José M Fraile

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2459842/publications.pdf

Version: 2024-02-01

182 papers 6,490 citations

47006 47 h-index 95266 68 g-index

213 all docs

213 docs citations

times ranked

213

5212 citing authors

#	Article	IF	CITATIONS
1	Noncovalent Immobilization of Enantioselective Catalysts. Chemical Reviews, 2009, 109, 360-417.	47.7	303
2	Theoretical (DFT) Insights into the Mechanism of Copper-Catalyzed Cyclopropanation Reactions. Implications for Enantioselective Catalysis. Journal of the American Chemical Society, 2001, 123, 7616-7625.	13.7	176
3	Enantioselective catalysis with chiral complexes immobilized on nanostructured supports. Chemical Society Reviews, 2009, 38, 695-706.	38.1	134
4	Bis(oxazoline)copper Complexes Covalently Bonded to Insoluble Support as Catalysts in Cyclopropanation Reactions. Journal of Organic Chemistry, 2001, 66, 8893-8901.	3.2	123
5	Polymer-Supported Bis(oxazoline)â^'Copper Complexes as Catalysts in Cyclopropanation Reactions. Organic Letters, 2000, 2, 3905-3908.	4.6	109
6	Heterogeneous titanium catalysts for oxidation of dibenzothiophene in hydrocarbon solutions with hydrogen peroxide: On the road to oxidative desulfurization. Applied Catalysis B: Environmental, 2016, 180, 680-686.	20.2	103
7	Hydrotalcite-promoted epoxidation of electron-deficient alkenes with hydrogen peroxide. Tetrahedron Letters, 1995, 36, 4125-4128.	1.4	102
8	Clay-supported non-chiral and chiral Mn(salen) complexes as catalysts for olefin epoxidation. Journal of Molecular Catalysis A, 1998, 136, 47-57.	4.8	99
9	Simple and Efficient Heterogeneous Copper Catalysts for Enantioselective Câ [^] 'H Carbene Insertion. Organic Letters, 2007, 9, 731-733.	4.6	99
10	How Important is the Inert Matrix of Supported Enantiomeric Catalysts? Reversal of Topicity with Two Polystyrene Backbones. Angewandte Chemie - International Edition, 2000, 39, 1503-1506.	13.8	98
11	Recent advances in the immobilization of chiral catalysts containing bis(oxazolines) and related ligands. Coordination Chemistry Reviews, 2008, 252, 624-646.	18.8	96
12	Silica-Supported Titanium Derivatives as Catalysts for the Epoxidation of Alkenes with Hydrogen Peroxide: A New Way to Tuneable Catalytic Activity through Ligand Exchange. Journal of Catalysis, 2000, 189, 40-51.	6.2	95
13	The use of H2O2 over titanium-grafted mesoporous silica catalysts: a step further towards sustainable epoxidation. Green Chemistry, 2009, 11, 1421.	9.0	89
14	Optimization of cyclohexene epoxidation with dilute hydrogen peroxide and silica-supported titanium catalysts. Applied Catalysis A: General, 2003, 245, 363-376.	4.3	88
15	Parametric study of the hydrothermal carbonization of cellulose and effect of acidic conditions. Carbon, 2017, 123, 421-432.	10.3	88
16	Deactivation of sulfonated hydrothermal carbons in the presence of alcohols: Evidences for sulfonic esters formation. Journal of Catalysis, 2012, 289, 73-79.	6.2	85
17	The influence of alkaline metals on the strong basicity of Mg–Al mixed oxides: The case of transesterification reactions. Applied Catalysis A: General, 2009, 364, 87-94.	4.3	80
18	Supported Ionic-Liquid Films (SILF) as Two-Dimensional Nanoreactors for Enantioselective Reactions: Surface-Mediated Selectivity Modulation (SMSM). Chemistry - A European Journal, 2007, 13, 287-291.	3.3	77

#	Article	IF	CITATIONS
19	Polymer-Grafted Tiâ^'TADDOL Complexes. Preparation and Use as Catalysts in Dielsâ^'Alder Reactions. Journal of Organic Chemistry, 1997, 62, 3126-3134.	3.2	76
20	Calcined sodium nitrate/natural phosphate: an extremely active catalyst for the easy synthesis of chalcones in heterogeneous media. Tetrahedron Letters, 2001, 42, 7953-7955.	1.4	76
21	Bis(oxazoline)–Copper Complexes, Supported by Electrostatic Interactions, as Heterogeneous Catalysts for Enantioselective Cyclopropanation Reactions: Influence of the Anionic Support. Journal of Catalysis, 1999, 186, 214-221.	6.2	75
22	Enantioselective cyclopropanation reactions in ionic liquids. Tetrahedron: Asymmetry, 2001, 12, 1891-1894.	1.8	75
23	A new titanium-silica catalyst for the epoxidation of alkenes. Journal of Molecular Catalysis A, 1996, 112, 259-267.	4.8	74
24	Catalytic sites in silica-supported titanium catalysts: silsesquioxane complexes as models. Journal of Catalysis, 2005, 233, 90-99.	6.2	74
25	The Role of Binding Constants in the Efficiency of Chiral Catalysts Immobilized by Electrostatic Interactions: The Case of Azabis(oxazoline)–Copper Complexes. Chemistry - A European Journal, 2004, 10, 2997-3005.	3.3	71
26	The First Immobilization of Pyridine-bis(oxazoline) Chiral Ligands. Organic Letters, 2002, 4, 3927-3930.	4.6	67
27	Catalytic performance and deactivation of sulfonated hydrothermal carbon in the esterification of fatty acids: Comparison with sulfonic solids of different nature. Journal of Catalysis, 2015, 324, 107-118.	6.2	66
28	A mild, efficient and selective oxidation of sulfides to sulfoxides. Chemical Communications, 1998 , , $1807-1808$.	4.1	64
29	Factors influencing the k10 montmorillonite-catalyzed diels-alder reaction between methyl acrylate and cyclopentadiene. Journal of Catalysis, 1992, 137, 394-407.	6.2	62
30	Clay-supported bis(oxazoline)–copper complexes as heterogeneous catalysts of enantioselective cyclopropanation reactions. Tetrahedron: Asymmetry, 1998, 9, 3997-4008.	1.8	62
31	Theoretical Insights into the Role of a Counterion in Copper-Catalyzed Enantioselective Cyclopropanation Reactions. Chemistry - A European Journal, 2004, 10, 758-765.	3.3	60
32	Synthesis of Polymer Bound Azabis(oxazoline) Ligands and their Application in Asymmetric Cyclopropanations. Advanced Synthesis and Catalysis, 2006, 348, 125-132.	4.3	59
33	Basic solids in the oxidation of organic compounds. Catalysis Today, 2000, 57, 3-16.	4.4	58
34	Application of natural phosphate modified with sodium nitrate in the synthesis of chalcones: a soft and clean method. Journal of Catalysis, 2003, 213, 1-6.	6.2	56
35	Supported chiral amino alcohols and diols functionalized with aluminium and titanium as catalysts of Diels-Alder reaction. Tetrahedron, 1996, 52, 9853-9862.	1.9	55
36	Immobilisation of bis(oxazoline)–copper complexes on clays and nanocomposites. Influence of different parameters on activity and selectivity. Journal of Materials Chemistry, 2002, 12, 3290-3295.	6.7	55

#	Article	IF	Citations
37	New insights into the strength and accessibility of acid sites of sulfonated hydrothermal carbon. Carbon, 2014, 77, 1157-1167.	10.3	55
38	Surface-mediated improvement of enantioselectivity with clay-immobilized copper catalysts. Journal of Molecular Catalysis A, 2003, 196, 101-108.	4.8	54
39	Efficient enhancement of copper-pyridineoxazoline catalysts through immobilization and process design. Green Chemistry, 2011, 13, 983.	9.0	54
40	Comparison of the immobilization of chiral bis(oxazoline)–copper complexes onto anionic solids and in ionic liquids. Green Chemistry, 2004, 6, 93-98.	9.0	52
41	Fatty acid based biocarbonates: Al-mediated stereoselective preparation of mono-, di- and tricarbonates under mild and solvent-less conditions. Green Chemistry, 2017, 19, 3535-3541.	9.0	52
42	Comparison of the catalytic properties of protonic zeolites and exchanged clays for Diels-Alder synthesis. Applied Catalysis A: General, 1993, 101, 253-267.	4.3	50
43	Effect of the Reaction Conditions on the Epoxidation of Alkenes with Hydrogen Peroxide Catalyzed by Silica-Supported Titanium Derivatives. Journal of Catalysis, 2001, 204, 146-156.	6.2	50
44	The importance of complex stability for asymmetric copper-catalyzed cyclopropanations in [emim][OTf] ionic liquid: the bis(oxazoline)–azabis(oxazoline) case. Tetrahedron Letters, 2004, 45, 6765-6768.	1.4	50
45	<i>C</i> ₁ â€Symmetric Versus <i>C</i> ₂ â€Symmetric Ligands in Enantioselective Copper–Bis(oxazoline)â€Catalyzed Cyclopropanation Reactions. Chemistry - A European Journal, 2007, 13, 8830-8839.	3.3	50
46	Asymmetric cyclopropanation catalysed by cationic bis(oxazoline)-Cull complexes exchanged into clays. Tetrahedron: Asymmetry, 1997, 8, 2089-2092.	1.8	49
47	Bis(oxazoline)–copper complexes supported by electrostatic interactions: scope and limitations. Journal of Catalysis, 2004, 221, 532-540.	6.2	49
48	A Flexible and Versatile Strategy for the Covalent Immobilization of Chiral Catalysts Based on Pyridinebis(oxazoline) Ligands. Journal of Organic Chemistry, 2005, 70, 5536-5544.	3.2	49
49	A new titanium–silica catalyst for the epoxidation of non-functionalized alkenes and allylic alcohols. Journal of the Chemical Society Chemical Communications, 1995, , 539-540.	2.0	48
50	Modified Ti/MCM-41 catalysts for enantioselective epoxidation of styrene. Journal of Molecular Catalysis A, 2016, 420, 282-289.	4.8	48
51	First Asymmetric Dielsâ^'Alder Reactions of Furan and Chiral Acrylates. Usefulness of Acid Heterogeneous Catalysts. Journal of Organic Chemistry, 1996, 61, 9479-9482.	3.2	47
52	Glycerol upgrading by ketalization in a zeolite membrane reactor. Asia-Pacific Journal of Chemical Engineering, 2009, 4, 279-284.	1.5	47
53	The formation of a hydrothermal carbon coating on graphite microfiber felts for using as structured acid catalyst. Carbon, 2012, 50, 1363-1372.	10.3	47
54	Silica and alumina modified by Lewis acids as catalysts in Diels-Alder reactions of carbonyl-containing dienophiles. Tetrahedron, 1993, 49, 4073-4084.	1.9	46

#	Article	IF	Citations
55	Comparison of several heterogeneous catalysts in the epoxidation of \hat{l}_{\pm} -isophorone with hydroperoxides. Tetrahedron Letters, 1996, 37, 5995-5996.	1.4	45
56	Is MCM-41 really advantageous over amorphous silica? The case of grafted titanium epoxidation catalysts. Chemical Communications, 2001, , 1510-1511.	4.1	44
57	Title is missing!. Green Chemistry, 2001, 3, 271-274.	9.0	44
58	Bis(oxazoline)-metal complexes immobilised by electrostatic interactions as heterogeneous catalysts for enantioselective Diels–Alder reactions. Journal of Molecular Catalysis A, 2001, 165, 211-218.	4.8	43
59	Polymer immobilization of bis(oxazoline) ligands using dendrimers as cross-linkers. Tetrahedron: Asymmetry, 2003, 14, 773-778.	1.8	43
60	Synthetic Transformations for the Valorization of Fatty Acid Derivatives. Synthesis, 2017, 49, 1444-1460.	2.3	42
61	Titanium Catalysts Supported on Silica. X-ray Absorption Investigation on Their Structures and Comparison of Their Catalytic Activities in Dielsâ°'Alder and Epoxidation Reactions. The Journal of Physical Chemistry, 1996, 100, 19484-19488.	2.9	41
62	CuO/SiO2 as a simple, effective and recoverable catalyst for alkylation of indole derivatives with diazo compounds. Organic and Biomolecular Chemistry, 2013, 11, 4327.	2.8	41
63	The basicity of mixed oxides and the influence of alkaline metals: The case of transesterification reactions. Applied Catalysis A: General, 2010, 387, 67-74.	4.3	40
64	Study of the recycling possibilities for azabis(oxazoline)–cobalt complexes as catalysts for enantioselective conjugate reduction. Green Chemistry, 2010, 12, 435.	9.0	40
65	Theoretical Study on the BF ₃ -Catalyzed Meinwald Rearrangement Reaction. Journal of Organic Chemistry, 2014, 79, 5993-5999.	3.2	40
66	Solvent and counterion effects in the asymmetric cyclopropanation catalysed by bis(oxazoline)–copper complexes. Journal of Molecular Catalysis A, 1999, 144, 85-89.	4.8	39
67	Spectroscopic Study of the Structure of Bis(oxazoline)copper Complexes in Solution and Immobilized on Laponite Clay. Influence of the Structure on the Catalytic Performance. Langmuir, 2000, 16, 5607-5612.	3 . 5	38
68	Impact of sulfonated hydrothermal carbon texture and surface chemistry on its catalytic performance in esterification reaction. Catalysis Today, 2015, 249, 153-160.	4.4	38
69	Biobased catalyst in biorefinery processes: sulphonated hydrothermal carbon for glycerol esterification. Catalysis Science and Technology, 2015, 5, 2897-2903.	4.1	38
70	Laponite as carrier for controlled in vitro delivery of dexamethasone in vitreous humor models. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 108, 83-90.	4.3	38
71	Title is missing!. Topics in Catalysis, 2000, 13, 303-309.	2.8	36
72	Polystyrene-Supported (R)-2-Piperazino-1,1,2-triphenylethanol:Â A Readily Available Supported Ligand with Unparalleled Catalytic Activity and Enantioselectivity. Journal of Organic Chemistry, 2005, 70, 433-438.	3.2	36

#	Article	IF	Citations
73	Enantioselective C–H carbene insertions with homogeneous and immobilized copper complexes. Organic and Biomolecular Chemistry, 2011, 9, 6075.	2.8	36
74	Multifunctional Catalysis Promoted by Solvent Effects: Ti-MCM41 for a One-Pot, Four-Step, Epoxidationâ€"Rearrangementâ€"Oxidationâ€"Decarboxylation Reaction Sequence on Stilbenes and Styrenes. ACS Catalysis, 2015, 5, 3552-3561.	11.2	36
75	Chiral lewis acids supported on silica gel and alumina, and their use as catalysts in Diels-Alder reactions of methacrolein and bromoacrolein. Tetrahedron: Asymmetry, 1996, 7, 2263-2276.	1.8	35
76	New Silica-Immobilized Chiral Amino Alcohol for the Enantioselective Addition of Diethylzinc to Benzaldehyde. Organic Letters, 2003, 5, 4333-4335.	4. 6	35
77	Polymer-Supported Bis(oxazolines) and Related Systems:Â Toward New Heterogeneous Enantioselective Catalysts. Industrial & Engineering Chemistry Research, 2005, 44, 8580-8587.	3.7	33
78	Multipurpose box- and azabox-Based Immobilized Chiral Catalysts. Advanced Synthesis and Catalysis, 2006, 348, 1680-1688.	4.3	33
79	Effect of clay calcination on clay-catalysed Diels-Alder reactions of cyclopentadiene with methyl and (â^')-menthyl acrylates. Tetrahedron, 1992, 48, 6467-6476.	1.9	32
80	Tandem Dielsâ-'Alder Aromatization Reactions of Furans under Unconventional Reaction Conditions â-' Experimental and Theoretical Studies. European Journal of Organic Chemistry, 2001, 2001, 2891.	2.4	32
81	Tridentate chiral NPN ligands based on bis(oxazolines) and their use in Pd-catalyzed enantioselective allylic substitution in molecular and ionic liquids. Tetrahedron, 2011, 67, 5402-5408.	1.9	32
82	Bio-lubricants production from fish oil residue by transesterification with trimethylolpropane. Journal of Cleaner Production, 2018, 202, 81-87.	9.3	32
83	Surface-enhanced stereoselectivity in Mukaiyama aldol reactions catalyzed by clay-supported bis(oxazoline)–copper complexes. Chemical Communications, 2008, , 5402.	4.1	31
84	Beyond reuse in chiral immobilized catalysis: The bis(oxazoline) case. Catalysis Today, 2009, 140, 44-50.	4.4	31
85	Homogeneous and Supported Copper Complexes of Cyclic and Open-Chain Polynitrogenated Ligands as Catalysts of Cyclopropanation Reactions. European Journal of Inorganic Chemistry, 1999, 1999, 2347-2354.	2.0	30
86	Support Effect on Stereoselectivities of Vinylogous Mukaiyama–Michael Reactions Catalyzed by Immobilized Chiral Copper Complexes. ACS Catalysis, 2013, 3, 2710-2718.	11.2	30
87	Preparation of \hat{l} ±-hydroxyphosphonates over phosphate catalysts. Catalysis Communications, 2008, 9, 2503-2508.	3.3	29
88	Role of Substituents in the Solid Acid-Catalyzed Cleavage of the \hat{I}^2 -O-4 Linkage in Lignin Models. ACS Sustainable Chemistry and Engineering, 2018, 6, 1837-1847.	6.7	29
89	Surface Confinement Effects on Enantioselective Cyclopropanation. Reactions with Supported Chiral 8-Oxazolinylquinolineâ°'Copper Complexes. Organometallics, 2008, 27, 2246-2251.	2.3	28
90	Structure and Dynamics of 1-Butyl-3-methylimidazolium Hexafluorophosphate Phases on Silica and Laponite Clay: From Liquid to Solid Behavior. Langmuir, 2012, 28, 11364-11375.	3.5	28

#	Article	lF	Citations
91	Cyclopropanation reactions catalysed by copper(II)-exchanged clays and zeolites. Influence of the catalyst on the selectivity. Chemical Communications, 1996, , 1319-1320.	4.1	27
92	Improvement of ligand economy controlled by polymer morphology: The case of polymer-Supported bis(oxazoline) catalysts. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1821-1824.	2.2	27
93	Asymmetric versusC2-Symmetric Ligands: Origin of the Enantioselectivity in Ruthenium-Pybox-Catalyzed Cyclopropanation Reactions. Angewandte Chemie - International Edition, 2005, 44, 458-461.	13.8	27
94	Preparation and characterization of activated montmorillonite clay supported 11-molybdo-vanado-phosphoric acid for cyclohexene oxidation. RSC Advances, 2015, 5, 6853-6863.	3.6	26
95	Clay-catalysed asymmetric diels-alder reaction of cyclopentadiene with (â^')-menthyl acrylate. Tetrahedron: Asymmetry, 1991, 2, 953-956.	1.8	25
96	AlPO4-Catalysed asymmetric Diels-Alder reactions of cyclopentadiene with chiral acrylates. Tetrahedron: Asymmetry, 1993, 4, 2507-2512.	1.8	25
97	Reversible microencapsulation of pybox–Ru chiral catalysts: scope and limitations. Tetrahedron, 2005, 61, 12107-12110.	1.9	25
98	Supported heteropolyanions as solid counterions for the electrostatic immobilization of chiral copper complexes. Journal of Catalysis, 2010, 275, 70-77.	6.2	23
99	Comparison of Chemical and Enzymatic Methods for the Transesterification of Waste Fish Oil Fatty Ethyl Esters with Different Alcohols. ACS Omega, 2020, 5, 1479-1487.	3.5	23
100	Epoxidation of chiral electron-deficient alkenes with basic heterogeneous catalysts. Applied Catalysis A: General, 2001, 207, 239-246.	4.3	22
101	Experimental and Theoretical Studies on Structureâ^Reactivity Relationships of Titanium-Modified Silicas in the Hydrogen Peroxide-Promoted Oxidation of Cyclohexene. Journal of Physical Chemistry B, 2003, 107, 519-526.	2.6	22
102	Catalytic oxidation of thioanisole Ph–S–CH3 over VOx/SiO2 and VOx/Al2O3 catalysts prepared by sol–gel method. Journal of Molecular Catalysis A, 2006, 255, 62-68.	4.8	22
103	TADDOL-TiCl2 catalyzed Diels-Alder reactions: unexpected influence of the substituents in the 2-position of the dioxolane ring on the stereoselectivity. Tetrahedron: Asymmetry, 1997, 8, 2561-2570.	1.8	21
104	Clay-catalysed asymmetric Diels-Alder reaction of cyclopentadiene with chiral acrylates. Tetrahedron: Asymmetry, 1993, 4, 223-228.	1.8	20
105	ZnCl2, ZnI2 and TiCl4 supported on silica gel as catalysts for the Diels-Alder reactions of furan. Journal of Molecular Catalysis A, 1997, 123, 43-47.	4.8	20
106	Vanadium sites in V-K10: Characterization and catalytic properties in liquid-phase sulfide oxidation. Journal of Molecular Catalysis A, 2006, 255, 92-96.	4.8	20
107	Comparison of immobilized Box and azaBox–Cu(II) complexes as catalysts for enantioselective Mukaiyama aldol reactions. Journal of Catalysis, 2007, 252, 303-311.	6.2	20
108	Synthesis and reactivity of 5-methylenehydantoins. Tetrahedron, 2011, 67, 8639-8647.	1.9	20

#	Article	IF	Citations
109	Clay-catalyzed Friedel-Crafts alkylation of anisole with dienes. Applied Catalysis A: General, 1995, 123, 273-287.	4.3	19
110	Diels-Alder reactions of (E)-2-phenyl-4-[(S)-2,2-dimethyl-1,3-dioxolan-4-ylmethylen]-5(4H)-oxazolone with heterogeneous catalysts. Tetrahedron: Asymmetry, 1996, 7, 2391-2398.	1.8	19
111	Computational Mechanistic Studies on Enantioselective pyboxâ^'Ruthenium-Catalyzed Cyclopropanation Reactions. Organometallics, 2005, 24, 3448-3457.	2.3	19
112	Heterogeneous catalysts for carbene insertion reactions. Journal of Catalysis, 2011, 281, 273-278.	6.2	19
113	Synthesis of Isosorbide Esters from Sorbitol with Heterogeneous Catalysts. ChemistrySelect, 2017, 2, 1013-1018.	1.5	19
114	Synergy between Heterogeneous Catalysis and Microwave Irradiation in an Efficient One-Pot Synthesis of Benzene Derivatives via Ring-Opening of Diels-Alder Cycloadducts of Substituted Furans. Synlett, 2001, 2001, 0753-0756.	1.8	18
115	Comparison of hydrophilic and hydrophobic silicas as supports for titanium catalysts. Applied Catalysis A: General, 2004, 276, 113-122.	4.3	17
116	The first synthesis of organic–inorganic hybrid materials with chiral bis(oxazoline) ligands. Chemical Communications, 2005, , 4669.	4.1	17
117	Shift of Multiple Incompatible Equilibriums by a Combination of Heterogeneous Catalysis and Membranes. Chemistry - A European Journal, 2010, 16, 3296-3299.	3.3	17
118	Stereochemical Outcome of Copper-Catalyzed Câ€"H Insertion Reactions. An Experimental and Theoretical Study. Journal of Organic Chemistry, 2013, 78, 5851-5857.	3.2	17
119	Heterogeneous Catalysis for Tandem Mukaiyama–Michael and Hydrogenation Reactions: One-Pot vs Sequential Processes. ACS Catalysis, 2012, 2, 56-64.	11.2	16
120	Functionalization of Porous Cellulose with Glyoxyl Groups as a Carrier for Enzyme Immobilization and Stabilization. Biomacromolecules, 2021, 22, 927-937.	5.4	16
121	Contribution of different mechanisms and different active sites to the clay-catalyzed Diels–Alder reactions. Journal of Molecular Catalysis A, 1997, 121, 97-102.	4.8	15
122	Modified Ta/MCM-41 catalysts for enantioselective oxidation of thioanisole. Journal of Molecular Catalysis A, 2015, 410, 140-148.	4.8	15
123	Sulfonated Hydrothermal Carbons from Cellulose and Glucose as Catalysts for Glycerol Ketalization. Catalysts, 2019, 9, 804.	3.5	15
124	A study on the role of solvent in clay-catalysed Diels—Alder reactions. Journal of Molecular Catalysis, 1991, 68, L31-L34.	1.2	13
125	Comparison of Ta–MCM-41 and Ti–MCM-41 as catalysts for the enantioselective epoxidation of styrene with TBHP. Comptes Rendus Chimie, 2017, 20, 827-832.	0.5	13
126	Study of interactions between Brønsted acids and triethylphosphine oxide in solution by ³¹ P NMR: evidence for 2 : 1 species. Physical Chemistry Chemical Physics, 2020, 22, 24351-24358.	2.8	13

#	Article	IF	Citations
127	Brimonidine-LAPONITE® intravitreal formulation has an ocular hypotensive and neuroprotective effect throughout 6 months of follow-up in a glaucoma animal model. Biomaterials Science, 2020, 8, 6246-6260.	5.4	13
128	Heterogeneous activation of Diels-Alder reactions of non-chiral and chiral (E)-2-cyanocinnamates. Applied Catalysis A: General, 1996, 136, 113-123.	4.3	12
129	On the Nature of the Lewis Acid Sites of Aluminum-Modified Silica. A Theoretical and Experimental Study. Journal of Physical Chemistry B, 1999, 103, 1664-1670.	2.6	12
130	Heterogeneous catalysis in the synthesis and reactivity of allantoin. Green Chemistry, 2003, 5, 275-277.	9.0	12
131	Effect of support properties on the performance of silica-supported bis(oxazoline)–copper chiral complexes. Journal of Molecular Catalysis A, 2010, 329, 21-26.	4.8	12
132	Integration of heterogeneous catalysts into complex synthetic routes: sequential vs. one-pot reactions in a (Knoevenagel + Mukaiyama–Michael + hydrogenation + transesterification) sequence. Catalysis Science and Technology, 2013, 3, 436-443.	4.1	12
133	Synthesis of fatty ketoesters by tandem epoxidation–rearrangement with heterogeneous catalysis. Catalysis Science and Technology, 2020, 10, 1789-1795.	4.1	12
134	Mass spectrometry in stereochemical problems. 6 â€" The case of mono and di-substituted norbornanes. Organic Mass Spectrometry, 1991, 26, 977-984.	1.3	11
135	Reversible Insertion of Aldehydes and Ketones into CïŁ¿H Bonds of Chiral Bis(oxazoline)/Iridium Complexes. Angewandte Chemie - International Edition, 2011, 50, 3240-3243.	13.8	11
136	Relationship between solvent effects and catalyst activation method in a clay-catalysed Dielsâ€"Alder reaction. Journal of Molecular Catalysis, 1993, 79, 305-310.	1.2	10
137	The use of solid acids to promote the one-pot synthesis of dl-5-(4-hydroxyphenyl)hydantoin. Applied Catalysis A: General, 2002, 224, 153-159.	4.3	10
138	Safety study of intravitreal and suprachoroidal Laponite clay in rabbit eyes. Graefe's Archive for Clinical and Experimental Ophthalmology, 2018, 256, 535-546.	1.9	10
139	Calcined and silylated K10 montmorillonites as catalysts of pericyclic reactions of trans-anethole. Chemical Communications, 1996, , 1981-1982.	4.1	9
140	Asymmetric versusC2-Symmetric Ligands: Origin of the Enantioselectivity in Ruthenium-Pybox-Catalyzed Cyclopropanation Reactions. Angewandte Chemie, 2005, 117, 462-465.	2.0	9
141	An Efficient and General One-Pot Method for the Synthesis of Chiral Bis(oxazoline) and Pyridine Bis(oxazoline) Ligands. Synlett, 2005, 2005, 2321-2324.	1.8	9
142	Scope and limitations of one-pot multistep reactions with heterogeneous catalysts: The case of alkene epoxidation coupled to epoxide ring-opening. Catalysis Today, 2011, 173, 15-20.	4.4	9
143	Carbenoid insertions into benzylic C–H bonds with heterogeneous copper catalysts. Tetrahedron, 2013, 69, 7360-7364.	1.9	9
144	Dexamethasone delivery to the ocular posterior segment by sustained-release Laponite formulation. Biomedical Materials (Bristol), 2020, 15, 065021.	3.3	9

#	Article	lF	Citations
145	The use of Lewis acids in the synthesis of 5-arylhydantoins. Journal of Catalysis, 2004, 226, 192-196.	6.2	8
146	Immobilized pybox systems as recoverable chiral catalysts. Comptes Rendus Chimie, 2004, 7, 161-167.	0.5	8
147	The replacement of mineral acids by sulfonic resins in the synthesis of rac-5-(4-hydroxyphenyl)hydantoin from p-hydroxymandelic acid and urea. Applied Catalysis A: General, 2004, 274, 9-14.	4.3	7
148	Synthesis of diamine functionalized mesoporous organosilicas with large pores. Journal of Sol-Gel Science and Technology, 2009, 52, 388-397.	2.4	7
149	Non-covalent immobilization of chiral copper complexes on Al-MCM41: Effect of the nature of the ligand. Catalysis Communications, 2016, 83, 74-77.	3.3	7
150	Vanadium-Schiff base complex covalently bonded on modified MCM-41 as catalyst for asymmetric oxidation of methyl phenyl sulfide. Journal of Porous Materials, 2016, 23, 507-516.	2.6	7
151	Heterogeneous catalysis of asymmetric Diels—Alder reactions. Journal of Molecular Catalysis, 1994, 89, 159-164.	1.2	6
152	Electrostatic immobilization of bis(oxazoline)-copper complexes on mesoporous crystalline materials: Cation exchange vs. incipient wetness methods. Applied Catalysis A: General, 2014, 485, 67-73.	4.3	6
153	Improved methodology for non-covalent immobilization of tert-butyl-azabis(oxazoline)–copper complex on Al-MCM41. Applied Catalysis A: General, 2015, 502, 166-173.	4.3	6
154	Monitoring New Long-Lasting Intravitreal Formulation for Glaucoma with Vitreous Images Using Optical Coherence Tomography. Pharmaceutics, 2021, 13, 217.	4.5	6
155	Heterogenization on Inorganic Supports: Methods and Applications. Catalysis By Metal Complexes, 2010, , 65-121.	0.6	6
156	Ethyl 2-(Diphenylmethyleneamino)acrylate as a Dienophile in the Synthesis of Alicyclic α-Amino Acids. Bulletin of the Chemical Society of Japan, 1990, 63, 2456-2457.	3.2	5
157	Structure and relative Lewis acidity of the catalytic sites of an aluminium-modified silica gel A theoretical study. Journal of Molecular Catalysis A, 1997, 119, 95-103.	4.8	5
158	V/MCM-41 as Catalyst for Asymmetric and Non-Asymmetric Oxidation of Methyl Phenyl Sulfide. Journal of Chemical Research, 2013, 37, 766-773.	1.3	5
159	Enantioselective epoxidation of styrene with TBHP catalyzed by bis(oxazoline)–vanadyl–laponite materials. Catalysis Communications, 2018, 117, 90-93.	3.3	5
160	Immobilizing a single pybox ligand onto a library of solid supports. Molecular Diversity, 2000, 6, 93-105.	3.9	4
161	Non-covalent Immobilization of Catalysts Based on Chiral Diazaligands. , 0, , 149-190.		4
162	TilV Exchanged K10-Montmorillonite: Characterisation and Catalytic Properties in Liquid-Phase Sulfide Oxidation. Journal of Chemical Research, 2008, 2008, 604-608.	1.3	4

#	Article	IF	Citations
163	Catalytic activity of copper-bis(oxazoline) grafted on mesoporous silica in enantioselective cyclopropanation. Reaction Kinetics, Mechanisms and Catalysis, 2015, 116, 119-130.	1.7	4
164	Determination of Three Corticosteroids in the Biologic Matrix of Vitreous Humor by HPLC-tandem Mass Spectrometry: Method Development and Validation. Current Eye Research, 2017, 42, 244-251.	1.5	4
165	Application of Heterogeneous Catalysts in the First Steps of the Oseltamivir Synthesis. Catalysts, 2017, 7, 393.	3.5	4
166	Carbon materials functionalized with sulfonic groups as acid catalysts. , 2021, , 255-298.		4
167	Synthesis of hydroxyfatty esters by sequential epoxidation-hydrogenolysis: Solvent effects. Applied Catalysis A: General, 2021, 623, 118270.	4.3	4
168	Physicochemical characterization of vanadium-doped alumina-pillared montmorillonite catalyst: Epoxidation of trans-2-hexen-1-ol. Comptes Rendus Chimie, 2009, 12, 787-792.	0.5	3
169	Challenging cyclopropanation reactions on non-activated double bonds of fatty esters. RSC Advances, 2017, 7, 19417-19424.	3.6	3
170	Title is missing!. Catalysis Letters, 1998, 51, 235-239.	2.6	2
171	Title is missing!. Catalysis Letters, 2003, 88, 31-32.	2.6	2
172	CAFC9, 9th Congress on Catalysis Applied to Fine Chemicals (Zaragoza, Spain, September 13–16, 2010). Catalysis Today, 2011, 173, 1.	4.4	2
173	High-resolution NMR studies of methyl acrylate adsorbed on silica and TiCl4-modified silica. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 1981-1985.	1.7	1
174	The importance of copper placement in chiral catalysts supported on heteropolyanions: Lacunary vs external exchanged. Molecular Catalysis, 2020, 489, 110935.	2.0	1
175	Synthesis of mesoporous silica with tailored porosity under wide-ranging conditions. Annales De Chimie: Science Des Materiaux, 2010, 35, 151-168.	0.4	1
176	New insights into the interaction of triethylphosphine oxide with silica surface: exchange between different surface species. Physical Chemistry Chemical Physics, 2022, 24, 16755-16761.	2.8	1
177	Polystyrene-Supported (R)-2-Piperazino-1,1,2-triphenylethanol: A Readily Available Supported Ligand with Unparalleled Catalytic Activity and Enantioselectivity ChemInform, 2005, 36, no.	0.0	0
178	A Flexible and Versatile Strategy for the Covalent Immobilization of Chiral Catalysts Based on Pyridinebis(oxazoline) Ligands ChemInform, 2005, 36, no.	0.0	0
179	The First Synthesis of Organic—Inorganic Hybrid Materials with Chiral Bis(oxazoline) Ligands ChemInform, 2006, 37, no.	0.0	0
180	Synthesis of mesoporous silicas functionalized with trans (1R,2R)-diaminocyclohexane by sol-gel method. Studies in Surface Science and Catalysis, 2010, 175, 487-491.	1.5	0

#	Article	lF	CITATIONS
181	Caracterización, mediante espectroscopia EPR, de los catalizadores quirales bis (Oxazolina)-Cu soportados en Laponitas. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2000, 39, 552-555.	1.9	O
182	Bis(oxazoline)-copper complexes, immobilized by electrostatic interactions, as catalysts for enantioselective aziridination. Arkivoc, 2004, 2004, 67-73.	0.5	0