
M David Marks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2459756/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chromosomeâ€level <i>Thlaspi arvense</i> genome provides new tools for translational research and for a newly domesticated cash cover crop of the cooler climates. Plant Biotechnology Journal, 2022, 20, 944-963.	8.3	18
2	Genetic dissection of seed characteristics in field pennycress via genomeâ€wide association mapping studies. Plant Genome, 2022, 15, e20211.	2.8	4
3	Technologies enabling rapid crop improvements for sustainable agriculture: example pennycress (<i>Thlaspi arvense</i> L.). Emerging Topics in Life Sciences, 2021, 5, 325-335.	2.6	11
4	TRANSPARENT TESTA 2 allele confers major reduction in pennycress (Thlaspi arvense L.) seed dormancy. Industrial Crops and Products, 2021, 174, 114216.	5.2	5
5	Combined genotype and fatty-acid analysis of single small field pennycress (Thlaspi arvense) seeds increases the throughput for functional genomics and mutant line selection. Industrial Crops and Products, 2020, 156, 112823.	5.2	5
6	Identification and stacking of crucial traits required for the domestication of pennycress. Nature Food, 2020, 1, 84-91.	14.0	54
7	Emerging Crops with Enhanced Ecosystem Services: Progress in Breeding and Processing for Food Use. Cereal Foods World, 2020, 65, .	0.2	2
8	Genetic Diversity of Field Pennycress (Thlaspi arvense) Reveals Untapped Variability and Paths Toward Selection for Domestication. Agronomy, 2019, 9, 302.	3.0	21
9	Molecular tools enabling pennycress (<i>Thlaspi arvense</i>) as a model plant and oilseed cash cover crop. Plant Biotechnology Journal, 2019, 17, 776-788.	8.3	75
10	The adaptable use of Brassica NIRS calibration equations to identify pennycress variants to facilitate the rapid domestication of a new winter oilseed crop. Industrial Crops and Products, 2019, 128, 55-61.	5.2	25
11	Spring flowering habit in field pennycress (<i>Thlaspi arvense</i>) has arisen multiple independent times. Plant Direct, 2018, 2, e00097.	1.9	13
12	Translational genomics using Arabidopsis as a model enables the characterization of pennycress genes through forward and reverse genetics. Plant Journal, 2018, 96, 1093-1105.	5.7	35
13	Expression of <i>FLOWERING LOCUS C</i> and a frameshift mutation of this gene on chromosome 20 differentiate a summer and winter annual biotype of <i>Camelina sativa</i> . Plant Direct, 2018, 2, e00060.	1.9	26
14	The pennycress (Thlaspi arvense L.) nectary: structural and transcriptomic characterization. BMC Plant Biology, 2017, 17, 201.	3.6	23
15	A Pipeline Strategy for Grain Crop Domestication. Crop Science, 2016, 56, 917-930.	1.8	101
16	Perennial Grain and Oilseed Crops. Annual Review of Plant Biology, 2016, 67, 703-729.	18.7	68
17	Sustainable commercialization of new crops for the agricultural bioeconomy. Elementa, 2016, 4, .	3.2	14
18	Gene duplication and divergence affecting drug content in <i>Cannabis sativa</i> . New Phytologist, 2015, 208, 1241-1250.	7.3	146

M DAVID MARKS

#	Article	IF	CITATIONS
19	A draft genome of field pennycress (Thlaspi arvense) provides tools for the domestication of a new winter biofuel crop. DNA Research, 2015, 22, 121-131.	3.4	86
20	New approaches to facilitate rapid domestication of a wild plant to an oilseed crop: Example pennycress (Thlaspi arvense L.). Plant Science, 2014, 227, 122-132.	3.6	112
21	<i><scp>D</scp>e novo</i> assembly of the pennycress (<i><scp>T</scp>hlaspi arvense</i>) transcriptome provides tools for the development of a winter cover crop and biodiesel feedstock. Plant Journal, 2013, 75, 1028-1038.	5.7	73
22	Phylogenetically Distinct Cellulose Synthase Genes Support Secondary Wall Thickening in Arabidopsis Shoot Trichomes and Cotton Fiber. Journal of Integrative Plant Biology, 2010, 52, 205-220.	8.5	84
23	Analysis of purified glabra3-shapeshifter trichomes reveals a role for NOECK in regulating early trichome morphogenic events. Plant Journal, 2010, 64, 304-317.	5.7	56
24	Distortion of trichome morphology by the hairless mutation of tomato affects leaf surface chemistry. Journal of Experimental Botany, 2010, 61, 1053-1064.	4.8	127
25	TrichOME: A Comparative Omics Database for Plant Trichomes Â. Plant Physiology, 2009, 152, 44-54.	4.8	98
26	Transcriptome Analysis of Arabidopsis Wild-Type and gl3–sst sim Trichomes Identifies Four Additional Genes Required for Trichome Development. Molecular Plant, 2009, 2, 803-822.	8.3	146
27	A WD40 Repeat Protein from <i>Medicago truncatula</i> Is Necessary for Tissue-Specific Anthocyanin and Proanthocyanidin Biosynthesis But Not for Trichome Development Â. Plant Physiology, 2009, 151, 1114-1129.	4.8	137
28	Identification of candidate genes affecting Δ9-tetrahydrocannabinol biosynthesis in Cannabis sativa. Journal of Experimental Botany, 2009, 60, 3715-3726.	4.8	130
29	A new method for isolating large quantities of Arabidopsis trichomes for transcriptome, cell wall and other types of analyses. Plant Journal, 2008, 56, 483-492.	5.7	72
30	E2F and retinoblastoma related proteins may regulate <i>GL1</i> expression in developing Arabidopsis trichomes. Plant Signaling and Behavior, 2008, 3, 420-422.	2.4	5
31	Genetic interaction between <i>glabra3â€shapeshifter</i> and <i>siamese</i> in <i>Arabidopsis thaliana</i> converts trichome precursors into cells with meristematic activity. Plant Journal, 2007, 52, 352-361.	5.7	13
32	Comparison of TRY and the closely related At1g01380 gene in controlling Arabidopsis trichome patterning. Plant Journal, 2004, 40, 860-869.	5.7	119
33	Initiating inhibition. EMBO Reports, 2003, 4, 24-25.	4.5	24
34	A contradictory GLABRA3 allele helps define gene interactions controlling trichome development in Arabidopsis. Development (Cambridge), 2003, 130, 5885-5894.	2.5	186
35	Role of a positive regulator of root hair development,CAPRICE,inArabidopsisroot epidermal cell differentiation. Development (Cambridge), 2002, 129, 5409-5419.	2.5	303
36	The Arabidopsis SPIKE1 Gene Is Required for Normal Cell Shape Control and Tissue Development. Plant Cell, 2002, 14, 101-118.	6.6	221

3

M DAVID MARKS

#	Article	IF	CITATIONS
37	Tissue patterning of Arabidopsiscotyledons. New Phytologist, 2002, 153, 461-467.	7.3	14
38	Progress in the molecular genetic analysis of trichome initiation and morphogenesis in Arabidopsis. Trends in Plant Science, 2000, 5, 214-219.	8.8	228
39	Organized F-Actin Is Essential for Normal Trichome Morphogenesis in Arabidopsis. Plant Cell, 1999, 11, 2331-2347.	6.6	191
40	The TRANSPARENT TESTA GLABRA1 Locus, Which Regulates Trichome Differentiation and Anthocyanin Biosynthesis in Arabidopsis, Encodes a WD40 Repeat Protein. Plant Cell, 1999, 11, 1337.	6.6	15
41	Organized F-Actin Is Essential for Normal Trichome Morphogenesis in Arabidopsis. Plant Cell, 1999, 11, 2331.	6.6	118
42	The TRANSPARENT TESTA GLABRA1 Locus, Which Regulates Trichome Differentiation and Anthocyanin Biosynthesis in Arabidopsis, Encodes a WD40 Repeat Protein. Plant Cell, 1999, 11, 1337-1349.	6.6	905
43	A Common Position-Dependent Mechanism Controls Cell-Type Patterning and GLABRA2 Regulation in the Root and Hypocotyl Epidermis of Arabidopsis1. Plant Physiology, 1998, 117, 73-84.	4.8	162
44	GLABROUS1 Overexpression and TRIPTYCHON Alter the Cell Cycle and Trichome Cell Fate in Arabidopsis. Plant Cell, 1998, 10, 2047-2062.	6.6	135
45	cot1: A Regulator of Arabidopsis Trichome Initiation. Genetics, 1998, 149, 565-577.	2.9	28
46	Epidermal cell fate and patterning in leaves Plant Cell, 1997, 9, 1109-1120.	6.6	197
47	Essential role of a kinesin-like protein in Arabidopsis trichome morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 6261-6266.	7.1	243
48	MOLECULAR GENETIC ANALYSIS OF TRICHOME DEVELOPMENT IN ARABIDOPSIS. Annual Review of Plant Biology, 1997, 48, 137-163.	14.3	168
49	Characterization of a weak allele of the GL1 gene of Arabidopsis thaliana. Plant Molecular Biology, 1994, 24, 203-207.	3.9	37
50	Plant Development: The making of a plant hair. Current Biology, 1994, 4, 621-623.	3.9	18
51	Roles of the GLABROUS1 and TRANSPARENT TESTA GLABRA Genes in Arabidopsis Trichome Development Plant Cell, 1994, 6, 1065-1076.	6.6	187
52	The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis Genes and Development, 1994, 8, 1388-1399.	5.9	525
53	Roles of the GLABROUS1 and TRANSPARENT TESTA GLABRA Genes in Arabidopsis Trichome Development. Plant Cell, 1994, 6, 1065.	6.6	79
54	The GL1 Gene and the Trichome Developmental Pathway in Arabidopsis thaliana. Results and Problems in Cell Differentiation, 1994, 20, 259-275.	0.7	23

M DAVID MARKS

#	Article	IF	CITATIONS
55	Arabidopsis GLABROUS1 Gene Requires Downstream Sequences for Function. Plant Cell, 1993, 5, 1739.	6.6	45
56	Arabidopsis GLABROUS1 Gene Requires Downstream Sequences for Function Plant Cell, 1993, 5, 1739-1748.	6.6	193
57	A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell, 1991, 67, 483-493.	28.9	613
58	A Dwarf Mutant of Arabidopsis Generated by T-DNA Insertion Mutagenesis. Science, 1989, 243, 1351-1354.	12.6	292
59	Trichome Development in Arabidopsis thaliana. I. T-DNA Tagging of the GLABROUS1 Gene. Plant Cell, 1989, 1, 1043.	6.6	34
60	Molecular cloning and physical characterization of a Brassica linear mitochondrial plasmid. Molecular Genetics and Genomics, 1987, 209, 227-233.	2.4	31
61	Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: A non-tissue culture approach. Molecular Genetics and Genomics, 1987, 208, 1-9.	2.4	407
62	The relatively large beta-tubulin gene family of Arabidopsis contains a member with an unusual transcribed 5? noncoding sequence. Plant Molecular Biology, 1987, 10, 91-104.	3.9	68
63	Rapid and efficient regeneration of plants from explants of Arabidopsis thaliana. Plant Science, 1986, 47, 63-69.	3.6	71
64	Assignment of the temperature-sensitive lesion in the replication mutant A1 of vesicular stomatitis virus to the N gene. Journal of Virology, 1985, 53, 44-51.	3.4	7
65	Functional Relationships within the New Jersey Serotype of Vesicular Stomatitis Virus: Genetic and Physiological Comparisons of the Hazelhurst and Concan Subtypes. Journal of General Virology, 1984, 65, 1769-1779.	2.9	2
66	The zein proteins of maize endosperm. Trends in Biochemical Sciences, 1984, 9, 306-308.	7.5	60