Hong Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/245731/publications.pdf

Version: 2024-02-01

304743 197818 2,902 49 22 49 citations h-index g-index papers 51 51 51 3228 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highâ€Flux Membranes Based on the Covalent Organic Framework COFâ€LZU1 for Selective Dye Separation by Nanofiltration. Angewandte Chemie - International Edition, 2018, 57, 4083-4087.	13.8	584
2	Covalent Organic Framework–Covalent Organic Framework Bilayer Membranes for Highly Selective Gas Separation. Journal of the American Chemical Society, 2018, 140, 10094-10098.	13.7	500
3	Extractive Desulfurization of Gasoline Using Imidazolium-Based Phosphoric Ionic Liquids. Energy & Extractive Desulfurization of Gasoline Using Imidazolium-Based Phosphoric Ionic Liquids. Energy & Extractive Desulfurization of Gasoline Using Imidazolium-Based Phosphoric Ionic Liquids. Energy & Extractive Desulfurization of Gasoline Using Imidazolium-Based Phosphoric Ionic Liquids. Energy & Extractive Desulfurization of Gasoline Using Imidazolium-Based Phosphoric Ionic Liquids. Energy & Extractive Desulfurization of Gasoline Using Imidazolium-Based Phosphoric Ionic Liquids. Energy & Extractive Desulfurization of Gasoline Using Imidazolium-Based Phosphoric Ionic Liquids. Energy & Extractive Desulfurization of Gasoline Using Imidazolium-Based Phosphoric Ionic Liquids.	5.1	287
4	High-Flux Vertically Aligned 2D Covalent Organic Framework Membrane with Enhanced Hydrogen Separation. Journal of the American Chemical Society, 2020, 142, 6872-6877.	13.7	217
5	Robust Superhydrophobic/Superoleophilic Wrinkled Microspherical MOF@rGO Composites for Efficient Oil–Water Separation. Angewandte Chemie - International Edition, 2019, 58, 5297-5301.	13.8	195
6	An azine-linked covalent organic framework ACOF-1 membrane for highly selective CO ₂ /CH ₄ separation. Journal of Materials Chemistry A, 2018, 6, 16849-16853.	10.3	107
7	Removal of Thiophenic Sulfurs Using an Extractive Oxidative Desulfurization Process with Three New Phosphotungstate Catalysts. Industrial & Engineering Chemistry Research, 2012, 51, 6658-6665.	3.7	81
8	Robust Superhydrophobic/Superoleophilic Wrinkled Microspherical MOF@rGO Composites for Efficient Oil–Water Separation. Angewandte Chemie, 2019, 131, 5351-5355.	2.0	81
9	Ternary Liquidâ^'Liquid Equilibria Measurement for Benzene + Cyclohexane + N-Methylimidazole, or N-Ethylimidazole, or N-Methylimidazolium Dibutylphosphate at 298.2 K and Atmospheric Pressure. Journal of Chemical & Description	1.9	70
10	Synthesis and Supercapacitor Application of Alkynyl Carbon Materials Derived from CaC ₂ and Polyhalogenated Hydrocarbons by Interfacial Mechanochemical Reactions. ACS Applied Materials & Interfaces, 2017, 9, 3895-3901.	8.0	61
11	Removal Mechanism of Thiophenic Compounds in Model Oil by Inorganic Lewis Acids. Industrial & Engineering Chemistry Research, 2012, 51, 4682-4691.	3.7	54
12	Efficient destruction of hexachlorobenzene by calcium carbide through mechanochemical reaction in a planetary ball mill. Chemosphere, 2017, 166, 275-280.	8.2	53
13	Treatment of amoxicillin by O 3 /Fenton process in a rotating packed bed. Journal of Environmental Management, 2015, 150, 404-411.	7.8	52
14	Polyacrylonitrile-based zwitterionic ultrafiltration membrane with improved anti-protein-fouling capacity. Applied Surface Science, 2014, 303, 399-405.	6.1	47
15	A carbonium pseudo ionic liquid with excellent extractive desulfurization performance. AICHE Journal, 2013, 59, 948-958.	3.6	46
16	Alkynyl carbon materials as novel and efficient sorbents for the adsorption of mercury(II) from wastewater. Journal of Environmental Sciences, 2018, 68, 169-176.	6.1	40
17	Solubility of Hydrogen Chloride in Three 1-Alkyl-3-methylimidazolium Chloride Ionic Liquids in the Pressure Range (0 to 100) kPa and Temperature Range (298.15 to 363.15) K. Journal of Chemical & Engineering Data, 2012, 57, 2936-2941.	1.9	38
18	Wasserâ€Hochflussmembranen auf Basis der kovalenten organischen GerÃ⅓ststruktur COF‣ZU1 fÃ⅓r die Farbstoffabtrennung durch Nanofiltration. Angewandte Chemie, 2018, 130, 4147-4151.	2.0	35

#	Article	IF	CITATIONS
19	Surface Tension Measurements for Seven Imidazolium-Based Dialkylphosphate Ionic Liquids and Their Binary Mixtures with Water (Methanol or Ethanol) at 298.15 K and 1 atm. Journal of Chemical & Engineering Data, 2014, 59, 189-196.	1.9	33
20	Antibuoyancy and Unidirectional Gas Evolution by Janus Electrodes with Asymmetric Wettability. ACS Applied Materials & Samp; Interfaces, 2020, 12, 23627-23634.	8.0	29
21	ELECTRO-REGENERATION MECHANISM OF ION-EXCHANGE RESINS IN ELECTRODEIONIZATION. Surface Review and Letters, 2004, 11, 599-605.	1.1	28
22	Functionalized assembly of solid membranes for chiral separation using polyelectrolytes and chiral ionic liquid. AICHE Journal, 2013, 59, 4772-4779.	3.6	23
23	Adsorptivity of a Hyper Cross-Linked Ionic Polymer Poly(vinyl imidazole)-1,4-bis(chloromethyl)benzene for Thiophenic Sulfurs in Model Oil. Energy &	5.1	20
24	Efficient Catalysis of Calcium Carbide for the Synthesis of Isophorone from Acetone. Industrial & Engineering Chemistry Research, 2016, 55, 5257-5262.	3.7	17
25	Effect of Quaternization on Structure and Adsorptivity of Hyper Cross-Linked Poly(vinyl imidazole) for Thiohenic Sulfurs in Model Oil. Industrial & Engineering Chemistry Research, 2016, 55, 8079-8086.	3.7	17
26	Preparation of Mesoporous Carbon Materials through Mechanochemical Reaction of Calcium Carbide and Transition Metal Chlorides. Industrial & Engineering Chemistry Research, 2018, 57, 6180-6188.	3.7	17
27	Ozonation of Acid Red 14 in the Presence of Inorganic Salts in a Microporous Tube-in-Tube Microchannel Reactor. Industrial & Engineering Chemistry Research, 2014, 53, 19071-19076.	3.7	15
28	Greener Production Process of Acetylene and Calcium Diglyceroxide via Mechanochemical Reaction of CaC ₂ and Glycerol. ACS Sustainable Chemistry and Engineering, 2018, 6, 9560-9565.	6.7	15
29	Acylation desulfurization of oil via reactive adsorption. AICHE Journal, 2013, 59, 2966-2976.	3.6	14
30	Sprayed separation membranes: A systematic review and prospective opportunities. Green Energy and Environment, 2022, 7, 1143-1160.	8.7	14
31	Alkynyl functionalized MoS2 mesoporous materials with superb adsorptivity for heavy metal ions. Journal of Hazardous Materials, 2022, 424, 127579.	12.4	13
32	Polyacetylene carbon materials: facile preparation using AlCl ₃ catalyst and excellent electrochemical performance for supercapacitors. RSC Advances, 2019, 9, 11986-11995.	3.6	11
33	Gas Phase Conversion of Carbon Tetrachloride to Alkyl Chlorides Catalyzed by Supported Ionic Liquids. Chinese Journal of Chemistry, 2009, 27, 1741-1748.	4.9	8
34	Concentration of ionic liquids from aqueous ionic liquids solution using electrodialyzer. Desalination and Water Treatment, 2011, 34, 326-329.	1.0	8
35	The removal of aniline from wastewater by electrodialysis in the presence of hydrochloric acid. Desalination and Water Treatment, 2013, 51, 5155-5163.	1.0	8
36	Improving Anti-Protein-Fouling Property of Polyacrylonitrile Ultrafiltration Membrane by Grafting Sulfobetaine Zwitterions. Journal of Chemistry, 2014, 2014, 1-9.	1.9	8

#	Article	IF	CITATIONS
37	Aldol condensation of refluxing acetone on CaC ₂ achieves efficient coproduction of diacetone alcohol, mesityl oxide and isophorone. RSC Advances, 2018, 8, 30610-30615.	3.6	8
38	Improvement of Hydrophobicity of Ionic Liquids by Partial Chlorination and Fluorination of the Cation. Chinese Journal of Chemistry, 2009, 27, 174-178.	4.9	7
39	Scalable and efficient extraction of two-dimensional MoS2 nanosheets from dispersions as a co-catalyst for enhancing Fenton reactions. Journal of Materials Science, 2020, 55, 14358-14372.	3.7	7
40	High-throughput production of nanodisperse hybrid membranes on various substrates. Journal of Membrane Science, 2018, 552, 177-188.	8.2	6
41	Obtaining of Mesoporous Aluminosilicates with High Hydrothermal Stability by Composite Organic Templates: Utility and Mechanism. Langmuir, 2021, 37, 9137-9143.	3.5	6
42	Steric effects of alkyl dibenzothiophenes: The root cause of frustrating efficacy of heterogeneous desulfurization for real diesel. AICHE Journal, 2022, 68, .	3.6	4
43	Application of activated zeolite in the advanced treatment of potable water. Journal of Water Supply: Research and Technology - AQUA, 2007, 56, 257-262.	1.4	3
44	Removal of Chloroform from Hydrochloride Acid Solution Using Fine Powder of Polymer as Adsorbent. Chinese Journal of Chemistry, 2009, 27, 768-772.	4.9	3
45	Reductive removal of gaseous nitrous oxide by activated carbon with metal oxide catalysts. RSC Advances, 2017, 7, 10407-10414.	3.6	3
46	Inclusion Phenomena between the \hat{l}^2 -Cyclodextrin Chiral Selector and Trp-D,L, and Its Use on the Assembly of Solid Membranes. Journal of Nanomaterials, 2013, 2013, 1-8.	2.7	2
47	Rapid spray-crosslinked assembly of a stable high-performance polyelectrolyte bipolar membrane. RSC Advances, 2017, 7, 36313-36318.	3.6	2
48	Rücktitelbild: Wasserâ€Hochflussmembranen auf Basis der kovalenten organischen Gerüststruktur COF‣ZU1 für die Farbstoffabtrennung durch Nanofiltration (Angew. Chem. 15/2018). Angewandte Chemie, 2018, 130, 4170-4170.	2.0	0
49	Rýcktitelbild: Robust Superhydrophobic/Superoleophilic Wrinkled Microspherical MOF@rGO Composites for Efficient Oil–Water Separation (Angew. Chem. 16/2019). Angewandte Chemie, 2019, 131, 5518-5518.	2.0	0