Soebur Razzaque

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2456872/publications.pdf

Version: 2024-02-01

216 papers 24,770 citations

68 h-index 156 g-index

222 all docs 222 docs citations

times ranked

222

13775 citing authors

#	Article	IF	CITATIONS
1	Multi-messenger Observations of a Binary Neutron Star Merger < sup > * < /sup > . Astrophysical Journal Letters, 2017, 848, L12.	8.3	2,805
2	<i>FERMI</i> LARGE AREA TELESCOPE THIRD SOURCE CATALOG. Astrophysical Journal, Supplement Series, 2015, 218, 23.	7.7	1,224
3	<i>FERMI</i> LARGE AREA TELESCOPE SECOND SOURCE CATALOG. Astrophysical Journal, Supplement Series, 2012, 199, 31.	7.7	1,079
4	FERMI LARGE AREA TELESCOPE FIRST SOURCE CATALOG. Astrophysical Journal, Supplement Series, 2010, 188, 405-436.	7.7	851
5	<i>Fermi</i> Large Area Telescope Fourth Source Catalog. Astrophysical Journal, Supplement Series, 2020, 247, 33.	7.7	817
6	Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science, 2018, 361, .	12.6	654
7	Detection of the Characteristic Pion-Decay Signature in Supernova Remnants. Science, 2013, 339, 807-811.	12.6	591
8	THE SPECTRUM OF ISOTROPIC DIFFUSE GAMMA-RAY EMISSION BETWEEN 100ÂMeV AND 820ÂGeV. Astrophysical Journal, 2015, 799, 86.	4.5	556
9	<i>FERMI</i> -LAT OBSERVATIONS OF THE DIFFUSE γ-RAY EMISSION: IMPLICATIONS FOR COSMIC RAYS AND THE INTERSTELLAR MEDIUM. Astrophysical Journal, 2012, 750, 3.	4.5	535
10	THE SECOND CATALOG OF ACTIVE GALACTIC NUCLEI DETECTED BY THE (i>FERMI I>LARGE AREA TELESCOPE. Astrophysical Journal, 2011, 743, 171.	4.5	525
11	Fermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C. Science, 2009, 323, 1688-1693.	12.6	523
12	THE THIRD CATALOG OF ACTIVE GALACTIC NUCLEI DETECTED BY THE <i>FERMI </i> LARGE AREA TELESCOPE. Astrophysical Journal, 2015, 810, 14.	4.5	475
13	A limit on the variation of the speed of light arising from quantum gravity effects. Nature, 2009, 462, 331-334.	27.8	454
14	Measurement of Separate Cosmic-Ray Electron and Positron Spectra with the Fermi Large Area Telescope. Physical Review Letters, 2012, 108, 011103.	7.8	445
15	MODELING THE EXTRAGALACTIC BACKGROUND LIGHT FROM STARS AND DUST. Astrophysical Journal, 2010, 712, 238-249.	4.5	404
16	THE <i>FERMI</i> LARGE AREA TELESCOPE ON ORBIT: EVENT CLASSIFICATION, INSTRUMENT RESPONSE FUNCTIONS, AND CALIBRATION. Astrophysical Journal, Supplement Series, 2012, 203, 4.	7.7	403
17	First year performance of the IceCube neutrino telescope. Astroparticle Physics, 2006, 26, 155-173.	4.3	379
18	<i>FERMI</i> OBSERVATIONS OF GRB 090902B: A DISTINCT SPECTRAL COMPONENT IN THE PROMPT AND DELAYED EMISSION. Astrophysical Journal, 2009, 706, L138-L144.	4.5	364

#	Article	IF	Citations
19	Dark matter constraints from observations of 25 MilkyÂWay satellite galaxies with the Fermi Large Area Telescope. Physical Review D, 2014, 89, .	4.7	360
20	BRIGHT ACTIVE GALACTIC NUCLEI SOURCE LIST FROM THE FIRST THREE MONTHS OF THE <i>FERMI </i> I> LARGE AREA TELESCOPE ALL-SKY SURVEY. Astrophysical Journal, 2009, 700, 597-622.	4.5	349
21	Sensitivity of the IceCube detector to astrophysical sources of high energy muon neutrinos. Astroparticle Physics, 2004, 20, 507-532.	4.3	341
22	DEVELOPMENT OF THE MODEL OF GALACTIC INTERSTELLAR EMISSION FOR STANDARD POINT-SOURCE ANALYSIS OF FERMI LARGE AREA TELESCOPE DATA. Astrophysical Journal, Supplement Series, 2016, 223, 26.	7.7	313
23	The IceCube data acquisition system: Signal capture, digitization, and timestamping. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 601, 294-316.	1.6	312
24	<i>FERMI</i> OBSERVATIONS OF GRB 090510: A SHORT-HARD GAMMA-RAY BURST WITH AN ADDITIONAL, HARD POWER-LAW COMPONENT FROM 10 keV TO GeV ENERGIES. Astrophysical Journal, 2010, 716, 1178-1190.	4.5	306
25	The Fermi Galactic Center GeV Excess and Implications for Dark Matter. Astrophysical Journal, 2017, 840, 43.	4.5	264
26	THE SPECTRUM AND MORPHOLOGY OF THE <i>FERMI</i> BUBBLES. Astrophysical Journal, 2014, 793, 64.	4.5	239
27	THE FIRST <i>FERMI</i> -LAT GAMMA-RAY BURST CATALOG. Astrophysical Journal, Supplement Series, 2013, 209, 11.	7.7	232
28	3FHL: The Third Catalog of Hard Fermi-LAT Sources. Astrophysical Journal, Supplement Series, 2017, 232, 18.	7.7	227
29	2FHL: THE SECOND CATALOG OF HARD FERMI-LAT SOURCES. Astrophysical Journal, Supplement Series, 2016, 222, 5.	7.7	219
30	Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A. Science, 2014, 343, 42-47.	12.6	211
31	The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars. Science, 2012, 338, 1190-1192.	12.6	207
32	The Fourth Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope. Astrophysical Journal, 2020, 892, 105.	4.5	204
33	TIME DELAY OF CASCADE RADIATION FOR TeV BLAZARS AND THE MEASUREMENT OF THE INTERGALACTIC MAGNETIC FIELD. Astrophysical Journal Letters, 2011, 733, L21.	8.3	191
34	THE FIRST FERMI LAT SUPERNOVA REMNANT CATALOG. Astrophysical Journal, Supplement Series, 2016, 224, 8.	7.7	190
35	Fermi Gamma-Ray Imaging of a Radio Galaxy. Science, 2010, 328, 725-729.	12.6	187
36	CONSTRAINTS ON THE GALACTIC HALO DARK MATTER FROM <i>FERMI</i> li>-LAT DIFFUSE MEASUREMENTS. Astrophysical Journal, 2012, 761, 91.	4.5	186

#	Article	IF	Citations
37	Incremental Fermi Large Area Telescope Fourth Source Catalog. Astrophysical Journal, Supplement Series, 2022, 260, 53.	7.7	186
38	The next-generation liquid-scintillator neutrino observatory LENA. Astroparticle Physics, 2012, 35, 685-732.	4.3	181
39	DETECTION OF A SPECTRAL BREAK IN THE EXTRA HARD COMPONENT OF GRB 090926A. Astrophysical Journal, 2011, 729, 114.	4.5	179
40	Search for gamma-ray spectral lines with the Fermi Large Area Telescope and dark matter implications. Physical Review D, 2013, 88, .	4.7	175
41	<i>FERMI GAMMA-RAY SPACE TELESCOPE</i> OBSERVATIONS OF THE GAMMA-RAY OUTBURST FROM 3C454.3 IN NOVEMBER 2010. Astrophysical Journal Letters, 2011, 733, L26.	8.3	170
42	MINUTE-TIMESCALE >100 MeV Î ³ -RAY VARIABILITY DURING THE GIANT OUTBURST OF QUASAR 3C 279 OBSERVED BY FERMI-LAT IN 2015 JUNE. Astrophysical Journal Letters, 2016, 824, L20.	8.3	167
43	Gamma-Ray Emission Concurrent with the Nova in the Symbiotic Binary V407 Cygni. Science, 2010, 329, 817-821.	12.6	165
44	GRB110721A: AN EXTREME PEAK ENERGY AND SIGNATURES OF THE PHOTOSPHERE. Astrophysical Journal Letters, 2012, 757, L31.	8.3	152
45	A Decade of Gamma-Ray Bursts Observed by Fermi-LAT: The Second GRB Catalog. Astrophysical Journal, 2019, 878, 52.	4.5	152
46	<i>FERMI</i> LARGE AREA TELESCOPE OBSERVATIONS OF MISALIGNED ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2010, 720, 912-922.	4.5	148
47	Observation of inverse Compton emission from a long \hat{I}^3 -ray burst. Nature, 2019, 575, 459-463.	27.8	146
48	<i>FERMI</i> LARGE AREA TELESCOPE VIEW OF THE CORE OF THE RADIO GALAXY CENTAURUS A. Astrophysical Journal, 2010, 719, 1433-1444.	4.5	141
49	Fermi establishes classical novae as a distinct class of gamma-ray sources. Science, 2014, 345, 554-558.	12.6	140
50	DISCOVERY OF HIGH-ENERGY GAMMA-RAY EMISSION FROM THE BINARY SYSTEM PSR B1259–63/LS 2883 AROUND PERIASTRON WITH ⟨i⟩FERMI⟨/i⟩. Astrophysical Journal Letters, 2011, 736, L11.	8.3	130
51	Resolving the Extragalactic <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>î³</mml:mi></mml:math> -Ray Background above 50ÂGeV with the Fermi Large Area Telescope. Physical Review Letters, 2016, 116, 151105.	7.8	130
52	SEARCH FOR COSMIC-RAY-INDUCED GAMMA-RAY EMISSION IN GALAXY CLUSTERS. Astrophysical Journal, 2014, 787, 18.	4.5	123
53	The Search for Spatial Extension in High-latitude Sources Detected by the Fermi Large Area Telescope. Astrophysical Journal, Supplement Series, 2018, 237, 32.	7.7	121
54	Neutrino tomography of gamma ray bursts and massive stellar collapses. Physical Review D, 2003, 68, .	4.7	112

#	Article	IF	CITATIONS
55	<i>FERMI</i> LARGE AREA TELESCOPE CONSTRAINTS ON THE GAMMA-RAY OPACITY OF THE UNIVERSE. Astrophysical Journal, 2010, 723, 1082-1096.	4.5	106
56	GeV and Higher Energy Photon Interactions in Gammaâ€Ray Burst Fireballs and Surroundings. Astrophysical Journal, 2004, 613, 1072-1078.	4.5	103
57	High-energy cosmic rays and neutrinos from semirelativistic hypernovae. Physical Review D, 2007, 76, .	4.7	100
58	Ultra-high-energy cosmic rays from black hole jets of radio galaxies. New Journal of Physics, 2009, 11, 065016.	2.9	96
59	Multiyear search for a diffuse flux of muon neutrinos with AMANDA-II. Physical Review D, 2007, 76, .	4.7	92
60	TeV Neutrinos from Core Collapse Supernovae and Hypernovae. Physical Review Letters, 2004, 93, 181101.	7.8	91
61	PKS 1502+106: A NEW AND DISTANT GAMMA-RAY BLAZAR IN OUTBURST DISCOVERED BY THE <i>>FERMI i>LARGE AREA TELESCOPE. Astrophysical Journal, 2010, 710, 810-827.</i>	4.5	87
62	Mass hierarchy, 2-3 mixing and CP-phase with huge atmospheric neutrino detectors. Journal of High Energy Physics, 2013, 2013, 1.	4.7	78
63	Limits on the ultra-high energy electron neutrino flux from the RICE experiment. Astroparticle Physics, 2003, 20, 195-213.	4.3	77
64	Performance and simulation of the RICE detector. Astroparticle Physics, 2003, 19, 15-36.	4.3	76
65	MULTIWAVELENGTH OBSERVATIONS OF GRB 110731A: GeV EMISSION FROM ONSET TO AFTERGLOW. Astrophysical Journal, 2013, 763, 71.	4.5	7 5
66	Search for Ultra–Highâ€Energy Neutrinos with AMANDAâ€II. Astrophysical Journal, 2008, 675, 1014-1024.	4.5	74
67	Galactic Center origin of a subset of IceCube neutrino events. Physical Review D, 2013, 88, .	4.7	72
68	Sensitivity of the KM3NeT/ARCA neutrino telescope to point-like neutrino sources. Astroparticle Physics, 2019, 111, 100-110.	4.3	71
69	Search for Extended Sources in the Galactic Plane Using Six Years of Fermi-Large Area Telescope Pass 8 Data above 10 GeV. Astrophysical Journal, 2017, 843, 139.	4.5	70
70	On the Origin and Survival of Ultraâ€Highâ€Energy Cosmicâ€Ray Nuclei in Gammaâ€Ray Bursts and Hypernovae. Astrophysical Journal, 2008, 677, 432-440.	4.5	69
71	DETERMINATION OF THE POINT-SPREAD FUNCTION FOR THE <i>FERMI</i> LARGE AREA TELESCOPE FROM ON-ORBIT DATA AND LIMITS ON PAIR HALOS OF ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2013, 765, 54.	4.5	66
72	The Second Catalog of Flaring Gamma-Ray Sources from the Fermi All-sky Variability Analysis. Astrophysical Journal, 2017, 846, 34.	4.5	63

#	Article	IF	CITATIONS
73	High Energy Neutrinos from Gamma-Ray Bursts with Precursor Supernovae. Physical Review Letters, 2003, 90, 241103.	7.8	62
74	$\mbox{\ensuremath{\mbox{\tiny (i)}}}\mbox{\ensuremath{\mbox{\tiny FERMI}$\ensuremath{\mbox{\tiny (i)}}}\mbox{\ensuremath{\mbox{\tiny DETECTION}}\mbox{\ensuremath{\mbox{\tiny OF}}}\mbox{\ensuremath{\mbox{\tiny I}}}\mbox{\ensuremath{\mbox{\tiny AST}}\mbox{\ensuremath{\mbox{\tiny FERMI}$\ensuremath{\mbox{\tiny (i)}}}\mbox{\ensuremath{\mbox{\tiny FERMI}$\ensuremath{\mbox{\tiny (i)}}}\mbox{\ensuremath{\mbox{\tiny FLARE}}\mbox{\ensuremath{\mbox{\tiny ON}}}\mbox{\ensuremath{\mbox{\tiny 2010}}\mbox{\ensuremath{\mbox{\tiny JUNE}}}\mbox{\ensuremath{\mbox{\tiny 2010}}\mbox{\ensuremath{\mbox{\tiny 2010}}}\mbox{\ensuremath{\mbox{\tiny 2010}}\mbox{\ensuremath{\mbox{\tiny 2010}}}\mbox{\ensuremath{\mbox{\tiny 2010}}\mbox{\ensuremath{\mbox{\tiny 2010}}}\mbox{\ensuremath{\mbox{\tiny 2010}}\mbox{\ensuremath{\mbox{\tiny 2010}}}\mbox{\ensuremath{\mbox{\tiny 2010}}\mbox{\ensuremath{\mbox{\tiny 2010}}}\mbox{\ensuremath{\mbox{\tiny 2010}}}\mbox{\ensuremath{\mbox{\tiny 2010}}}\mbox{\ensuremath{\mbox{\tiny 2010}}}\mbox{\ensuremath{\mbox{\tiny 2010}}}\mbox{\ensuremath{\mbox{\tiny 2010}}\mbox{\ensuremath{\mbox{\tiny 2010}}\mbox{\ensuremath}\mbox{\ensuremath{\mbox{\tiny 2010}}\mbox{\ensuremath{\mbox{\tiny 2010}}\mbox{\ensuremath}\mbox{\ensuremath}\mbox{\ensuremath}\mbox{\ensuremath}$	4.5	60
75	Synchrotron Radiation from Ultra-High Energy Protons and the Fermi Observations of GRB 080916C~!2010-03-15~!2010-05-15~!2010-08-31~!. The Open Astronomy Journal, 2010, 3, 150-155.	1.6	60
76	Detection of atmospheric muon neutrinos with the IceCube 9-string detector. Physical Review D, 2007, 76, .	4.7	57
77	Gamma-ray bursts in the swift-Fermi era. Frontiers of Physics, 2013, 8, 661-678.	5.0	57
78	Neutrino events at IceCube and the Fermi bubbles. Physical Review D, 2014, 90, .	4.7	57
79	<i>FERMI</i> OBSERVATIONS OF HIGH-ENERGY GAMMA-RAY EMISSION FROM GRB 080825C. Astrophysical Journal, 2009, 707, 580-592.	4.5	56
80	NEW <i>FERMI</i> -LAT EVENT RECONSTRUCTION REVEALS MORE HIGH-ENERGY GAMMA RAYS FROM GAMMA-RAY BURSTS. Astrophysical Journal, 2013, 774, 76.	4.5	56
81	THE STELLAR CONTRIBUTION TO THE EXTRAGALACTIC BACKGROUND LIGHT AND ABSORPTION OF HIGH-ENERGY GAMMA RAYS. Astrophysical Journal, 2009, 697, 483-492.	4.5	55
82	The First Pulse of the Extremely Bright GRB 130427A: A Test Lab for Synchrotron Shocks. Science, 2014, 343, 51-54.	12.6	55
83	<i>FERMI</i> DETECTION OF DELAYED GeV EMISSION FROM THE SHORT GAMMA-RAY BURST 081024B. Astrophysical Journal, 2010, 712, 558-564.	4 . 5	54
84	Five years of searches for point sources of astrophysical neutrinos with the AMANDA-II neutrino telescope. Physical Review D, 2007, 75, .	4.7	52
85	ACCELERATION OF ULTRA-HIGH-ENERGY COSMIC RAYS IN THE COLLIDING SHELLS OF BLAZARS AND GAMMA-RAY BURSTS: CONSTRAINTS FROM THE <i>i> FERMI GAMMA-RAY SPACE TELESCOPE < /i>). Astrophysical Journal, 2010, 724, 1366-1372.</i>	4.5	52
86	TeVâ€PeV Neutrinos from Giant Flares of Magnetars and the Case of SGR 1806â°'20. Astrophysical Journal, 2005, 633, 1013-1017.	4.5	51
87	Multiband variability studies and novel broadband SED modeling of Mrk 501 in 2009. Astronomy and Astrophysics, 2017, 603, A31.	5.1	49
88	Fermi and Swift Observations of GRB 190114C: Tracing the Evolution of High-energy Emission from Prompt to Afterglow. Astrophysical Journal, 2020, 890, 9.	4.5	48
89	Searching for sterile neutrinos in ice. Journal of High Energy Physics, 2011, 2011, 1.	4.7	46
90	FERMI-LAT OBSERVATIONS OF THE LIGO EVENT GW150914. Astrophysical Journal Letters, 2016, 823, L2.	8.3	45

#	Article	IF	CITATIONS
91	Search for point sources of high energy neutrinos with final data from AMANDA-II. Physical Review D, 2009, 79, .	4.7	44
92	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	7.7	44
93	HIGH ENERGY NEUTRINOS FROM A SLOW JET MODEL OF CORE COLLAPSE SUPERNOVAE. Modern Physics Letters A, 2005, 20, 2351-2367.	1.2	43
94	The Search for Muon Neutrinos from Northern Hemisphere Gammaâ€Ray Bursts with AMANDA. Astrophysical Journal, 2008, 674, 357-370.	4.5	43
95	A LEPTONIC–HADRONIC MODEL FOR THE AFTERGLOW OF GAMMA-RAY BURST 090510. Astrophysical Journal Letters, 2010, 724, L109-L112.	8.3	43
96	Neutrino signatures of the supernova: Gamma ray burst relationship. Physical Review D, 2004, 69, .	4.7	42
97	FERMI-LAT OBSERVATIONS OF THE 2014 MAY–JULY OUTBURST FROM 3C 454.3. Astrophysical Journal, 2016, 830, 162.	4.5	42
98	Gamma-Ray Blazars within the First 2 Billion Years. Astrophysical Journal Letters, 2017, 837, L5.	8.3	42
99	Spectral Analysis of Fermi-LAT Gamma-Ray Bursts with Known Redshift and their Potential Use as Cosmological Standard Candles. Astrophysical Journal, 2019, 887, 13.	4.5	42
100	LOWER LIMITS ON ULTRAHIGH-ENERGY COSMIC RAY AND JET POWERS OF TeV BLAZARS. Astrophysical Journal, 2012, 745, 196.	4.5	40
101	Long-lived PeV–EeV neutrinos from gamma-ray burst blastwave. Physical Review D, 2013, 88, .	4.7	39
102	CONSTRAINTS ON THE EXTRAGALACTIC BACKGROUND LIGHT FROM VERY HIGH ENERGY GAMMA-RAY OBSERVATIONS OF BLAZARS. Astrophysical Journal, 2009, 698, 1761-1766.	4.5	38
103	Oscillation effects on high-energy neutrino fluxes from astrophysical hidden sources. Physical Review D, 2007, 75, .	4.7	37
104	Neutrino mass hierarchy extraction using atmospheric neutrinos in ice. Physical Review D, 2008, 78, .	4.7	37
105	Monte Carlo studies for the optimisation of the Cherenkov Telescope Array layout. Astroparticle Physics, 2019, 111, 35-53.	4.3	35
106	DETECTION OF HIGH-ENERGY GAMMA-RAY EMISSION DURING THE X-RAY FLARING ACTIVITY IN GRB 100728A. Astrophysical Journal Letters, 2011, 734, L27.	8.3	34
107	Coherent radio pulses from GEANT generated electromagnetic showers in ice. Physical Review D, 2002, 65, .	4.7	32
108	Search for Neutrinoâ€induced Cascades from Gammaâ€Ray Bursts with AMANDA. Astrophysical Journal, 2007, 664, 397-410.	4.5	32

#	Article	IF	CITATIONS
109	Solar Energetic Particle Spectrum on 2006 December 13 Determined by IceTop. Astrophysical Journal, 2008, 689, L65-L68.	4.5	32
110	SEARCHING THE GAMMA-RAY SKY FOR COUNTERPARTS TO GRAVITATIONAL WAVE SOURCES: FERMI GAMMA-RAY BURST MONITORÂAND LARGE AREA TELESCOPE OBSERVATIONS OF LVT151012 AND GW151226. Astrophysical Journal, 2017, 835, 82.	4.5	32
111	Fermi-LAT Observations of LIGO/Virgo Event GW170817. Astrophysical Journal, 2018, 861, 85.	4.5	32
112	First Fermi-LAT Solar Flare Catalog. Astrophysical Journal, Supplement Series, 2021, 252, 13.	7.7	32
113	Flavor conversion of cosmic neutrinos from hidden jets. Journal of High Energy Physics, 2010, 2010, 1.	4.7	30
114	Fermi Large Area Telescope Performance after 10 Years of Operation. Astrophysical Journal, Supplement Series, 2021, 256, 12.	7.7	30
115	Inferred Cosmic-Ray Spectrum from Fermi Large Area Telescope <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>γ</mml:mi></mml:math> -Ray Observations of Earth's Limb. Physical Review Letters. 2014. 112. 151103.	7.8	28
116	High Energy Neutrinos from the Fermi Bubbles. Physical Review Letters, 2012, 108, 221102.	7.8	27
117	Determining the neutrino mass ordering and oscillation parameters with KM3NeT/ORCA. European Physical Journal C, 2022, 82, 1.	3.9	27
118	<i>>FERMI</i> OBSERVATIONS OF HIGH-ENERGY GAMMA-RAY EMISSION FROM GRB 090217A. Astrophysical Journal Letters, 2010, 717, L127-L132.	8.3	26
119	Searches for sterile neutrinos with IceCube DeepCore. Physical Review D, 2012, 85, .	4.7	26
120	On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes. Astroparticle Physics, 2006, 26, 282-300.	4.3	25
121	Characterisation of the Hamamatsu photomultipliers for the KM3NeT Neutrino Telescope. Journal of Instrumentation, 2018, 13, P05035-P05035.	1.2	25
122	Search for Gamma-Ray Emission from Local Primordial Black Holes with the Fermi Large Area Telescope. Astrophysical Journal, 2018, 857, 49.	4.5	23
123	Angular correlation of ultra-high energy cosmic rays with compact radio-loud quasars. Astroparticle Physics, 2002, 17, 489-495.	4.3	22
124	Limits on the muon flux from neutralino annihilations at the center of the Earth with AMANDA. Astroparticle Physics, 2006, 26, 129-139.	4.3	22
125	Hints of an axion-like particle mixing in the GeV gamma-ray blazar data?. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 023-023.	5.4	21
126	VERITAS and Fermi-LAT Observations of TeV Gamma-Ray Sources Discovered by HAWC in the 2HWC Catalog. Astrophysical Journal, 2018, 866, 24.	4.5	21

#	Article	IF	Citations
127	The KM3NeT potential for the next core-collapse supernova observation with neutrinos. European Physical Journal C, 2021, 81, 1.	3.9	21
128	Addendum to "Coherent radio pulses from GEANT generated electromagnetic showers in ice― Physical Review D, 2004, 69, .	4.7	20
129	Unresolved Gamma-Ray Sky through its Angular Power Spectrum. Physical Review Letters, 2018, 121, 241101.	7.8	20
130	Dependence of atmospheric muon flux on seawater depth measured with the first KM3NeT detection units. European Physical Journal C, 2020, 80, 1.	3.9	20
131	<i>FERMI</i> OBSERVATIONS OF γ-RAY EMISSION FROM THE MOON. Astrophysical Journal, 2012, 758, 140.	4.5	19
132	Super-PINGU for measurement of the leptonic CP-phase with atmospheric neutrinos. Journal of High Energy Physics, 2015, 2015, 1.	4.7	19
133	High-energy emission from a magnetar giant flare in the Sculptor galaxy. Nature Astronomy, 2021, 5, 385-391.	10.1	19
134	Status of the IceCube Neutrino Observatory. New Astronomy Reviews, 2004, 48, 519-525.	12.8	18
135	MeVâ€GeV Emission from Neutronâ€loaded Short Gammaâ€Ray Burst Jets. Astrophysical Journal, 2006, 650, 998-1003.	4.5	18
136	Limits on the High-Energy Gamma and Neutrino Fluxes from the SGR 1806-20 Giant Flare of 27 December 2004 with the AMANDA-II Detector. Physical Review Letters, 2006, 97, 221101.	7.8	18
137	KM3NeT front-end and readout electronics system: hardware, firmware, and software. Journal of Astronomical Telescopes, Instruments, and Systems, 2019, 5, 1.	1.8	18
138	High energy neutrinos from novae in symbiotic binaries: The case of V407 Cygni. Physical Review D, 2010, 82, .	4.7	17
139	Signatures of photon and axion-like particle mixing in the gamma-ray burst jet. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 030-030.	5.4	17
140	Limits on the transient ultra-high energy neutrino flux from gamma-ray bursts (GRB) derived from RICE data. Astroparticle Physics, 2007, 26, 367-377.	4.3	16
141	Astrophysical tau neutrino detection in kilometer-scale Cherenkov detectors via muonic tau decay. Astroparticle Physics, 2007, 27, 238-243.	4.3	16
142	Multimessenger study of the Fermi bubbles: Very high energy gamma rays and neutrinos. Physical Review D, 2015, 92, .	4.7	16
143	Angular correlation of cosmic neutrinos with ultrahigh-energy cosmic rays and implications for their sources. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 014-014.	5.4	16
144	High-energy neutrinos from the gravitational wave event GW150914 possibly associated with a short gamma-ray burst. Physical Review D, 2016, 93, .	4.7	16

#	Article	IF	CITATIONS
145	Investigating the Nature of Late-time High-energy GRB Emission through Joint Fermi/Swift Observations. Astrophysical Journal, 2018, 863, 138.	4.5	16
146	Optical Observations Reveal Strong Evidence for High-energy Neutrino Progenitor. Astrophysical Journal Letters, 2020, 896, L19.	8.3	16
147	Fermi Observations of the LIGO Event GW170104. Astrophysical Journal Letters, 2017, 846, L5.	8.3	15
148	Event reconstruction for KM3NeT/ORCA using convolutional neural networks. Journal of Instrumentation, 2020, 15, P10005-P10005.	1.2	15
149	CONSTRAINING THE HIGH-ENERGY EMISSION FROM GAMMA-RAY BURSTS WITH <i>FERMI </i> Journal, 2012, 754, 121.	4.5	14
150	gSeaGen: The KM3NeT GENIE-based code for neutrino telescopes. Computer Physics Communications, 2020, 256, 107477.	7.5	14
151	Modelling synchrotron and synchrotron self-Compton emission of gamma-ray burst afterglows from radio to very-high energies. Monthly Notices of the Royal Astronomical Society, 2021, 505, 1718-1729.	4.4	14
152	A gamma-ray pulsar timing array constrains the nanohertz gravitational wave background. Science, 2022, 376, 521-523.	12.6	14
153	<i>Fermi</i> LARGE AREA TELESCOPE OBSERVATIONS OF BLAZAR 3C 279 OCCULTATIONS BY THE SUN. Astrophysical Journal, 2014, 784, 118.	4.5	13
154	PeV-EeV neutrinos from GRB blast waves in IceCube and future neutrino telescopes. Physical Review D, 2015, 91, .	4.7	13
155	Ultrahigh-energy Cosmic-Ray Interactions as the Origin of Very High-energy Î ³ -Rays from BL Lacertae Objects. Astrophysical Journal, 2020, 889, 149.	4.5	13
156	Constraints on very high energy gamma-ray emission from the Fermi bubbles with future ground-based experiments. Physical Review D, 2019, 99, .	4.7	12
157	Searching for non-unitary neutrino oscillations in the present T2K and NO\$\$u \$\$A data. European Physical Journal C, 2021, 81, 1.	3.9	11
158	A self-consistent model of cosmic-ray fluxes and positron excess: roles of nearby pulsars and a sub-dominant source population. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 029-029.	5.4	10
159	Revisiting constraints on $3+1$ active-sterile neutrino mixing using IceCube data. Journal of High Energy Physics, 2019, 2019, 1.	4.7	10
160	Spectropolarimetry and photometry of the early afterglow of the gamma-ray burst GRB 191221B. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4621-4631.	4.4	10
161	Enhancement of the $\hat{1}/2\hat{A}$ eflux from astrophysical sources by two-photon annihilation interactions. Physical Review D, 2006, 73, .	4.7	9
162	Ultrahigh-energy neutrino flux as a probe of large extra dimensions. Journal of Cosmology and Astroparticle Physics, 2007, 2007, 015-015.	5.4	9

#	Article	IF	Citations
163	Angular correlation between IceCube high-energy starting events and starburst sources. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 021-021.	5.4	9
164	The binary black hole merger rate from ultraluminous X-ray source progenitors. Monthly Notices of the Royal Astronomical Society, 2017, 472, 3683-3691.	4.4	9
165	Hadronic Models of the Fermi Bubbles: Future Perspectives. Galaxies, 2018, 6, 47.	3.0	9
166	A Search for Cosmic-Ray Proton Anisotropy with the Fermi Large Area Telescope. Astrophysical Journal, 2019, 883, 33.	4.5	9
167	Deep-sea deployment of the KM3NeT neutrino telescope detection units by self-unrolling. Journal of Instrumentation, 2020, 15, P11027-P11027.	1.2	9
168	Implementation and first results of the KM3NeT real-time core-collapse supernova neutrino search. European Physical Journal C, 2022, 82, 1.	3.9	9
169	A beta decay radiation signature from neutron-rich gamma-ray bursts?. Journal of Cosmology and Astroparticle Physics, 2006, 2006, 006-006.	5.4	8
170	The Control Unit of the KM3NeT Data Acquisition System. Computer Physics Communications, 2020, 256, 107433.	7.5	8
171	Ultrahigh energy neutrino afterglows of nearby long duration gamma-ray bursts. Physical Review D, 2017, 96, .	4.7	7
172	Ultrahigh energy cosmic rays and neutrinos from light nuclei composition. Physical Review D, 2019, 99, .	4.7	7
173	MAGIC and i>Fermi / i>-LAT gamma-ray results on unassociated HAWC sources. Monthly Notices of the Royal Astronomical Society, 2019, 485, 356-366.	4.4	7
174	Modeling the spectrum and composition of ultrahigh-energy cosmic rays with two populations of extragalactic sources. European Physical Journal C, 2021, 81, 1.	3.9	7
175	Catalog of Long-term Transient Sources in the First 10 yr of Fermi-LAT Data. Astrophysical Journal, Supplement Series, 2021, 256, 13.	7.7	7
176	GeV–TeV emission from γ-ray bursts. New Astronomy Reviews, 2004, 48, 445-451.	12.8	6
177	Lepto-hadronic model of gamma rays from Eta Carinae and prospects for neutrino telescopes. Physical Review D, 2017, 96, .	4.7	5
178	Very high-energy gamma-ray signature of ultrahigh-energy cosmic ray acceleration in Centaurus A. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 478, L1-L6.	3.3	5
179	Cosmogenic gamma-ray and neutrino fluxes from blazars associated with IceCube events. Astronomy and Astrophysics, 2022, 658, L6.	5.1	5
180	A Review of the Tension between the T2K and NOÎ $\frac{1}{2}$ A Appearance Data and Hints to New Physics. Universe, 2022, 8, 109.	2.5	5

#	Article	IF	CITATIONS
181	Nanobeacon: A time calibration device for the KM3NeT neutrino telescope. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1040, 167132.	1.6	5
182	High energy neutrinos and photons from curvature pions in magnetars. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 025.	5.4	4
183	PROMPT TeV EMISSION FROM COSMIC RAYS ACCELERATED BY GAMMA-RAY BURSTS INTERACTING WITH A SURROUNDING STELLAR WIND. Astrophysical Journal, 2009, 691, L37-L40.	4.5	4
184	Observational Consequences of GRBs as Sources of Ultra High Energy Cosmic Rays., 2009,,.		4
185	Sensitivity to light sterile neutrino mixing parameters with KM3NeT/ORCA. Journal of High Energy Physics, 2021, 2021, 1.	4.7	4
186	Combined sensitivity of JUNO and KM3NeT/ORCA to the neutrino mass ordering. Journal of High Energy Physics, 2022, 2022, 1.	4.7	4
187	DETECTING GAMMA-RAY BURSTS WITH ULTRA-HIGH ENERGY NEUTRINOS. International Journal of Modern Physics A, 2005, 20, 3099-3101.	1.5	3
188	PeV–EeV Neutrinos from Gamma-Ray Blazars due to Ultrahigh-energy Cosmic-Ray Propagation. Astrophysical Journal, 2021, 910, 100.	4.5	3
189	THEORETICAL ASPECTS OF HIGH ENERGY NEUTRINOS AND GRB., 2007, , .		3
190	Search for New Cosmic-Ray Acceleration Sites within the 4FGL Catalog Galactic Plane Sources. Astrophysical Journal, 2022, 933, 204.	4.5	3
191	On the global anisotropy of cosmic ray data above 4 Â 1019eV. Journal of Cosmology and Astroparticle Physics, 2003, 2003, 007-007.	5.4	2
192	High energy emissions from gamma-ray bursts. Journal of Physics: Conference Series, 2007, 60, 111-114.	0.4	2
193	Photodisintegrated gamma rays and neutrinos from heavy nuclei in the gamma-ray burst jet of GRB 130427A. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 458, L79-L83.	3.3	2
194	Mass hierarchy and CP -phase sensitivity of ORCA using the Fermilab neutrino beam. Physical Review D, 2017, 96, .	4.7	2
195	Signal characteristics from electromagnetic cascades in ice. AIP Conference Proceedings, 2001, , .	0.4	1
196	The Radio Ice Cherenkov Experiment. AIP Conference Proceedings, 2003, , .	0.4	1
197	NEUTRINO ASTRONOMY AND COSMIC RAYS AT THE SOUTH POLE: LATEST RESULTS FROM AMANDA AND PERSPECTIVES FOR ICECUBE. International Journal of Modern Physics A, 2005, 20, 6919-6923.	1.5	1
198	GEV TO PEV ENERGY PHOTON INTERACTIONS IN GAMMA-RAY BURST FIREBALLS AND SURROUNDINGS. International Journal of Modern Physics A, 2005, 20, 3163-3166.	1.5	1

#	Article	IF	CITATIONS
199	A novel tau signature in neutrino telescopes. Journal of Physics: Conference Series, 2007, 60, 231-234.	0.4	1
200	IceCube contributions to the XIV International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2006). Nuclear Physics, Section B, Proceedings Supplements, 2008, 175-176, 407-408.	0.4	1
201	Super-PINGU for measuring CP violation. Nuclear and Particle Physics Proceedings, 2015, 265-266, 183-185.	0.5	1
202	Non-Unitary Neutrino Mixing in the NOνA Near Detector Data. Universe, 2022, 8, 238.	2.5	1
203	Limits on the Diffuse Flux of Ultra-High Energy Neutrinos from the RICE Experiment. , 2003, , .		0
204	Gamma-ray Bursts and High Energy Neutrinos. Nuclear Physics, Section B, Proceedings Supplements, 2005, 145, 307-312.	0.4	0
205	High Energy Emission from Gamma Ray Bursts. AIP Conference Proceedings, 2006, , .	0.4	0
206	Astrophysical High Energy Neutrinos. AIP Conference Proceedings, 2007, , .	0.4	0
207	Semi-relativistic Hypernovae as a source of UHE cosmic rays. AIP Conference Proceedings, 2008, , .	0.4	0
208	The Gamma Ray Burst section of the White Paper on the Status and Future of Very High Energy Gamma Ray Astronomy: A Brief Preliminary Report. AIP Conference Proceedings, 2008, , .	0.4	0
209	High energy neutrino Astronomy. Nuclear Physics, Section B, Proceedings Supplements, 2011, 221, 389.	0.4	0
210	Global Properties of High-Energy Emission from Gamma-Ray Bursts. EAS Publications Series, 2013, 61, 123-128.	0.3	0
211	Observations of Gamma-ray Bursts with the Fermi Large Area Telescope. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 742, 162-164.	1.6	0
212	High Energy Gamma Rays and Neutrinos from Star-forming Activities in the Galactic and Extragalactic Sources. Proceedings of the International Astronomical Union, 2016, 11, 218-219.	0.0	0
213	Very High Energy Neutrinos from nearby long GRB Afterglows. Journal of Physics: Conference Series, 2017, 888, 012110.	0.4	0
214	The Anatomy of Ultrahigh-Energy Cosmic Rays. Physics Magazine, 2020, 13, .	0.1	0
215	CALORIMETRY OF THE RICE DETECTOR. , 2003, , .		0
216	IceCube: A Multipurpose Neutrino Telescope. Journal of the Physical Society of Japan, 2008, 77, 71-75.	1.6	0