Amanda J Burridge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2461755/publications.pdf

Version: 2024-02-01

44 papers

2,182 citations

430874 18 h-index 315739 38 g-index

48 all docs

48 docs citations

48 times ranked

2200 citing authors

#	Article	IF	Citations
1	CerealsDB: A Whistle-Stop Tour of an Open Access SNP Resource. Methods in Molecular Biology, 2022, 2443, 133-146.	0.9	1
2	Identification of a novel stripe rust resistance gene from the European winter wheat cultivar â€~Acienda': A step towards rust proofing wheat cultivation. PLoS ONE, 2022, 17, e0264027.	2.5	7
3	The Use and Limitations of Exome Capture to Detect Novel Variation in the Hexaploid Wheat Genome. Frontiers in Plant Science, 2022, 13, 841855.	3.6	1
4	FANCM promotes class I interfering crossovers and suppresses class II non-interfering crossovers in wheat meiosis. Nature Communications, 2022, 13, .	12.8	21
5	The role of gene flow and chromosomal instability in shaping the bread wheat genome. Nature Plants, 2021, 7, 172-183.	9.3	36
6	Molecular Diversity within a Mediterranean and European Panel of Tetraploid Wheat (T. turgidum) Tj ETQq0 0 0 r 414.	rgBT /Over 3.0	rlock 10 Tf 50 7
7	Detecting SARS-CoV-2 variants with SNP genotyping. PLoS ONE, 2021, 16, e0243185.	2.5	53
8	Population structure and genome-wide association studies in bread wheat for phosphorus efficiency traits using 35ÂK Wheat Breeder's Affymetrix array. Scientific Reports, 2021, 11, 7601.	3.3	11
9	Generation of Doubled Haploid Wheat-Triticum urartu Introgression Lines and Their Characterisation Using Chromosome-Specific KASP Markers. Frontiers in Plant Science, 2021, 12, 643636.	3.6	7
10	The Long Ashton Legacy: Characterising United Kingdom West Country cider apples using a genotyping by targeted sequencing approach. Plants People Planet, 2020, 2, 167-175.	3.3	4
11	CerealsDBâ€"new tools for the analysis of the wheat genome: update 2020. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	3.0	16
12	Variation in key leaf photosynthetic traits across wheat wild relatives is accession dependent not species dependent. New Phytologist, 2020, 228, 1767-1780.	7.3	23
13	Historical changes in the contents and compositions of fibre components and polar metabolites in white wheat flour. Scientific Reports, 2020, 10, 5920.	3.3	13
14	Examining the Effects of Temperature on Recombination in Wheat. Frontiers in Plant Science, 2020, 11, 230.	3.6	18
15	Genetic variation in wheat grain quality is associated with differences in the galactolipid content of flour and the gas bubble properties of dough liquor. Food Chemistry: X, 2020, 6, 100093.	4.3	12
16	Segregation distortion: Utilizing simulated genotyping data to evaluate statistical methods. PLoS ONE, 2020, 15, e0228951.	2.5	10
17	Identification of a major QTL and associated molecular marker for high arabinoxylan fibre in white wheat flour. PLoS ONE, 2020, 15, e0227826.	2.5	20
18	Exploiting the genome of Thinopyrum elongatum to expand the gene pool of hexaploid wheat. Theoretical and Applied Genetics, 2020, 133, 2213-2226.	3.6	25

#	Article	IF	CITATIONS
19	Development of a minimal KASP marker panel for distinguishing genotypes in apple collections. PLoS ONE, 2020, 15, e0242940.	2.5	12
20	Development of a minimal KASP marker panel for distinguishing genotypes in apple collections. , 2020, 15, e0242940.		O
21	Development of a minimal KASP marker panel for distinguishing genotypes in apple collections. , 2020, 15, e0242940.		O
22	Development of a minimal KASP marker panel for distinguishing genotypes in apple collections. , 2020, 15, e0242940.		0
23	Development of a minimal KASP marker panel for distinguishing genotypes in apple collections. , 2020, 15, e0242940.		O
24	Development of a minimal KASP marker panel for distinguishing genotypes in apple collections. , 2020, 15, e0242940.		0
25	Development of a minimal KASP marker panel for distinguishing genotypes in apple collections. , 2020, 15, e0242940.		O
26	Development and characterisation of interspecific hybrid lines with genome-wide introgressions from Triticum timopheevii in a hexaploid wheat background. BMC Plant Biology, 2019, 19, 183.	3.6	25
27	Development and validation of an exome-based SNP marker set for identification of the St, Jr and Jvs genomes of Thinopyrym intermedium in a wheat background. Theoretical and Applied Genetics, 2019, 132, 1555-1570.	3.6	37
28	Highâ€density genotyping of the A.E. Watkins Collection of hexaploid landraces identifies a large molecular diversity compared to elite bread wheat. Plant Biotechnology Journal, 2018, 16, 165-175.	8.3	67
29	Conversion of arrayâ€based single nucleotide polymorphic markers for use in targeted genotyping by sequencing in hexaploid wheat (<i>Triticum aestivum</i>). Plant Biotechnology Journal, 2018, 16, 867-876.	8.3	27
30	Characterisation of Thinopyrum bessarabicum chromosomes through genome-wide introgressions into wheat. Theoretical and Applied Genetics, 2018, 131, 389-406.	3.6	74
31	Detection of T. urartu Introgressions in Wheat and Development of a Panel of Interspecific Introgression Lines. Frontiers in Plant Science, 2018, 9, 1565.	3.6	27
32	Introgression of Aegilops speltoides segments in Triticum aestivum and the effect of the gametocidal genes. Annals of Botany, 2018, 121, 229-240.	2.9	57
33	Developing a High-Throughput SNP-Based Marker System to Facilitate the Introgression of Traits From Aegilops Species Into Bread Wheat (Triticum aestivum). Frontiers in Plant Science, 2018, 9, 1993.	3.6	20
34	Wheat Landrace Genome Diversity. Genetics, 2017, 205, 1657-1676.	2.9	76
35	High-Density SNP Genotyping Array for Hexaploid Wheat and Its Relatives. Methods in Molecular Biology, 2017, 1679, 293-306.	0.9	11
36	A step change in the transfer of interspecific variation into wheat from <i>Amblyopyrum muticum</i> Plant Biotechnology Journal, 2017, 15, 217-226.	8.3	124

#	Article	IF	CITATIONS
37	Characterization of a Wheat Breeders' Array suitable for highâ€throughput SNP genotyping of global accessions of hexaploid bread wheat (<i>Triticum aestivum</i>). Plant Biotechnology Journal, 2017, 15, 390-401.	8.3	334
38	Quantifying rooting at depth in a wheat doubled haploid population with introgression from wild emmer. Annals of Botany, 2017, 120, 457-470.	2.9	6
39	Highâ€density <scp>SNP</scp> genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnology Journal, 2016, 14, 1195-1206.	8.3	462
40	CerealsDB 3.0: expansion of resources and data integration. BMC Bioinformatics, 2016, 17, 256.	2.6	42
41	Discovery and development of exomeâ€based, coâ€dominant single nucleotide polymorphism markers in hexaploid wheat (<i><scp>T</scp>riticum aestivum </i> <scp>L</scp> .). Plant Biotechnology Journal, 2013, 11, 279-295.	8.3	161
42	CerealsDB 2.0: an integrated resource for plant breeders and scientists. BMC Bioinformatics, 2012, 13, 219.	2.6	194
43	Targeted reâ€sequencing of the allohexaploid wheat exome. Plant Biotechnology Journal, 2012, 10, 733-742.	8.3	133
44	Genomic and proteomic analyses of plant response to radiation in the environment $\hat{a}\in$ an abiotic stress context. Radioprotection, 2009, 44, 887-890.	1.0	5