultraâ€Thin Staggered<br>Quantum Wells. Advanced Optical Materials, 2022, 10, .                                                                                        | 3.6 | 5         |
| 219 | Effect of thin GaAs tensile-strained layer on InAs quantum dots on InP (001) substrate grown by<br>LP-MOVPE. Optical Materials, 2000, 14, 211-215.                                                                                                      | 1.7 | 4         |
| 220 | Transmission electron microscopy investigation of inversion domain boundary in Al0.65Ga0.35N grown on AlN/sapphire template. Applied Physics Letters, 2009, 95, .                                                                                       | 1.5 | 4         |
| 221 | Fe-doped InN layers grown by molecular beam epitaxy. Applied Physics Letters, 2012, 101, 171905.                                                                                                                                                        | 1.5 | 4         |
| 222 | InN/GaN Superlattices: Band Structures and Their Pressure Dependence. Japanese Journal of Applied Physics, 2013, 52, 08JL06.                                                                                                                            | 0.8 | 4         |
| 223 | Effects of light illumination on electron velocity of AlGaN/GaN heterostructures under high electric field. Applied Physics Letters, 2014, 105, 242104.                                                                                                 | 1.5 | 4         |
| 224 | Free-charge carrier parameters of n-type, p-type and compensated InN:Mg determined by infrared spectroscopic ellipsometry. Thin Solid Films, 2014, 571, 384-388.                                                                                        | 0.8 | 4         |
| 225 | Nanoscale visualization of electronic properties of AlxGa1-xN/AlyGa1-yN multiple quantum-well heterostructure by spreading resistance microscopy. Journal of Applied Physics, 2017, 121, 014305.                                                        | 1.1 | 4         |
| 226 | Hot electron assisted vertical leakage/breakdown in AlGaN/GaN heterostructures on Si substrates.<br>Superlattices and Microstructures, 2017, 107, 240-245.                                                                                              | 1.4 | 4         |
| 227 | Carrier Velocity Modulation by Asymmetrical Concave Quantum Barriers to Improve the Performance of AlGaN-Based Deep Ultraviolet Light Emitting Diodes. IEEE Photonics Journal, 2021, 13, 1-8.                                                           | 1.0 | 4         |
| 228 | Effect of a Lateral Overgrowth Process on the Strain Evolution of AlN Films Grown on a<br>Nanopatterned Sapphire Substrate for Ultravioletâ€C Lightâ€Emitting Diode Applications. Physica Status<br>Solidi - Rapid Research Letters, 2021, 15, 2100363. | 1.2 | 4         |
| 229 | High quality AlN with uniform in-plane strain on nano-patterned AlN templates achieved by preset strain modulation. Japanese Journal of Applied Physics, 2021, 60, 120903.                                                                              | 0.8 | 4         |
| 230 | Photoluminescence of InAs self-organized quantum dots on (001)InP substrate with GaAs interlayer.<br>Journal of Crystal Growth, 2002, 235, 60-64.                                                                                                       | 0.7 | 3         |
| 231 | Epitaxy of an Al-Droplet-Free AlN Layer with Step-Flow Features by Molecular Beam Epitaxy. Chinese<br>Physics Letters, 2011, 28, 068102.                                                                                                                | 1.3 | 3         |
| 232 | Different strain relief behaviors in Al0.35Ga0.65N/GaN multiple quantum wells on GaN/Sapphire<br>templates with AlN/GaN supperlattices and low-temperature AlN interlayers. Journal of Applied<br>Physics, 2012, 111, 016105.                           | 1.1 | 3         |
| 233 | Boundary-enhanced momentum relaxation of longitudinal optical phonons in GaN. Applied Physics<br>Letters, 2012, 100, 052109.                                                                                                                            | 1.5 | 3         |
| 234 | Carrier recombination processes in Inâ€polar and Nâ€polar pâ€type InN films. Physica Status Solidi (B): Basic<br>Research, 2012, 249, 472-475.                                                                                                          | 0.7 | 3         |

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Analysis of Nonradiative Carrier Recombination Processes in InN Films by Mid-infrared Spectroscopy.<br>Journal of Electronic Materials, 2013, 42, 875-881.                                                         | 1.0 | 3         |
| 236 | Advantage of In- over N-polarity for disclosure of p-type conduction in InN:Mg. Journal of Applied Physics, 2014, 115, .                                                                                           | 1.1 | 3         |
| 237 | Leakage Current Mechanism of InN-Based Metal-Insulator-Semiconductor Structures with Al2O3 as<br>Dielectric Layers. Nanoscale Research Letters, 2016, 11, 21.                                                      | 3.1 | 3         |
| 238 | Anomalous surface potential behavior observed in InN by photoassisted Kelvin probe force microscopy. Applied Physics Letters, 2017, 110, 222103.                                                                   | 1.5 | 3         |
| 239 | Determination of the transition point from electron accumulation to depletion at the surface of In <i><sub>x</sub>x</i> Ga <sub>1â^'</sub> <i><sub>x</sub></i> N films. Applied Physics Express, 2018, 11, 021001. | 1.1 | 3         |
| 240 | Investigation of InGaN Layer Grown Under In-Rich Condition by Reflectance Difference Spectroscopy<br>Microscope. Journal of Nanoscience and Nanotechnology, 2018, 18, 7468-7472.                                   | 0.9 | 3         |
| 241 | Impact of Silicon Substrate with Low Resistivity on Vertical Leakage Current in AlGaN/GaN HEMTs.<br>Applied Sciences (Switzerland), 2019, 9, 2373.                                                                 | 1.3 | 3         |
| 242 | Cathodoluminescence nano-characterization of individual GaN/AlN quantum disks embedded in nanowires. Applied Physics Letters, 2020, 117, 133106.                                                                   | 1.5 | 3         |
| 243 | Multi-channel AlGaN/GaN Schottky barrier diodes with a half through-hole. Materials Science in Semiconductor Processing, 2021, 133, 105934.                                                                        | 1.9 | 3         |
| 244 | Exciton-polariton properties of hexagonal BN-based microcavity and their potential applications in BEC and superconductivity. Physical Review B, 2021, 104, .                                                      | 1.1 | 3         |
| 245 | High electron mobility in nearly-dislocation-free hexagonal InN. Applied Physics Express, 2022, 15, 011004.                                                                                                        | 1.1 | 3         |
| 246 | Low RF loss and low dislocation density of GaN grown on high-resistivity Si substrates. Applied<br>Physics Express, 2022, 15, 031003.                                                                              | 1.1 | 3         |
| 247 | MBE Growth and Characterization of Device-Quality Thick InN Epilayers; Comparison between<br>N-polarity and In-polarity Growth Processes. Materials Research Society Symposia Proceedings, 2004,<br>831, 491.      | 0.1 | 2         |
| 248 | Effect of GaN buffer layers on the polarity and properties of ZnO epilayers on nitrided c-Al2O3 by MBE.<br>Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1005-1009.                     | 0.8 | 2         |
| 249 | Epitaxial evolution on buried cracks in a strain-controlled AlN/GaN superlattice interlayer between AlGaN/GaN multiple quantum wells and a GaN template. Chinese Physics B, 2014, 23, 106106.                      | 0.7 | 2         |
| 250 | Short period polar and nonpolar <i>m</i> InN/ <i>n</i> GaN superlattices. Physica Status Solidi C:<br>Current Topics in Solid State Physics, 2014, 11, 678-681.                                                    | 0.8 | 2         |
| 251 | Influence of MBE growth modes and conditions on spontaneous formation of metallic In nanoparticles and electrical properties of InN matrix. Journal of Crystal Growth, 2017, 478, 216-219.                         | 0.7 | 2         |
| 252 | Transition of dominant lattice sites of Mg in InN:Mg revealed by Raman scattering. Superlattices and<br>Microstructures, 2018, 120, 533-539.                                                                       | 1.4 | 2         |

| #   | Article                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Intensive luminescence from a thick, indium-rich In0.7Ga0.3N film. Japanese Journal of Applied Physics, 2019, 58, 065503.                                                                   | 0.8 | 2         |
| 254 | Excitation and emission dynamics of a single photon emitting InGaN quantum dot in a photonic horn structure. Superlattices and Microstructures, 2020, 145, 106575.                          | 1.4 | 2         |
| 255 | Interfacial symmetry breaking induced spin-orbit coupling in wurtzite GaN nanowires. Applied Physics<br>Letters, 2021, 118, 122104.                                                         | 1.5 | 2         |
| 256 | Unidirectional Elimination of Hydrogen by a Giant Local Field Saves First- and Last-Mile Performances of Semiconductor Devices. Journal of Physical Chemistry Letters, 2022, 13, 2084-2093. | 2.1 | 2         |
| 257 | Infrared stimulated emission with an ultralow threshold from low-dislocation-density InN films grown on a vicinal GaN substrate. Fundamental Research, 2022, 2, 794-798.                    | 1.6 | 2         |
| 258 | Influence of intrinsic or extrinsic doping on charge state of carbon and its interaction with hydrogen in GaN. Applied Physics Letters, 2022, 120, .                                        | 1.5 | 2         |
| 259 | Excavating the Communication Performance in GaNâ€Based Green Microâ€LEDs: Modularâ€Architectured<br>pâ€Type Region. Advanced Photonics Research, 2023, 4, .                                 | 1.7 | 2         |
| 260 | Low-Resistive Ohmic Contacts in High-Electron-Mobility AlN/GaN Heterostructures by Suppressing the Oxygen Incorporation. ACS Applied Electronic Materials, 2022, 4, 3632-3639.              | 2.0 | 2         |
| 261 | Title is missing!. Optical and Quantum Electronics, 2001, 33, 1131-1137.                                                                                                                    | 1.5 | 1         |
| 262 | Title is missing!. Optical and Quantum Electronics, 2002, 34, 951-957.                                                                                                                      | 1.5 | 1         |
| 263 | Effect of Low Temperature Thin GaN Layer on ZnO Film Grown on Nitridated c-Sapphire by Molecular<br>Beam Epitaxy. Japanese Journal of Applied Physics, 2004, 43, L719-L721.                 | 0.8 | 1         |
| 264 | Indium Compositional Homogeneity in In\$_{0.17}\$Al\$_{0.83}\$N Epilayers Grown by Metal Organic Chemical Vapor Deposition. Applied Physics Express, 2012, 5, 101002.                       | 1.1 | 1         |
| 265 | Direct evidence of recombination between electrons in InGaN quantum discs and holes in p-type GaN.<br>Optics Express, 2017, 25, 30664.                                                      | 1.7 | 1         |
| 266 | Enhanced Hydrogen Detection Based on Mg-Doped InN Epilayer. Sensors, 2018, 18, 2065.                                                                                                        | 2.1 | 1         |
| 267 | Puzzle of non-surface related 2D electron gas in n-InN epitaxial samples. Journal of Applied Physics, 2019, 126, 045705.                                                                    | 1.1 | 1         |
| 268 | Determination of electron effective mass in InN by cyclotron resonance spectroscopy. Superlattices and Microstructures, 2019, 136, 106318.                                                  | 1.4 | 1         |
| 269 | Recombination processes in Mg doped wurtzite InN films with p- and n-type conductivity. AIP Advances, 2019, 9, 015114.                                                                      | 0.6 | 1         |
| 270 | Structure and luminescence of a-plane GaN on r-plane sapphire substrate modified by Si implantation*.<br>Chinese Physics B, 2021, 30, 056104.                                               | 0.7 | 1         |

| #   | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Impact of Quantum Dots on III-Nitride Lasers: A Theoretical Calculation on Linewidth Enhancement<br>Factors. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-7.                          | 1.9 | 1         |
| 272 | Material epitaxy of AlN thin films. Semiconductors and Semimetals, 2021, 107, 283-311.                                                                                                                       | 0.4 | 1         |
| 273 | Surface states of InAlN film grown by MOCVD. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 177302.                                                                                                              | 0.2 | 1         |
| 274 | Transferable room-temperature single-photon emitters in hexagonal boron nitride grown by<br>molecular beam epitaxy. AIP Advances, 2021, 11, 115101.                                                          | 0.6 | 1         |
| 275 | Improvement in Modulation Bandwidth of Micro-LED Arrays Based on Low-Temperature-Interlayer<br>Approach. IEEE Photonics Technology Letters, 2022, 34, 675-678.                                               | 1.3 | 1         |
| 276 | A scenario for high-temperature excitonic insulators. New Journal of Physics, 2022, 24, 083010.                                                                                                              | 1.2 | 1         |
| 277 | Studying the mechanism of ordered growth of InAs quantum dots on GaAs/InP. Optics and Laser Technology, 2001, 33, 507-509.                                                                                   | 2.2 | 0         |
| 278 | Low temperature photoluminescence of InAs self-organized quantum dots on (001) InP substrate with<br>GaAs interlayer. Journal of Crystal Growth, 2002, 234, 379-383.                                         | 0.7 | 0         |
| 279 | The influence of indium surfactant on the electrical properties of GaN epilayers grown by metal-organic chemical vapour deposition. Journal Physics D: Applied Physics, 2010, 43, 145402.                    | 1.3 | 0         |
| 280 | Strong circular photogalvanic effect in ZnO epitaxial films. AIP Conference Proceedings, 2011, , .                                                                                                           | 0.3 | 0         |
| 281 | Broadband Terahertz Emission Based on the Femtosecond Laser Pulses. Journal of Physics: Conference<br>Series, 2011, 276, 012232.                                                                             | 0.3 | 0         |
| 282 | Infrared ellipsometry and near-infrared-to-vacuum-ultraviolet ellipsometry study of free-charge<br>carrier properties in In-polar p-type InN. Materials Research Society Symposia Proceedings, 2012, 1396, . | 0.1 | 0         |
| 283 | Dislocation and Elastic Strain in an InN Film Characterized by Synchrotron Radiation X-Ray<br>Diffraction and Rutherford Backscattering/Channeling. Chinese Physics Letters, 2012, 29, 026101.               | 1.3 | 0         |
| 284 | Short period InN/nGaN superlattices: experiment versus theory. , 2013, , .                                                                                                                                   |     | 0         |
| 285 | Magnetotransport properties of high equivalent Al composition AlGaN/GaN heterostructures using AlN/GaN superlattice as a barrier. Journal of Applied Physics, 2013, 114, .                                   | 1.1 | 0         |
| 286 | Epitaxy of InGaN random and digital alloys towards solar cells. , 2014, , .                                                                                                                                  |     | 0         |
| 287 | Temperature-related exciton features on the Ga-/N-Faces of a free-standing HVPE GaN. Optical Materials<br>Express, 2014, 4, 553.                                                                             | 1.6 | 0         |
| 288 | Growth of a-Plane InN Film and Its THz Emission. Chinese Physics Letters, 2014, 31, 077202.                                                                                                                  | 1.3 | 0         |

| #   | Article                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Electrical properties of GaN-based heterostructures adopting InAlN/AlGaN bilayer barriers. Journal of<br>Crystal Growth, 2016, 447, 1-4. | 0.7 | 0         |
| 290 | 3D-Ising critical behavior in antiperovskite-type ferromagneticlike Mn3GaN. Journal of Applied Physics, 2020, 127, 073903.               | 1.1 | 0         |
| 291 | Conductive transparent (InGa)2O3 film as host for rare earth Eu. AIP Advances, 2020, 10, 025024.                                         | 0.6 | Ο         |
| 292 | Polarity-Dependent Epitaxy Control of InN, InGaN and InAlN. , 2009, , 83-119.                                                            |     | 0         |
| 293 | Observing near-infrared/ultraviolet responses within GaN/AIN superlattice for dual-band detection. , 2020, , .                           |     | 0         |
|     |                                                                                                                                          |     |           |