
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2458725/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Palladium-Catalyzed Alkenylation of Quinoline- <i>N</i> -oxides via Câ^'H Activation under<br>External-Oxidant-Free Conditions. Journal of the American Chemical Society, 2009, 131, 13888-13889.      | 13.7 | 432       |
| 2  | Sulfonylation of Quinoline <i>N</i> -Oxides with Aryl Sulfonyl Chlorides via Copper-Catalyzed C–H<br>Bonds Activation. Organic Letters, 2013, 15, 1270-1273.                                           | 4.6  | 226       |
| 3  | Redox of ferrocene controlled asymmetric dehydrogenative Heck reaction via palladium-catalyzed<br>dual C–H bond activation. Chemical Science, 2013, 4, 2675.                                           | 7.4  | 177       |
| 4  | Silver-Catalyzed Synthesis of 3-Phosphorated Coumarins via Radical Cyclization of Alkynoates and<br>Dialkyl <i>H</i> -Phosphonates. Organic Letters, 2014, 16, 3356-3359.                              | 4.6  | 170       |
| 5  | Copper-Catalyzed Direct Amination of Quinoline <i>N</i> -Oxides via C–H Bond Activation under Mild<br>Conditions. Organic Letters, 2014, 16, 1840-1843.                                                | 4.6  | 167       |
| 6  | Copper(I)-Catalyzed Sulfonylation of 8-Aminoquinoline Amides with Sulfonyl Chlorides in Air.<br>Organic Letters, 2015, 17, 6086-6089.                                                                  | 4.6  | 159       |
| 7  | Direct Câ€2 Alkylation of Quinoline <i>N</i> â€Oxides with Ethers <i>via</i> Palladiumâ€Catalyzed<br>Dehydrogenative Crossâ€Coupling Reaction. Advanced Synthesis and Catalysis, 2013, 355, 1971-1976. | 4.3  | 131       |
| 8  | Regioselective Palladium-Catalyzed Phosphonation of Coumarins with Dialkyl <i>H</i> -Phosphonates via C–H Functionalization. Organic Letters, 2013, 15, 6266-6269.                                     | 4.6  | 115       |
| 9  | Synthesis of Ferrocene Derivatives with Planar Chirality via Palladium-Catalyzed Enantioselective C–H<br>Bond Activation. Organic Letters, 2014, 16, 5164-5167.                                        | 4.6  | 107       |
| 10 | Directing group migration strategy in transition-metal-catalysed direct C–H functionalization.<br>Chemical Society Reviews, 2021, 50, 3677-3689.                                                       | 38.1 | 98        |
| 11 | Preparation of 3-Acyl-4-arylcoumarins via Metal-Free Tandem Oxidative Acylation/Cyclization between<br>Alkynoates with Aldehydes. Journal of Organic Chemistry, 2015, 80, 148-155.                     | 3.2  | 96        |
| 12 | Direct regioselective phosphonation of heteroaryl N-oxides with H-phosphonates under metal and external oxidant free conditions. Chemical Communications, 2014, 50, 14409-14411.                       | 4.1  | 84        |
| 13 | The palladium-catalyzed cross-coupling reactions of trifluoroethyl iodide with aryl and heteroaryl boronic acid esters. Chemical Communications, 2012, 48, 8273.                                       | 4.1  | 78        |
| 14 | lodine-Catalyzed Direct C–H Alkenylation of Azaheterocycle N-Oxides with Alkenes. Organic Letters,<br>2017, 19, 440-443.                                                                               | 4.6  | 73        |
| 15 | C8-Selective Acylation of Quinoline <i>N</i> -Oxides with α-Oxocarboxylic Acids via Palladium-Catalyzed<br>Regioselective C–H Bond Activation. Organic Letters, 2016, 18, 3722-3725.                   | 4.6  | 72        |
| 16 | Base-Promoted Cross-Dehydrogenative Coupling of Quinoline <i>N</i> -Oxides with 1,3-Azoles. Organic<br>Letters, 2015, 17, 1445-1448.                                                                   | 4.6  | 71        |
| 17 | Rh(III)â€Catalyzed Selective C8â^'H Acylmethylation of Quinoline <i>N</i> â€Oxides. Advanced Synthesis and<br>Catalysis, 2018, 360, 4068-4072.                                                         | 4.3  | 70        |
| 18 | Palladium-Catalyzed Regioselective C8–H Amination of 1-Naphthylamine Derivatives with Aliphatic<br>Amines. Organic Letters, 2016, 18, 4594-4597.                                                       | 4.6  | 69        |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Regioselective Synthesis of Nâ€Heteroaromatic Trifluoromethoxy Compounds by Direct<br>Oâ °CF <sub>3</sub> Bond Formation. Chemistry - A European Journal, 2016, 22, 5102-5106.                                            | 3.3 | 68        |
| 20 | Merging Photoredox Catalysis with Iron(III) Catalysis: C5â€H Bromination and Iodination of<br>8â€Aminoquinoline Amides in Water. Advanced Synthesis and Catalysis, 2017, 359, 1976-1980.                                  | 4.3 | 68        |
| 21 | Silver(i)-promoted C5–H phosphonation of 8-aminoquinoline amides with H-phosphonates. Organic<br>Chemistry Frontiers, 2016, 3, 1646-1650.                                                                                 | 4.5 | 63        |
| 22 | Ru/Cu Photoredox or Cu/Ag Catalyzed C4–H Sulfonylation of 1-Naphthylamides at Room Temperature.<br>Journal of Organic Chemistry, 2017, 82, 12119-12127.                                                                   | 3.2 | 63        |
| 23 | Rapid assembly of cyclopentene spiroisoindolinones <i>via</i> a rhodium-catalysed redox-neutral cascade reaction. Chemical Communications, 2019, 55, 163-166.                                                             | 4.1 | 63        |
| 24 | "One-Pot―Approach to 8-Acylated 2-Quinolinones via Palladium-Catalyzed Regioselective Acylation of<br>Quinoline <i>N</i> -Oxides. Organic Letters, 2016, 18, 2411-2414.                                                   | 4.6 | 62        |
| 25 | Rh(III)-Catalyzed Tandem Acylmethylation/Nitroso Migration/Cyclization of <i>N-</i> Nitrosoanilines<br>with Sulfoxonium Ylides in One Pot: Approach to 3-Nitrosoindoles. Organic Letters, 2020, 22, 361-364.              | 4.6 | 62        |
| 26 | Iridium-Catalyzed Direct C–H Sulfamidation of Aryl Nitrones with Sulfonyl Azides at Room<br>Temperature. Journal of Organic Chemistry, 2015, 80, 7333-7339.                                                               | 3.2 | 60        |
| 27 | Direct C–H Arylation of Thiophenes at Low Catalyst Loading of a Phosphine-Free Bis(alkoxo)palladium<br>Complex. Journal of Organic Chemistry, 2014, 79, 2890-2897.                                                        | 3.2 | 59        |
| 28 | Generally applicable and efficient oxidative Heck reaction of arylboronic acids with olefins catalyzed<br>by cyclopalladated ferrocenylimine under base- and ligand-free conditions. Tetrahedron, 2010, 66,<br>1244-1248. | 1.9 | 58        |
| 29 | Arylation of 2-substituted pyridinesvia Pd-catalyzed decarboxylative cross-coupling reactions of 2-picolinic acid. Chemical Communications, 2013, 49, 312-314.                                                            | 4.1 | 57        |
| 30 | Merging photoredox catalysis with transition metal catalysis: site-selective C4 or C5-H phosphonation of 8-aminoquinoline amides. Organic Chemistry Frontiers, 2017, 4, 1981-1986.                                        | 4.5 | 57        |
| 31 | Facile synthesis of trifluoroethyl compounds by the Suzuki cross-coupling reactions of CF3CH2OTs with arylboronic acids. Chemical Communications, 2013, 49, 10697.                                                        | 4.1 | 54        |
| 32 | Rhodium(III)-catalyzed intermolecular cyclization of anilines with sulfoxonium ylides toward indoles.<br>Chinese Chemical Letters, 2019, 30, 1374-1378.                                                                   | 9.0 | 53        |
| 33 | Transitionâ€Metalâ€Free Direct Trifluoromethylation and Perfluoroalkylation of Imidazopyridines under<br>Mild Conditions. Advanced Synthesis and Catalysis, 2019, 361, 1559-1563.                                         | 4.3 | 47        |
| 34 | Nickel-Catalyzed Direct C–H Trifluoromethylation of Free Anilines with Togni's Reagent. Organic<br>Letters, 2018, 20, 3732-3735.                                                                                          | 4.6 | 45        |
| 35 | Visible-Light-Induced Radical Difluoromethylation/Cyclization of Unactivated Alkenes: Access to CF <sub>2</sub> H-Substituted Quinazolinones. Organic Letters, 2021, 23, 7787-7791.                                       | 4.6 | 45        |
| 36 | A novel "tunnel-like―cyclopalladated arylimine catalyst immobilized on graphene oxide nano-sheet.<br>Nanoscale, 2017, 9, 781-791.                                                                                         | 5.6 | 44        |

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Copper-Catalyzed Oxidative [4 + 2]-Cyclization Reaction of Glycine Esters with Anthranils: Access to 3,4-Dihydroquinazolines. Organic Letters, 2019, 21, 4067-4071.                                                                                     | 4.6 | 44        |
| 38 | Method for Direct Synthesis of α-Cyanomethyl-β-dicarbonyl Compounds with Acetonitrile and 1,3-Dicarbonyls. Organic Letters, 2016, 18, 4151-4153.                                                                                                        | 4.6 | 42        |
| 39 | Cyclopalladated ferrocenylimines catalyzed-homocoupling reaction of arylboronic acids in aqueous<br>solvents at room temperature under ambient atmosphere. Catalysis Communications, 2009, 10,<br>1497-1501.                                            | 3.3 | 41        |
| 40 | Silver(I)-Catalyzed C4–H Amination of 1-Naphthylamine Derivatives with Azodicarboxylates. Organic<br>Letters, 2018, 20, 620-623.                                                                                                                        | 4.6 | 41        |
| 41 | Palladium-Catalyzed C8-H Acylation of 1-Naphthylamines with Acyl Chlorides. Organic Letters, 2019, 21, 1726-1729.                                                                                                                                       | 4.6 | 40        |
| 42 | The highly efficient Suzuki–Miyaura cross-coupling reaction using cyclopalladated<br>N-alkylferrocenylimine as a catalyst in aqueous medium at room temperature under ambient<br>atmosphere. Journal of Organometallic Chemistry, 2008, 693, 1243-1251. | 1.8 | 39        |
| 43 | Silver-catalyzed carbonphosphonation of $\hat{I}\pm,\hat{I}\pm$ -diaryl allylic alcohols: synthesis of $\hat{I}^2$ -aryl- $\hat{I}^3$ -ketophosphonates. Organic and Biomolecular Chemistry, 2014, 12, 8394-8397.                                       | 2.8 | 38        |
| 44 | Quinoline-based ratiometric fluorescent probe for detection of physiological pH changes in aqueous solution and living cells. Talanta, 2019, 192, 6-13.                                                                                                 | 5.5 | 38        |
| 45 | Copper-catalyzed remote C H ethoxycarbonyldifluoromethylation of 8-aminoquinolines with bis(pinacolato)diboron as reductant. Tetrahedron Letters, 2017, 58, 4859-4863.                                                                                  | 1.4 | 33        |
| 46 | Pd-Catalyzed Tandem Cyclization via C–H Arylation and Acylation for the Construction of Polycyclic<br>Scaffolds. Organic Letters, 2016, 18, 5260-5263.                                                                                                  | 4.6 | 32        |
| 47 | Visible-light-induced α-oxyamination of 1,3-dicarbonyls with TEMPO <i>via</i> a photo(electro)catalytic process applying a DSSC anode or in a DSSC system. Green Chemistry, 2019, 21, 3615-3620.                                                        | 9.0 | 31        |
| 48 | lodine-catalysed N-centered [1,2]-rearrangement of 3-aminoindazoles with anilines: efficient access to 1,2,3-benzotriazines. Green Chemistry, 2020, 22, 265-269.                                                                                        | 9.0 | 31        |
| 49 | Nickel-catalyzed C H trifluoromethylation of pyridine N-oxides with Togni's reagent. Tetrahedron<br>Letters, 2018, 59, 1551-1554.                                                                                                                       | 1.4 | 30        |
| 50 | Rh(III)-Catalyzed [4 + 2] Annulation of 3-Aryl-5-isoxazolone with Maleimides or Maleic Ester. Organic<br>Letters, 2020, 22, 6484-6488.                                                                                                                  | 4.6 | 30        |
| 51 | I 2 â€Mediated Iodization/ [3+2] Cycloaddition/Nucleophilic Addition Tandem Reaction: Synthesis of<br>Polyheterocycles Bearing Furoquinoline and Maleimide. Advanced Synthesis and Catalysis, 2019, 361,<br>1766-1770.                                  | 4.3 | 29        |
| 52 | Divergent C(sp <sup>2</sup> )–H arylation of heterocycles <i>via</i> organic photoredox catalysis.<br>Green Chemistry, 2022, 24, 3017-3022.                                                                                                             | 9.0 | 29        |
| 53 | Copper-catalyzed decarboxylative trifluoroethylation of cinnamic acids. Tetrahedron Letters, 2017, 58, 880-883.                                                                                                                                         | 1.4 | 28        |
| 54 | Rhodium(III)-Catalyzed [4 + 2] Annulation of <i>N</i> -Arylbenzamidines with Propargyl Alcohols:<br>Highly Regioselective Synthesis of 1-Aminoisoquinolines Controlled by Noncovalent Interaction.<br>Organic Letters, 2021, 23, 6628-6632.             | 4.6 | 28        |

| #  | Article                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The mechanism of a self-assembled Pd(ferrocenylimine)–Si compound-catalysed Suzuki coupling<br>reaction. Catalysis Science and Technology, 2016, 6, 1667-1676.                                                                                    | 4.1 | 27        |
| 56 | Langmuir–Blodgett films of cyclopalladated ferrocenylimine: preparation, characterization, and application in Suzuki coupling reaction. Tetrahedron, 2009, 65, 2599-2604.                                                                         | 1.9 | 26        |
| 57 | Regioselective phosphinylation of coumarins under green LED irradiation and its mechanism. Organic and Biomolecular Chemistry, 2017, 15, 9775-9778.                                                                                               | 2.8 | 26        |
| 58 | Cobalt(II)–catalyzed C8 H alkoxylation of 1-naphthylamine derivatives with alcohols. Tetrahedron, 2019, 75, 1541-1547.                                                                                                                            | 1.9 | 26        |
| 59 | Rhodium(III)-catalyzed [4 + 2] annulation of N-arylbenzamidines with 1,4,2-dioxazol-5-ones: Easy access to 4-aminoquinazolines via highly selective C H bond activation. Chinese Chemical Letters, 2021, 32, 2592-2596.                           | 9.0 | 26        |
| 60 | N-hydroxymethyl acrylamide polymer brush and its application in catalyzing coupling reaction.<br>Journal of Colloid and Interface Science, 2013, 394, 409-418.                                                                                    | 9.4 | 25        |
| 61 | Cyclopalladated Arylimine Selfâ€Assembly Films for Suzuki Reaction. ChemCatChem, 2013, 5, 1481-1489.                                                                                                                                              | 3.7 | 25        |
| 62 | Direct C4–H phosphonation of 8-hydroxyquinoline derivatives employing photoredox catalysis and silver catalysis. Organic and Biomolecular Chemistry, 2018, 16, 2753-2756.                                                                         | 2.8 | 25        |
| 63 | Visible-Light-Induced Direct Csp <sup>2</sup> -H Radical Trifluoroethylation of Coumarins with 1,1,1-Trifluoro-2-iodoethane (CF <sub>3</sub> CH <sub>2</sub> I). Journal of Organic Chemistry, 2021, 86, 2772-2783.                               | 3.2 | 25        |
| 64 | Visible-light-induced photocatalyst-free C-3 functionalization of indoles with diethyl bromomalonate.<br>Green Chemistry, 2020, 22, 2543-2548.                                                                                                    | 9.0 | 24        |
| 65 | An efficient light on–off one-pot method for the synthesis of 3-styryl coumarins from aryl alkynoates. Organic and Biomolecular Chemistry, 2019, 17, 4621-4628.                                                                                   | 2.8 | 23        |
| 66 | Rhodium-catalyzed regioselective C8-H amination of quinoline <i>N</i> -oxides with trifluoroacetamide<br>at room temperature. Organic and Biomolecular Chemistry, 2018, 16, 4728-4733.                                                            | 2.8 | 22        |
| 67 | A simple approach to indeno-coumarins via visible-light-induced cyclization of aryl alkynoates with diethyl bromomalonate. Organic Chemistry Frontiers, 2019, 6, 3238-3243.                                                                       | 4.5 | 22        |
| 68 | Ring opening [3 + 2] cyclization of azaoxyallyl cations with benzo[d]isoxazoles: Efficient access to 2-hydroxyaryl-oxazolines. Chinese Chemical Letters, 2020, 31, 396-400.                                                                       | 9.0 | 22        |
| 69 | An unprecedented Pd-catalyzed decarboxylative coupling reaction of aromatic carboxylic acids in aqueous medium under air: synthesis of 3-aryl-imidazo[1,2-a]pyridines from aryl chlorides. Organic and Biomolecular Chemistry, 2016, 14, 246-250. | 2.8 | 21        |
| 70 | Cul-Catalyzed Fluorodesulfurization for the Synthesis of Monofluoromethyl Aryl Ethers. Journal of<br>Organic Chemistry, 2017, 82, 8604-8610.                                                                                                      | 3.2 | 21        |
| 71 | An electrolyte- and catalyst-free electrooxidative sulfonylation of imidazo[1,2- <i>a</i> ]pyridines.<br>Organic Chemistry Frontiers, 2021, 8, 3110-3117.                                                                                         | 4.5 | 21        |
| 72 | The recyclable cyclopalladated ferrocenylimine self-assembly catalytic film and investigation of its role in the mechanism of heterogeneous catalysis. RSC Advances, 2014, 4, 26413-26420.                                                        | 3.6 | 20        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A new coumarin-based fluorescent probe for selective recognition of Cu2+ and S2â^' in aqueous solution and living cells. Tetrahedron, 2019, 75, 3951-3957.                                                                 | 1.9 | 20        |
| 74 | Cyclopalladated ferrocenylimine functionalized polymer brushes film and its mechanism investigation of heterogeneous catalysis. Journal of Molecular Catalysis A, 2014, 395, 293-299.                                      | 4.8 | 19        |
| 75 | A simple, recyclable, and self-assembled palladium( <scp>ii</scp> )–alkyl Schiff base complex for Suzuki<br>coupling reaction: chain length dependence and heterogeneous catalysis. RSC Advances, 2016, 6,<br>84815-84824. | 3.6 | 19        |
| 76 | Schiff-based Pd(II)/Fe(III) bimetallic self-assembly monolayerpreparation, structure, catalytic dynamic and synergistic. Molecular Catalysis, 2019, 469, 75-86.                                                            | 2.0 | 19        |
| 77 | Cp*Co(III)-catalyzed C H amidation of azines with dioxazolones. Chinese Chemical Letters, 2020, 31, 3237-3240.                                                                                                             | 9.0 | 19        |
| 78 | Nickel-promoted C(2)–H amidation of quinoline <i>N</i> -oxides with<br><i>N</i> -fluorobenzenesulfonimide. Organic Chemistry Frontiers, 2019, 6, 830-834.                                                                  | 4.5 | 18        |
| 79 | Rh(III)-Catalyzed Synthesis of Indazolo[2,3- <i>a</i> ]quinolines: Vinylene Carbonate as C1 and C2<br>Building Blocks. Organic Letters, 2022, 24, 2613-2618.                                                               | 4.6 | 18        |
| 80 | Palladium-Catalyzed Phosphine-Free Direct C–H Arylation of Benzothiophenes and Benzofurans<br>Involving MIDA Boronates. Synlett, 2015, 26, 531-536.                                                                        | 1.8 | 17        |
| 81 | Direct C–H arylation of heterocycles with heteroaryl chlorides using a bis(alkoxo)palladium<br>complex. Tetrahedron, 2015, 71, 2729-2735.                                                                                  | 1.9 | 17        |
| 82 | One-pot synthesis of pyranoquinolin-1-ones <i>via</i> Rh( <scp>iii</scp> )-catalysed redox annulation of 3-carboxyquinolines and alkynes. Organic Chemistry Frontiers, 2019, 6, 2897-2901.                                 | 4.5 | 17        |
| 83 | Stepwise photosensitized C(sp <sup>3</sup> )–C(CO) bond cleavage and C–P bond formation of 1,3-dicarbonyls with arylphosphine oxides. Organic Chemistry Frontiers, 2019, 6, 1433-1437.                                     | 4.5 | 17        |
| 84 | PhI(OAc)2-mediated oxidative C H sulfoximination of imidazopyridines under mild conditions.<br>Tetrahedron Letters, 2020, 61, 151362.                                                                                      | 1.4 | 17        |
| 85 | A visible-light-induced "on–off―one-pot synthesis of 3-arylacetylene coumarins with AIE properties.<br>Organic and Biomolecular Chemistry, 2020, 18, 3346-3353.                                                            | 2.8 | 17        |
| 86 | Novel polymeric nonionic photoacid generators and corresponding polymer Langmuir–Blodgett (LB)<br>films for photopatterning. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 219, 50-57.                    | 3.9 | 16        |
| 87 | Palladiumâ€Catalyzed Carbonylations of Arylboronic Acids: Synthesis of Arylcarboxylic Acid Ethyl<br>Esters. Advanced Synthesis and Catalysis, 2015, 357, 3104-3108.                                                        | 4.3 | 16        |
| 88 | Copper-catalyzed synthesis of 2-arylbenzoxazoles from o -aminophenol derivatives with arylmethyl chlorides. Tetrahedron, 2015, 71, 57-63.                                                                                  | 1.9 | 16        |
| 89 | Investigation on Electron Distribution and Synergetic to Enhance Catalytic Activity in Bimetallic<br>Ni(II)/Pd(II) Molecular Monolayer. ChemCatChem, 2018, 10, 5141-5153.                                                  | 3.7 | 16        |
| 90 | Thiol substrate-promoted dehydrogenative cyclization of arylmethyl thiols with<br><i>ortho</i> -substituted amines: a universal approach to heteroaromatic compounds. Organic<br>Chemistry Frontiers, 2019, 6, 2844-2849.  | 4.5 | 16        |

| #   | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Palladium-catalyzed C8–H alkoxycarbonylation of 1-naphthylamines with alkyl chloroformates.<br>Organic and Biomolecular Chemistry, 2020, 18, 4628-4637.                                                                                      | 2.8  | 16        |
| 92  | Ligandâ€Controlled Palladiumâ€Catalyzed Pyridylation of 1â€ <i>tertâ€</i> Butoxycarbonylâ€3â€iodoazetidine:<br>Regioselective Synthesis of 2†and 3â€Heteroarylazetidines. Advanced Synthesis and Catalysis, 2017, 359,<br>390-394.           | 4.3  | 15        |
| 93  | Effects of optical-inert ions on upconversion luminescence and temperature sensing properties of<br>ScVO <sub>4</sub> :10%Yb <sup>3+</sup> /2%Er <sup>3+</sup> nano/micro-particles. RSC Advances, 2017,<br>7, 51233-51244.                  | 3.6  | 15        |
| 94  | Palladiumâ€Catalyzed Decarboxylative Crossâ€Couplings of 1â€Bocâ€3â€iodoazetidine: Regioselective Access to<br>2â€Alkynylazetidines, 3â€Alkynylazetidines and 3â€Vinylazetidines. Advanced Synthesis and Catalysis, 2018,<br>360, 2308-2312. | 4.3  | 15        |
| 95  | Pd-Catalyzed Alkylation of (Iso)quinolines and Arenes: 2-Acylpyridine Compounds as Alkylation<br>Reagents. Organic Letters, 2018, 20, 6345-6348.                                                                                             | 4.6  | 15        |
| 96  | An oxidant- and catalyst-free electrooxidative cross-coupling approach to 3-tetrahydroisoquinoline substituted coumarins. Green Chemistry, 2021, 23, 1274-1279.                                                                              | 9.0  | 15        |
| 97  | Ru(III)-catalyzed construction of variously substituted quinolines from 2-aminoaromatic aldehydes<br>(ketones) and isoxazoles: Isoxazoles as cyclization reagent and cyano sources. Chinese Chemical<br>Letters, 2022, 33, 4064-4068.        | 9.0  | 15        |
| 98  | Cyclopalladated ferrocenylimine self-assembly films for Suzuki coupling reaction. Journal of<br>Molecular Catalysis A, 2012, 363-364, 200-207.                                                                                               | 4.8  | 14        |
| 99  | Cyclopalladated ferrocenylimines with ester groups for Heck and Suzuki coupling reactions. Chinese<br>Journal of Catalysis, 2014, 35, 1059-1067.                                                                                             | 14.0 | 14        |
| 100 | A novel fluorescent probe for imaging the process of HOCl oxidation and Cys/Hcy reduction in living cells. RSC Advances, 2018, 8, 9519-9523.                                                                                                 | 3.6  | 14        |
| 101 | An efficient palladium(II) catalyst for oxidative Heck-type reaction under base-free conditions.<br>Tetrahedron, 2013, 69, 5123-5128.                                                                                                        | 1.9  | 13        |
| 102 | Waterâ€Soluble and Recyclable Cyclopalladated Ferrocenylimine for Suzuki Coupling Reaction. Journal of the Chinese Chemical Society, 2014, 61, 397-403.                                                                                      | 1.4  | 13        |
| 103 | An electrochemically polymerized and assembled cyclopalladated bi-thiophene imine for catalyzing coupling reactions: a modern strategy to enhance catalytic activity. RSC Advances, 2015, 5, 16654-16663.                                    | 3.6  | 13        |
| 104 | Transition-metal-free cleavage of C–C double bonds: a three-component reaction of aromatic alkenes<br>with S <sub>8</sub> and amides towards aryl thioamides. Organic Chemistry Frontiers, 2018, 5,<br>3315-3318.                            | 4.5  | 13        |
| 105 | 1,4-Refunctionalization of β-diketones to γ-keto nitriles <i>via</i> C–C single bond cleavage. Organic<br>Chemistry Frontiers, 2018, 5, 2496-2500.                                                                                           | 4.5  | 13        |
| 106 | An electrochemical off–on method for pyrimidin-2(1 <i>H</i> )-one synthesis <i>via</i> three-component cyclization. Green Chemistry, 2019, 21, 4495-4498.                                                                                    | 9.0  | 13        |
| 107 | Rh(III) atalyzed Regioselective Acetylation of sp 2 Câ^'H Bond Starting from Paraformaldehyde.<br>ChemCatChem, 2019, 11, 3791-3796.                                                                                                          | 3.7  | 13        |
| 108 | Directed C3-Alkoxymethylation of Indole via Three-Component Cascade Reaction. Organic Letters, 2019, 21, 2081-2084.                                                                                                                          | 4.6  | 13        |

| #   | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Copper(I)-catalyzed direct C-H trifluoromethylation of imidazoheterocycles with Togni's reagent.<br>Tetrahedron Letters, 2019, 60, 586-590.                                                                               | 1.4 | 13        |
| 110 | Palladium-catalyzed direct Hiyama arylation of quinoxalin-2(1H)-ones with aryl siloxanes in water.<br>Tetrahedron Letters, 2020, 61, 152612.                                                                              | 1.4 | 13        |
| 111 | Copper(II)-Catalyzed Direct Amination of 1-Naphthylamines at the C8 Site. Journal of Organic Chemistry, 2020, 85, 12777-12784.                                                                                            | 3.2 | 13        |
| 112 | Copper-assisted trifluoromethylthiolation/radical cascade cyclization of alkynes to construct<br>SCF <sub>3</sub> -containing dioxodibenzothiazepines. Chemical Communications, 2022, 58, 8674-8677.                      | 4.1 | 13        |
| 113 | The catalytic activity of a novel recyclable alkoxypalladium complex in Suzuki reaction. Tetrahedron, 2012, 68, 8502-8508.                                                                                                | 1.9 | 12        |
| 114 | Facile Fabrication of Ordered Component-Tunable Heterobimetallic Self-Assembly Nanosheet for<br>Catalyzing "Click―Reaction. ACS Omega, 2017, 2, 5415-5433.                                                                | 3.5 | 12        |
| 115 | Fabrication and catalytic properties of ordered cyclopalladated diimine monolayer : investigation on catalytic mechanism. RSC Advances, 2018, 8, 31860-31867.                                                             | 3.6 | 12        |
| 116 | Palladium-Catalyzed Hiyama Cross-Couplings of Arylsilanes with 3-lodoazetidine: Synthesis of 3-Arylazetidines. Journal of Organic Chemistry, 2019, 84, 12358-12365.                                                       | 3.2 | 12        |
| 117 | Pd( <scp>ii</scp> )-Catalyzed C8–H alkoxycarbonylmethylation of 1-naphthylamides with α-chloroalkyl<br>esters. Organic and Biomolecular Chemistry, 2019, 17, 4865-4868.                                                   | 2.8 | 12        |
| 118 | Transition metal-free direct C H trifluoromethyltion of (hetero)arenes with Togni's reagent.<br>Tetrahedron Letters, 2020, 61, 151538.                                                                                    | 1.4 | 12        |
| 119 | Water and fluorinated alcohol mediated/promoted tandem insertion/aerobic<br>oxidation/bisindolylation under metal-free conditions: Easy access to bis(indolyl)methanes. Chinese<br>Chemical Letters, 2021, 32, 1696-1700. | 9.0 | 12        |
| 120 | Highly ordered amphiphilic cyclopalladated arylimine selfâ€assembly films for catalyzing Heck and<br>Suzuki coupling reactions. Applied Organometallic Chemistry, 2016, 30, 540-549.                                      | 3.5 | 10        |
| 121 | Palladium-Catalyzed Diastereoselective Synthesis of 3-Arylbutanoic Acid Derivatives. Journal of Organic Chemistry, 2017, 82, 12286-12293.                                                                                 | 3.2 | 10        |
| 122 | <i>O</i> -Difluorodeuteromethylation of phenols using difluorocarbene precursors and deuterium oxide. Organic and Biomolecular Chemistry, 2018, 16, 1807-1811.                                                            | 2.8 | 10        |
| 123 | A Cu2O/TBAB-promoted approach to synthesize heteroaromatic 2-amines via one-pot cyclization of aryl isothiocyanates with ortho-substituted amines in water. Organic and Biomolecular Chemistry, 2020, 18, 7425-7430.      | 2.8 | 10        |
| 124 | Harnessing visible-light energy for unbiased organic photoelectrocatalysis: synthesis of <i>N</i> -bearing fused rings. Green Chemistry, 2022, 24, 837-845.                                                               | 9.0 | 10        |
| 125 | Controlled distribution of active centre to enhance catalytic activity of ordered Pd/Co catalytic nano-monolayer. Journal of Catalysis, 2019, 376, 228-237.                                                               | 6.2 | 9         |
| 126 | Novel ordered cyclopalladated aryl imine monolayers—Structure Designing for Enhancing Catalytic<br>Performance. Molecular Catalysis, 2020, 482, 110671.                                                                   | 2.0 | 9         |

| #   | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | External oxidant-free alkylation of quinoline and pyridine derivatives. Organic and Biomolecular<br>Chemistry, 2020, 18, 1738-1742.                                                                                                                          | 2.8  | 8         |
| 128 | Synthesis of aryloxyazetidine derivatives by Cul/l-proline catalyzed coupling reaction of arylboronic acid with 1-Boc-3-iodoazetidine. Tetrahedron Letters, 2014, 55, 2369-2372.                                                                             | 1.4  | 7         |
| 129 | Investigation of green emission of ScVO4:Yb3+/Er3+ sub-microcrystals with different morphologies.<br>Journal of Alloys and Compounds, 2017, 715, 37-42.                                                                                                      | 5.5  | 7         |
| 130 | Direct arylation for the synthesis of 2-arylquinolines from N-methoxyquinoline-1-ium tetrafluoroborate salts and arylboronic acids. Tetrahedron Letters, 2018, 59, 1065-1068.                                                                                | 1.4  | 7         |
| 131 | Oxidative acylation of α,αâ€diarylallylic alcohols: Synthesis of 1,2,4â€triarylbutaneâ€1,4â€diones. Applied<br>Organometallic Chemistry, 2018, 32, e4407.                                                                                                    | 3.5  | 7         |
| 132 | Self-assembly Palladacycle Thiophene Imine Monolayer—Investigating on Catalytic Activity and<br>Mechanism for Coupling Reaction. Chemical Research in Chinese Universities, 2020, 36, 821-828.                                                               | 2.6  | 7         |
| 133 | Terpyridine-based Pd( <scp>ii</scp> )/Ni( <scp>ii</scp> ) organometallic framework nano-sheets supported on graphene oxide—investigating the fabrication, tuning of catalytic properties and synergetic effects. RSC Advances, 2020, 10, 23080-23090.        | 3.6  | 7         |
| 134 | Pyrazoles: â€~one-pot' synthesis from arenes and carboxylic acids. Organic and Biomolecular Chemistry, 2020, 18, 5625-5638.                                                                                                                                  | 2.8  | 7         |
| 135 | Merging Photoredox Catalysis with Transition Metal Catalysis: Direct C4–H Sulfamidation of<br>1-Naphthylamine Derivatives. Journal of Organic Chemistry, 2021, 86, 11324-11332.                                                                              | 3.2  | 7         |
| 136 | Visible-light-mediated direct C-H perfluoroalkylation of imidazoheterocycles. Tetrahedron Letters, 2021, 83, 153407.                                                                                                                                         | 1.4  | 7         |
| 137 | Cobalt-catalyzed C8–H sulfonylation of 1-naphthylamine derivatives with sodium sulfinates. Organic<br>Chemistry Frontiers, 2021, 8, 5710-5715.                                                                                                               | 4.5  | 7         |
| 138 | Pd–Pd/PdO as active sites on intercalated graphene oxide modified by diaminobenzene: fabrication, catalysis properties, synergistic effects, and catalytic mechanism. RSC Advances, 2022, 12, 8600-8610.                                                     | 3.6  | 7         |
| 139 | Fabrication and catalytic properties of "cage like―aryl imine Pd(II)/Cu(II)-bimetallic catalytic monolayer<br>supported on graphene oxide for Suzuki coupling reaction. Chemical Engineering Science, 2022, 253,<br>117604.                                  | 3.8  | 7         |
| 140 | Preparation, characterization and catalytic activity of amphiphilic cyclopalladated aryl imines and their Langmuir-Blodgett films. Chinese Journal of Catalysis, 2013, 34, 1583-1588.                                                                        | 14.0 | 6         |
| 141 | A facile and environmental friendly strategy for the synthesis of N-methoxyquinolin-2(1H)-ones.<br>Tetrahedron Letters, 2017, 58, 1917-1920.                                                                                                                 | 1.4  | 6         |
| 142 | Palladium-catalyzed diastereoselective synthesis of β,β-diarylpropionic acid derivatives and its<br>application to the total synthesis of ( R )-tolterodine and the enantiomer of a key intermediate for<br>MK-8718. Tetrahedron Letters, 2018, 59, 537-540. | 1.4  | 6         |
| 143 | Diastereoselective synthesis of β-amino ketone and acid derivatives by palladium-catalyzed conjugate addition. Tetrahedron Letters, 2018, 59, 2736-2740.                                                                                                     | 1.4  | 6         |
| 144 | Copper-catalyzed remote C-H monofluoromethylation of 8-aminoquinolines with dimethyl phosphonate as reductant. Tetrahedron Letters, 2019, 60, 151077.                                                                                                        | 1.4  | 6         |

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Transition metal-free α-C <sub>sp3</sub> –H oxidative sulfuration of benzyl thiosulfates with anilines<br>to form <i>N</i> -aryl thioamides. Organic and Biomolecular Chemistry, 2019, 17, 3790-3796.                             | 2.8 | 6         |
| 146 | Regioselective α-benzylation of 3-iodoazetidine via Suzuki cross-coupling. Tetrahedron Letters, 2019, 60,<br>1321-1324.                                                                                                           | 1.4 | 6         |
| 147 | Palladium-catalyzed reductive Heck reaction of α,β-unsaturated alkenes and cycloalkyl iodides.<br>Tetrahedron Letters, 2019, 60, 485-488.                                                                                         | 1.4 | 6         |
| 148 | The aerobic oxidative hydroxysulfurization of <i>gem</i> -difluoroalkenes to produce<br>α,α-difluoro-β-hydroxysulfides. Organic Chemistry Frontiers, 2021, 8, 5831-5836.                                                          | 4.5 | 6         |
| 149 | A visible-light-induced photocatalyst-free approach for C-3 dicarbonyl coumarin production. Chemical Communications, 2021, 57, 7308-7311.                                                                                         | 4.1 | 6         |
| 150 | Sandwich structured aryl-diimine Pd (II)/Co (II) monolayer—Fabrication, catalytic performance, synergistic effect and mechanism investigation. Molecular Catalysis, 2021, 501, 111359.                                            | 2.0 | 6         |
| 151 | Silver(I) Promoted the C4–H Bond Phosphonation of 1-Naphthylamine Derivatives with<br>H-Phosphonates. Journal of Organic Chemistry, 2021, 86, 11519-11530.                                                                        | 3.2 | 6         |
| 152 | A New ternary organometallic Pd( <scp>ii</scp> )/Fe( <scp>iii</scp> )/Ru( <scp>iii</scp> ) self-assembly<br>monolayer: the essential ensemble synergistic for improving catalytic activity. RSC Advances, 2021, 11,<br>1250-1260. | 3.6 | 6         |
| 153 | Copper-promoted difunctionalization of unactivated alkenes with silanes. Organic and Biomolecular<br>Chemistry, 2022, 20, 989-994.                                                                                                | 2.8 | 6         |
| 154 | Transition-Metal-Free Oxidation of Benzylic C–H Bonds of Six-Membered N-Heteroaromatic<br>Compounds. Journal of Organic Chemistry, 2019, 84, 4040-4049.                                                                           | 3.2 | 5         |
| 155 | The light "on-off―stepwise one-pot method for 3,4-diaryl coumarins with potential AIE properties.<br>Tetrahedron, 2020, 76, 131677.                                                                                               | 1.9 | 5         |
| 156 | An efficient protocol for the synthesis of monofluoroalkylated (hetero)arenes via Pd-catalyzed<br>α-(hetero)arylation of α-fluoroketones with (hetero)aryl bromides. Tetrahedron Letters, 2020, 61, 151948.                       | 1.4 | 5         |
| 157 | Cobalt(II)-Catalyzed C–H and N–H Functionalization of 1-Arylpyrazolidinones with Dioxazolones as<br>Bifunctional Synthons. Organic Letters, 2022, 24, 4650-4655.                                                                  | 4.6 | 5         |
| 158 | "One-Pot―Synthesis of γ-Pyrones from Aromatic Ketones/Heteroarenes and Carboxylic Acids. Journal of<br>Organic Chemistry, 2020, 85, 15051-15061.                                                                                  | 3.2 | 4         |
| 159 | An efficient transition-metal-free route to quinazolin-4(3 <i>H</i> )-ones <i>via</i> 2-aminobenzamides and thiols. New Journal of Chemistry, 2021, 45, 15344-15349.                                                              | 2.8 | 4         |
| 160 | Copper-catalyzed C3-amination of quinoxalin-2(1H)-ones: Using Selectfluor as a mild oxidant.<br>Tetrahedron Letters, 2021, , 153409.                                                                                              | 1.4 | 4         |
| 161 | Guest-size determining the selective binding modes of cucurbit[8]uril, electron-rich guests and<br>N-alkyl-N′-methyl-4,4′-bipyridinium. Tetrahedron Letters, 2013, 54, 1638-1644.                                                 | 1.4 | 3         |
| 162 | Formation and Rupture of a Supramolecular Nanocapsule Triggered<br><scp>on</scp> – <scp>off</scp> – <scp>on</scp> Supramolecular Switch for Zn <sup>2+</sup> .<br>European Journal of Organic Chemistry, 2013, 2013, 2591-2596.   | 2.4 | 3         |

| #   | Article                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Merging photoredox catalysis with transition metal catalysis: Direct C4-H amination of 8-hydroxyquinoline derivatives. Tetrahedron, 2019, 75, 3904-3910.                    | 1.9 | 3         |
| 164 | Boronâ€Promoted Ether Interchange Reaction: Synthesis of Alkyl Nitroaromatic Ethers from<br>Methoxynitroarenes. European Journal of Organic Chemistry, 2020, 2020, 702-707. | 2.4 | 3         |
| 165 | Highly Catalytic Activity of Bis(alkoxo)palladium Complexes for Fujiwara-Moritani Reaction. Chinese<br>Journal of Organic Chemistry, 2018, 38, 200.                         | 1.3 | 3         |
| 166 | Ru( <scp>iii</scp> )-catalyzed C4–H bond cyanoalkoxylation of 1-naphthylamine derivatives with<br>azobisisobutyronitrile. Organic Chemistry Frontiers, 2022, 9, 3348-3353.  | 4.5 | 3         |
| 167 | Transitionâ€Metalâ€Free Crossâ€Coupling of Arylsilanes with DAST Reagent: Synthesis of Aromatic<br>Sulfinamides. ChemistrySelect, 2020, 5, 7560-7562.                       | 1.5 | 2         |
| 168 | Light driven molecular lock comprises a Ru(bpy) <sub>2</sub> (hpip) complex and cucurbit[8]uril. RSC<br>Advances, 2021, 11, 8444-8449.                                      | 3.6 | 1         |
| 169 | Three-component synthesis of α-indole-β-sulfonyl tetrahydrofurans under metal-free conditions. New<br>Journal of Chemistry, 0, , .                                          | 2.8 | 1         |
| 170 | Metal-free alkylation of quinoxalinones with aryl alkyl ketones. Organic and Biomolecular Chemistry, 2022, 20, 1391-1395.                                                   | 2.8 | 1         |
| 171 | Transition Metal-Free Deuteride Reduction of N-tert-Butanesulfinyl Ketimines Derivatives via<br>B2pin2/D2O System. Chinese Journal of Organic Chemistry, 2021, 41, 2319.    | 1.3 | Ο         |