Serge Y Fuchs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2459840/publications.pdf

Version: 2024-02-01

73 papers 5,176 citations

76326 40 h-index 70 g-index

76 all docs 76
docs citations

76 times ranked 8088 citing authors

#	Article	IF	CITATIONS
1	ER stress–mediated autophagy promotes Myc-dependent transformation and tumor growth. Journal of Clinical Investigation, 2012, 122, 4621-4634.	8.2	336
2	Mdm2 association with p53 targets its ubiquitination. Oncogene, 1998, 17, 2543-2547.	5.9	228
3	ATF4-dependent induction of heme oxygenase 1 prevents anoikis and promotes metastasis. Journal of Clinical Investigation, 2015, 125, 2592-2608.	8.2	210
4	Microbiota-Driven Tonic Interferon Signals in Lung Stromal Cells Protect from Influenza Virus Infection. Cell Reports, 2019, 28, 245-256.e4.	6.4	208
5	DNA-Damage-Induced Type I Interferon Promotes Senescence and Inhibits Stem Cell Function. Cell Reports, 2015, 11, 785-797.	6.4	200
6	miR-211 Is a Prosurvival MicroRNA that Regulates chop Expression in a PERK-Dependent Manner. Molecular Cell, 2012, 48, 353-364.	9.7	192
7	Inactivation of Interferon Receptor Promotes the Establishment of Immune Privileged Tumor Microenvironment. Cancer Cell, 2017, 31, 194-207.	16.8	179
8	SCFHOS ubiquitin ligase mediates the ligand-induced down-regulation of the interferon-Â receptor. EMBO Journal, 2003, 22, 5480-5490.	7.8	178
9	HOS, a human homolog of Slimb, forms an SCF complex with Skp1 and Cullin1 and targets the phosphorylation-dependent degradation of ll°B and l²-catenin. Oncogene, 1999, 18, 2039-2046.	5.9	176
10	Wnt/ \hat{l}^2 -Catenin Signaling Induces the Expression and Activity of \hat{l}^2 TrCP Ubiquitin Ligase Receptor. Molecular Cell, 2000, 5, 877-882.	9.7	172
11	ATF4 couples MYC-dependent translational activity to bioenergetic demands during tumour progression. Nature Cell Biology, 2019, 21, 889-899.	10.3	157
12	Stress-activated kinases regulate protein stability. Oncogene, 1998, 17, 1483-1490.	5.9	152
13	Phosphorylation and Specific Ubiquitin Acceptor Sites Are Required for Ubiquitination and Degradation of the IFNAR1 Subunit of Type I Interferon Receptor. Journal of Biological Chemistry, 2004, 279, 46614-46620.	3.4	126
14	An Interferon-Driven Oxysterol-Based Defense against Tumor-Derived Extracellular Vesicles. Cancer Cell, 2019, 35, 33-45.e6.	16.8	125
15	Site-specific ubiquitination exposes a linear motif to promote interferon-α receptor endocytosis. Journal of Cell Biology, 2007, 179, 935-950.	5.2	124
16	Virus-Induced Unfolded Protein Response Attenuates Antiviral Defenses via Phosphorylation-Dependent Degradation of the Type I Interferon Receptor. Cell Host and Microbe, 2009, 5, 72-83.	11.0	118
17	Oncogenic β-Catenin Signaling Networks in Colorectal Cancer. Cell Cycle, 2005, 4, 1522-1539.	2.6	108
18	The Cell Biology of the Unfolded Protein Response. Gastroenterology, 2011, 141, 38-41.e2.	1.3	91

#	Article	IF	CITATIONS
19	A PERK–miR-211 axis suppresses circadian regulators and protein synthesis to promote cancer cell survival. Nature Cell Biology, 2018, 20, 104-115.	10.3	86
20	Suppression of Type I Interferon Signaling Overcomes Oncogene-Induced Senescence and Mediates Melanoma Development and Progression. Cell Reports, 2016, 15, 171-180.	6.4	83
21	A BRISC-SHMT Complex Deubiquitinates IFNAR1 and Regulates Interferon Responses. Cell Reports, 2013, 5, 180-193.	6.4	80
22	ATF2 confers radiation resistance to human melanoma cells. Oncogene, 1998, 16, 523-531.	5.9	78
23	Trim58 Degrades Dynein and Regulates Terminal Erythropoiesis. Developmental Cell, 2014, 30, 688-700.	7.0	75
24	Mammalian Casein Kinase $1\hat{l}\pm$ and Its Leishmanial Ortholog Regulate Stability of IFNAR1 and Type I Interferon Signaling. Molecular and Cellular Biology, 2009, 29, 6401-6412.	2.3	72
25	Ligand-Stimulated Downregulation of the Alpha Interferon Receptor: Role of Protein Kinase D2. Molecular and Cellular Biology, 2011, 31, 710-720.	2.3	71
26	Hope and Fear for Interferon: The Receptor-Centric Outlook on the Future of Interferon Therapy. Journal of Interferon and Cytokine Research, 2013, 33, 211-225.	1.2	71
27	miR-216b regulation of c-Jun mediates GADD153/CHOP-dependent apoptosis. Nature Communications, 2016, 7, 11422.	12.8	71
28	Hemagglutinin of Influenza A Virus Antagonizes Type I Interferon (IFN) Responses by Inducing Degradation of Type I IFN Receptor 1. Journal of Virology, 2016, 90, 2403-2417.	3.4	68
29	Loss of ELF5–FBXW7 stabilizes IFNGR1 to promote the growth and metastasis of triple-negative breast cancer through interferon-γ signalling. Nature Cell Biology, 2020, 22, 591-602.	10.3	67
30	Estrogen-dependent DLL1-mediated Notch signaling promotes luminal breast cancer. Oncogene, 2019, 38, 2092-2107.	5.9	66
31	Contribution of phosphatidylinositol 3-kinase to radiation resistance in human melanoma cells. Molecular Carcinogenesis, 1999, 24, 64-69.	2.7	61
32	Vascular endothelial growth factor–induced elimination of the type 1 interferon receptor is required for efficient angiogenesis. Blood, 2011, 118, 4003-4006.	1.4	60
33	Stability of Homologue of Slimb F-box Protein Is Regulated by Availability of Its Substrate. Journal of Biological Chemistry, 2004, 279, 11074-11080.	3.4	59
34	Immune suppressive activity of myeloid-derived suppressor cells in cancer requires inactivation of the type I interferon pathway. Nature Communications, 2021, 12, 1717.	12.8	53
35	Ubiquitination and Degradation of ATF2 Are Dimerization Dependent. Molecular and Cellular Biology, 1999, 19, 3289-3298.	2.3	52
36	Triggering ubiquitination of $\langle scp \rangle$ IFNAR $\langle scp \rangle$ 1 protects tissues from inflammatory injury. EMBO Molecular Medicine, 2014, 6, 384-397.	6.9	52

#	Article	IF	Citations
37	Type I interferons mediate pancreatic toxicities of PERK inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15420-15425.	7.1	52
38	A stromal Integrated Stress Response activates perivascular cancer-associated fibroblasts to drive angiogenesis and tumour progression. Nature Cell Biology, 2022, 24, 940-953.	10.3	52
39	A small-molecule SUMOylation inhibitor activates antitumor immune responses and potentiates immune therapies in preclinical models. Science Translational Medicine, 2021, 13, eaba7791.	12.4	49
40	Ligand-independent pathway that controls stability of interferon alpha receptor. Biochemical and Biophysical Research Communications, 2008, 367, 388-393.	2.1	45
41	Pathogen Recognition Receptor Signaling Accelerates Phosphorylation-Dependent Degradation of IFNAR1. PLoS Pathogens, 2011, 7, e1002065.	4.7	42
42	Inducible Priming Phosphorylation Promotes Ligand-independent Degradation of the IFNAR1 Chain of Type I Interferon Receptor. Journal of Biological Chemistry, 2010, 285, 2318-2325.	3.4	41
43	PERK Is a Haploinsufficient Tumor Suppressor: Gene Dose Determines Tumor-Suppressive Versus Tumor Promoting Properties of PERK in Melanoma. PLoS Genetics, 2016, 12, e1006518.	3.5	41
44	Role of p38 Protein Kinase in the Ligand-independent Ubiquitination and Down-regulation of the IFNAR1 Chain of Type I Interferon Receptor. Journal of Biological Chemistry, 2011, 286, 22069-22076.	3.4	40
45	Ubiquitination-Dependent Regulation of Signaling Receptors in Cancer. Genes and Cancer, 2010, 1, 725-734.	1.9	37
46	Type I Interferons Control Proliferation and Function of the Intestinal Epithelium. Molecular and Cellular Biology, 2016, 36, 1124-1135.	2.3	36
47	Tyrosine Phosphorylation of Protein Kinase D2 Mediates Ligand-inducible Elimination of the Type 1 Interferon Receptor. Journal of Biological Chemistry, 2011, 286, 35733-35741.	3.4	33
48	Activation of p38 \hat{l} ± stress-activated protein kinase drives the formation of the pre-metastatic niche in the lungs. Nature Cancer, 2020, 1, 603-619.	13.2	33
49	Bcr-abl signals to desensitize chronic myeloid leukemia cells to IFNÎ \pm via accelerating the degradation of its receptor. Blood, 2011, 118, 4179-4187.	1.4	31
50	Ubiquitination-mediated regulation of interferon responses. Growth Factors, 2012, 30, 141-148.	1.7	30
51	Anti-metastatic functions of type 1 interferons: Foundation for the adjuvant therapy of cancer. Cytokine, 2017, 89, 4-11.	3.2	30
52	The role of ubiquitin-proteasome pathway in oncogenic signaling. Cancer Biology and Therapy, 2002, 1, 337-41.	3.4	28
53	Therapeutic Elimination of the Type 1 Interferon Receptor for Treating Psoriatic Skin Inflammation. Journal of Investigative Dermatology, 2016, 136, 1990-2002.	0.7	25
54	Raf inhibitor stabilizes receptor for the type I interferon but inhibits its anti-proliferative effects in human malignant melanoma cells. Cancer Biology and Therapy, 2007, 6, 1433-1437.	3.4	24

#	Article	IF	CITATIONS
55	Targeting PARP11 to avert immunosuppression and improve CAR T therapy in solid tumors. Nature Cancer, 2022, 3, 808-820.	13.2	21
56	The ssDNA-binding protein MEIOB acts as a dosage-sensitive regulator of meiotic recombination. Nucleic Acids Research, 2020, 48, 12219-12233.	14.5	17
57	A Potent <i>In Vivo</i> Antitumor Efficacy of Novel Recombinant Type I Interferon. Clinical Cancer Research, 2017, 23, 2038-2049.	7.0	16
58	Cytochrome c oxidase dysfunction enhances phagocytic function and osteoclast formation in macrophages. FASEB Journal, 2019, 33, 9167-9181.	0.5	16
59	Cancer-associated fibroblasts downregulate type I interferon receptor to stimulate intratumoral stromagenesis. Oncogene, 2020, 39, 6129-6137.	5.9	16
60	Cigarette Smoke Toxins-Induced Mitochondrial Dysfunction and Pancreatitis Involves Aryl Hydrocarbon Receptor Mediated Cyp1 Gene Expression: Protective Effects of Resveratrol. Toxicological Sciences, 2018, 166, 428-440.	3.1	12
61	Age-Dependent Effects of Type I and Type III IFNs in the Pathogenesis of <i>Bordetella pertussis</i> Infection and Disease. Journal of Immunology, 2020, 204, 2192-2202.	0.8	12
62	Regulation of intercellular biomolecule transfer $\hat{a} \in \text{``driven tumor angiogenesis'}$ and responses to anticancer therapies. Journal of Clinical Investigation, 2021, 131, .	8.2	11
63	SCF ubiquitin E3 ligase regulates DNA double-strand breaks in early meiotic recombination. Nucleic Acids Research, 2022, 50, 5129-5144.	14.5	11
64	p73 transcriptional activity increases upon cooperation between its spliced forms. Oncogene, 2000, 19, 831-835.	5.9	10
65	NSG-Pro mouse model for uncovering resistance mechanisms and unique vulnerabilities in human luminal breast cancers. Science Advances, 2021, 7, eabc8145.	10.3	10
66	De-regulation of ubiquitin-dependent proteolysis and the pathogenesis of malignant melanoma. Cancer and Metastasis Reviews, 2005, 24, 329-338.	5.9	9
67	Melanoma cellâ€secreted soluble factor that stimulates ubiquitination and degradation of the interferon alpha receptor and attenuates its signaling. Pigment Cell and Melanoma Research, 2010, 23, 838-840.	3.3	8
68	Downregulation of the IFNAR1 chain of type 1 interferon receptor contributes to the maintenance of the haematopoietic stem cells. Cancer Biology and Therapy, 2017 , 18 , $534-543$.	3.4	8
69	Malignant cell-specific pro-tumorigenic role of type I interferon receptor in breast cancers. Cancer Biology and Therapy, 2020, 21, 629-636.	3.4	7
70	Eliminative Signaling by Janus Kinases: Role in the Downregulation of Associated Receptors. Journal of Cellular Biochemistry, 2014, 115, 8-16.	2.6	6
71	The PKR-Like Endoplasmic Reticulum Kinase Promotes the Dissemination of Myc-Induced Leukemic Cells. Molecular Cancer Research, 2019, 17, 1450-1458.	3.4	5
72	Expression of the IFNAR1 chain of type 1 interferon receptor in benign cells protects against progression of acute leukemia. Leukemia and Lymphoma, 2018, 59, 171-177.	1.3	1

#	Article	IF	CITATIONS
73	Mechanisms regulating transitory suppressive activity of neutrophils in newborns: PMNsâ€MDSCs in newborns. Journal of Leukocyte Biology, 0, , .	3.3	1