David R Shook

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2457339/publications.pdf

Version: 2024-02-01

12 1,931 11 12 papers citations h-index g-index

16 16 2008
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Characterization of convergent thickening, a major convergence force producing morphogenic movement in amphibians. ELife, 2022, 11 , .	6.0	6
2	Large, long range tensile forces drive convergence during Xenopus blastopore closure and body axis elongation. ELife, $2018, 7, .$	6.0	50
3	Molecular model for force production and transmission during vertebrate gastrulation. Development (Cambridge), 2016, 143, 715-727.	2.5	58
4	Mechanical Strain Determines the Axis of Planar Polarity in Ciliated Epithelia. Current Biology, 2015, 25, 2774-2784.	3.9	103
5	Epithelial type, ingression, blastopore architecture and the evolution of chordate mesoderm morphogenesis. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2008, 310B, 85-110.	1.3	50
6	Morphogenic machines evolve more rapidly than the signals that pattern them: lessons from amphibians. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2008, 310B, 111-135.	1.3	18
7	The forces that shape embryos: physical aspects of convergent extension by cell intercalation. Physical Biology, 2008, 5, 015007.	1.8	137
8	Pattern and morphogenesis of presumptive superficial mesoderm in two closely related species, Xenopus laevis and Xenopus tropicalis. Developmental Biology, 2004, 270, 163-185.	2.0	114
9	How we are shaped: The biomechanics of gastrulation. Differentiation, 2003, 71, 171-205.	1.9	407
10	Mechanisms, mechanics and function of epithelial–mesenchymal transitions in early development. Mechanisms of Development, 2003, 120, 1351-1383.	1.7	497
11	Urodeles Remove Mesoderm from the Superficial Layer by Subduction through a Bilateral Primitive Streak. Developmental Biology, 2002, 248, 220-239.	2.0	42
12	Mechanisms of convergence and extension by cell intercalation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 897-922.	4.0	446