Nicole F Steinmetz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2456769/publications.pdf

Version: 2024-02-01

225 papers 12,375 citations

61 h-index 97 g-index

232 all docs 232 docs citations

times ranked

232

11361 citing authors

#	Article	IF	CITATIONS
1	Combining nanomedicine and immune checkpoint therapy for cancer immunotherapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1739.	6.1	19
2	A Photoacoustic Contrast Agent for miR-21 via NIR Fluorescent Hybridization Chain Reaction. Bioconjugate Chemistry, 2022, 33, 1080-1092.	3 . 6	6
3	Inactivated Cowpea Mosaic Virus in Combination with OX40 Agonist Primes Potent Antitumor Immunity in a Bilateral Melanoma Mouse Model. Molecular Pharmaceutics, 2022, 19, 592-601.	4.6	9
4	Dissolving Microneedle Delivery of a Prophylactic HPV Vaccine. Biomacromolecules, 2022, 23, 903-912.	5.4	23
5	Integrating plant molecular farming and materials research for next-generation vaccines. Nature Reviews Materials, 2022, 7, 372-388.	48.7	65
6	Tuning the Hydrophilic–Hydrophobic Balance of Molecular Polymer Bottlebrushes Enhances their Tumor Homing Properties. Advanced Healthcare Materials, 2022, 11, e2200163.	7.6	17
7	Neoadjuvant in situ vaccination with cowpea mosaic virus as a novel therapy against canine inflammatory mammary cancer. , 2022, 10, e004044.		19
8	One-Step Supramolecular Multifunctional Coating on Plant Virus Nanoparticles for Bioimaging and Therapeutic Applications. ACS Applied Materials & Samp; Interfaces, 2022, 14, 13692-13702.	8.0	21
9	Injectable Slow-Release Hydrogel Formulation of a Plant Virus-Based COVID-19 Vaccine Candidate. Biomacromolecules, 2022, 23, 1812-1825.	5.4	20
10	Cowpea Mosaic Virus Outperforms Other Members of the Secoviridae as In Situ Vaccine for Cancer Immunotherapy. Molecular Pharmaceutics, 2022, 19, 1573-1585.	4.6	13
11	Isolation of Tobacco Mosaic Virusâ€Binding Peptides for Biotechnology Applications. ChemBioChem, 2022, , .	2.6	2
12	Injectable Hydrogel Containing Cowpea Mosaic Virus Nanoparticles Prevents Colon Cancer Growth. ACS Biomaterials Science and Engineering, 2022, 8, 2518-2525.	5. 2	6
13	Cowpea Mosaic Virus and Natural Killer Cell Agonism for In Situ Cancer Vaccination. Nano Letters, 2022, 22, 5348-5356.	9.1	10
14	Photothermal immunotherapy of melanoma using TLR-7 agonist laden tobacco mosaic virus with polydopamine coat. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 44, 102573.	3.3	10
15	Toward Plant Cyborgs: Hydrogels Incorporated onto Plant Tissues Enable Programmable Shape Control. ACS Macro Letters, 2022, 11, 961-966.	4.8	5
16	Biomimetic Virus-Like Particles as Severe Acute Respiratory Syndrome Coronavirus 2 Diagnostic Tools. ACS Nano, 2021, 15, 1259-1272.	14.6	39
17	The <i>iin vivo</i> fate of tobacco mosaic virus nanoparticle theranostic agents modified by the addition of a polydopamine coat. Biomaterials Science, 2021, 9, 7134-7150.	5.4	10
18	<i>In situ</i> vaccine application of inactivated CPMV nanoparticles for cancer immunotherapy. Materials Advances, 2021, 2, 1644-1656.	5.4	19

#	Article	IF	Citations
19	Bluetongue Virus Particles as Nanoreactors for Enzyme Delivery and Cancer Therapy. Molecular Pharmaceutics, 2021, 18, 1150-1156.	4.6	12
20	Remission-Stage Ovarian Cancer Cell Vaccine with Cowpea Mosaic Virus Adjuvant Prevents Tumor Growth. Cancers, 2021, 13, 627.	3.7	16
21	Virus-Like Particles as Positive Controls for COVID-19 RT-LAMP Diagnostic Assays. Biomacromolecules, 2021, 22, 1231-1243.	5.4	9
22	A Singleâ€Dose, Implantâ€Based, Trivalent Virusâ€like Particle Vaccine against "Cholesterol Checkpoint― Proteins. Advanced Therapeutics, 2021, 4, 2100014.	3.2	23
23	The pharmacology of plant virus nanoparticles. Virology, 2021, 556, 39-61.	2.4	29
24	Inactivated Plant Viruses as an Agrochemical Delivery Platform. ACS Agricultural Science and Technology, 2021, 1, 124-130.	2.3	7
25	Designing S100A9-Targeted Plant Virus Nanoparticles to Target Deep Vein Thrombosis. Biomacromolecules, 2021, 22, 2582-2594.	5.4	8
26	Unleashing the potential of cell membrane-based nanoparticles for COVID-19 treatment and vaccination. Expert Opinion on Drug Delivery, 2021, 18, 1395-1414.	5.0	14
27	Development of a Virus-Like Particle-Based Anti-HER2 Breast Cancer Vaccine. Cancers, 2021, 13, 2909.	3.7	25
28	Isolation of Cowpea Mosaic Virus-Binding Peptides. Biomacromolecules, 2021, 22, 3613-3623.	5.4	5
29	Cowpea mosaic virus stimulates antitumor immunity through recognition by multiple MYD88-dependent toll-like receptors. Biomaterials, 2021, 275, 120914.	11.4	40
30	Trivalent Subunit Vaccine Candidates for COVID-19 and Their Delivery Devices. Journal of the American Chemical Society, 2021, 143, 14748-14765.	13.7	48
31	S100A9â€√argeted Cowpea Mosaic Virus as a Prophylactic and Therapeutic Immunotherapy against Metastatic Breast Cancer and Melanoma. Advanced Science, 2021, 8, e2101796.	11.2	17
32	Plant Viral Nanoparticle Conjugated with Anti-PD-1 Peptide for Ovarian Cancer Immunotherapy. International Journal of Molecular Sciences, 2021, 22, 9733.	4.1	26
33	A Scalable Manufacturing Approach to Single Dose Vaccination against HPV. Vaccines, 2021, 9, 66.	4.4	20
34	Tobacco mosaic virus for the targeted delivery of drugs to cells expressing prostate-specific membrane antigen. RSC Advances, 2021, 11, 20101-20108.	3.6	8
35	Cowpea Mosaic Virus Nanoparticle Vaccine Candidates Displaying Peptide Epitopes Can Neutralize the Severe Acute Respiratory Syndrome Coronavirus. ACS Infectious Diseases, 2021, 7, 3096-3110.	3.8	16
36	Three Alternative Treatment Protocols for the Efficient Inactivation of Potato Virus X. ACS Applied Bio Materials, 2021, 4, 8309-8315.	4.6	3

#	Article	IF	Citations
37	Bioconjugation of Active Ingredients to Plant Viral Nanoparticles Is Enhanced by Preincubation with a Pluronic F127 Polymer Scaffold. ACS Applied Materials & Interfaces, 2021, 13, 59618-59632.	8.0	10
38	Endosomal tollâ€like receptors play a key role in activation of primary human monocytes by cowpea mosaic virus. Immunology, 2020, 159, 183-192.	4.4	26
39	Plant Virus-Based Nanotechnologies. Women in Engineering and Science, 2020, , 57-69.	0.4	5
40	Builtâ€In Active Microneedle Patch with Enhanced Autonomous Drug Delivery. Advanced Materials, 2020, 32, e1905740.	21.0	160
41	Plant Viruses and Bacteriophage-Based Reagents for Diagnosis and Therapy. Annual Review of Virology, 2020, 7, 559-587.	6.7	25
42	COVID-19 Vaccine Frontrunners and Their Nanotechnology Design. ACS Nano, 2020, 14, 12522-12537.	14.6	259
43	COVID-19 vaccine development and a potential nanomaterial path forward. Nature Nanotechnology, 2020, 15, 646-655.	31.5	501
44	Cisplatin Prodrug-Loaded Nanoparticles Based on Physalis Mottle Virus for Cancer Therapy. Molecular Pharmaceutics, 2020, 17, 4629-4636.	4.6	22
45	Intra- and intermolecular atomic-scale interactions in the receptor binding domain of SARS-CoV-2 spike protein: implication for ACE2 receptor binding. Physical Chemistry Chemical Physics, 2020, 22, 18272-18283.	2.8	53
46	Active Microneedle Administration of Plant Virus Nanoparticles for Cancer In Situ Vaccination Improves Immunotherapeutic Efficacy. ACS Applied Nano Materials, 2020, 3, 8037-8051.	5.0	34
47	Doxorubicinâ€Loaded Physalis Mottle Virus Particles Function as a pHâ€Responsive Prodrug Enabling Cancer Therapy. Biotechnology Journal, 2020, 15, e2000077.	3.5	26
48	The unique potency of Cowpea mosaic virus (CPMV) <i>in situ</i> cancer vaccine. Biomaterials Science, 2020, 8, 5489-5503.	5.4	42
49	Charge Calibration Standard for Atomic Force Microscope Tips in Liquids. Langmuir, 2020, 36, 13621-13632.	3.5	9
50	A Combination of Cowpea Mosaic Virus and Immune Checkpoint Therapy Synergistically Improves Therapeutic Efficacy in Three Tumor Models. Advanced Functional Materials, 2020, 30, 2002299.	14.9	37
51	Affinity of plant viral nanoparticle potato virus X (PVX) towards malignant B cells enables cancer drug delivery. Biomaterials Science, 2020, 8, 3935-3943.	5.4	21
52	Antibody Response against Cowpea Mosaic Viral Nanoparticles Improves <i>In Situ</i> Vaccine Efficacy in Ovarian Cancer. ACS Nano, 2020, 14, 2994-3003.	14.6	44
53	Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Advanced Drug Delivery Reviews, 2020, 156, 214-235.	13.7	231
54	Cowpea Mosaic Virus (CPMV)-Based Cancer Testis Antigen NY-ESO-1 Vaccine Elicits an Antigen-Specific Cytotoxic T Cell Response. ACS Applied Bio Materials, 2020, 3, 4179-4187.	4.6	16

#	Article	IF	Citations
55	The Antitumor Efficacy of CpG Oligonucleotides is Improved by Encapsulation in Plant Virusâ€Like Particles. Advanced Functional Materials, 2020, 30, 1908743.	14.9	58
56	Nanocarriers for the Delivery of Medical, Veterinary, and Agricultural Active Ingredients. ACS Nano, 2020, 14, 2678-2701.	14.6	113
57	Protein cages and virus-like particles: from fundamental insight to biomimetic therapeutics. Biomaterials Science, 2020, 8, 2771-2777.	5.4	44
58	Site-Specific Antibody Conjugation Strategy to Functionalize Virus-Based Nanoparticles. Bioconjugate Chemistry, 2020, 31, 1408-1416.	3.6	27
59	Active Delivery of VLPs Promotes Anti‶umor Activity in a Mouse Ovarian Tumor Model. Small, 2020, 16, e1907150.	10.0	40
60	Cowpea Mosaic Virus Nanoparticle Enhancement of Hypofractionated Radiation in a B16 Murine Melanoma Model. Frontiers in Oncology, 2020, 10, 594614.	2.8	4
61	Cowpea Mosaic Virus Nanoparticles and Empty Virus-Like Particles Show Distinct but Overlapping Immunostimulatory Properties. Journal of Virology, 2019, 93, .	3.4	58
62	Delivery of siRNA therapeutics using cowpea chlorotic mottle virus-like particles. Biomaterials Science, 2019, 7, 3138-3142.	5.4	56
63	Presentation and Delivery of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand <i>via</i> Elongated Plant Viral Nanoparticle Enhances Antitumor Efficacy. ACS Nano, 2019, 13, 2501-2510.	14.6	29
64	Molecular mechanism and binding free energy of doxorubicin intercalation in DNA. Physical Chemistry Chemical Physics, 2019, 21, 3877-3893.	2.8	70
65	A Viral Nanoparticle Cancer Vaccine Delays Tumor Progression and Prolongs Survival in a HER2 ⁺ Tumor Mouse Model. Advanced Therapeutics, 2019, 2, 1800139.	3.2	25
66	Cowpea Mosaic Virus Immunotherapy Combined with Cyclophosphamide Reduces Breast Cancer Tumor Burden and Inhibits Lung Metastasis. Advanced Science, 2019, 6, 1802281.	11.2	50
67	In Situ Vaccination of Tumors Using Plant Viral Nanoparticles. Methods in Molecular Biology, 2019, 2000, 111-124.	0.9	12
68	Polydopamine-decorated tobacco mosaic virus for photoacoustic/magnetic resonance bimodal imaging and photothermal cancer therapy. Nanoscale, 2019, 11, 9760-9768.	5.6	37
69	Physalis Mottle Virus-like Nanoparticles for Targeted Cancer Imaging. ACS Applied Materials & Samp; Interfaces, 2019, 11, 18213-18223.	8.0	42
70	Soil mobility of synthetic and virus-based model nanopesticides. Nature Nanotechnology, 2019, 14, 712-718.	31.5	59
71	Heterologous Prime-Boost Enhances the Antitumor Immune Response Elicited by Plant-Virus-Based Cancer Vaccine. Journal of the American Chemical Society, 2019, 141, 6509-6518.	13.7	55
72	CD47 Blockade and Cowpea Mosaic Virus Nanoparticle In Situ Vaccination Triggers Phagocytosis and Tumor Killing. Advanced Healthcare Materials, 2019, 8, e1801288.	7.6	47

#	Article	IF	Citations
73	Cowpea Mosaic Virus Promotes Antiâ€Tumor Activity and Immune Memory in a Mouse Ovarian Tumor Model. Advanced Therapeutics, 2019, 2, 1900003.	3.2	47
74	Plant Virus-Like Particle In Situ Vaccine for Intracranial Glioma Immunotherapy. Cancers, 2019, 11, 515.	3.7	55
75	Let There Be Light: Targeted Photodynamic Therapy Using High Aspect Ratio Plant Viral Nanoparticles. Macromolecular Bioscience, 2019, 19, e1800407.	4.1	18
76	Freeze-Drying To Produce Efficacious CPMV Virus-like Particles. Nano Letters, 2019, 19, 2099-2105.	9.1	14
77	S100A9-targeted tobacco mosaic virus nanoparticles exhibit high specificity toward atherosclerotic lesions in ApoE ^{â^'/â^'} mice. Journal of Materials Chemistry B, 2019, 7, 1842-1846.	5.8	19
78	Dynamic, Simultaneous Concentration Mapping of Multiple MRI Contrast Agents with Dual Contrast - Magnetic Resonance Fingerprinting. Scientific Reports, 2019, 9, 19888.	3.3	6
79	Tobacco Mosaic Virus-Functionalized Mesoporous Silica Nanoparticles, a Wool-Ball-like Nanostructure for Drug Delivery. Langmuir, 2019, 35, 203-211.	3.5	19
80	Biodistribution of Filamentous Plant Virus Nanoparticles: Pepino Mosaic Virus versus Potato Virus X. Biomacromolecules, 2019, 20, 469-477.	5.4	18
81	Biological and evolutionary concepts for nanoscale engineering. EMBO Reports, 2019, 20, e48806.	4.5	11
82	The i>in vivo li>fates of plant viral nanoparticles camouflaged using self-proteins: overcoming immune recognition. Journal of Materials Chemistry B, 2018, 6, 2204-2216.	5.8	37
83	Slowâ€Release Formulation of Cowpea Mosaic Virus for In Situ Vaccine Delivery to Treat Ovarian Cancer. Advanced Science, 2018, 5, 1700991.	11.2	54
84	Treatment of Canine Oral Melanoma with Nanotechnology-Based Immunotherapy and Radiation. Molecular Pharmaceutics, 2018, 15, 3717-3722.	4.6	92
85	Radiation Therapy Combined with Cowpea Mosaic Virus Nanoparticle in Situ Vaccination Initiates Immune-Mediated Tumor Regression. ACS Omega, 2018, 3, 3702-3707.	3.5	68
86	Green nanofillers: Plant virus reinforcement in hydrophilic polymer nanocomposites. Polymer, 2018, 142, 72-79.	3.8	2
87	Speciation of Phenanthriplatin and Its Analogs in the Core of Tobacco Mosaic Virus. Journal of the American Chemical Society, 2018, 140, 4279-4287.	13.7	28
88	Plant viral and bacteriophage delivery of nucleic acid therapeutics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1487.	6.1	25
89	Tobacco Mosaic Virus-Delivered Cisplatin Restores Efficacy in Platinum-Resistant Ovarian Cancer Cells. Molecular Pharmaceutics, 2018, 15, 2922-2931.	4.6	57
90	Cancer Theranostic Applications of Albumin-Coated Tobacco Mosaic Virus Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2018, 10, 39468-39477.	8.0	45

#	Article	IF	Citations
91	New Directions for Drug Delivery in Cancer Therapy. Molecular Pharmaceutics, 2018, 15, 3601-3602.	4.6	7
92	Delivery of mitoxantrone using a plant virus-based nanoparticle for the treatment of glioblastomas. Journal of Materials Chemistry B, 2018, 6, 5888-5895.	5.8	36
93	In Situ Vaccination with Cowpea vs Tobacco Mosaic Virus against Melanoma. Molecular Pharmaceutics, 2018, 15, 3700-3716.	4.6	79
94	Bioinspired Shielding Strategies for Nanoparticle Drug Delivery Applications. Molecular Pharmaceutics, 2018, 15, 2900-2909.	4.6	81
95	Delivery of thrombolytic therapy using rod-shaped plant viral nanoparticles decreases the risk of hemorrhage. Nanoscale, 2018, 10, 16547-16555.	5.6	30
96	Tobacco mosaic virus delivery of mitoxantrone for cancer therapy. Nanoscale, 2018, 10, 16307-16313.	5.6	47
97	Drug-Loaded Plant-Virus Based Nanoparticles for Cancer Drug Delivery. Methods in Molecular Biology, 2018, 1776, 425-436.	0.9	11
98	In Planta Production of Fluorescent Filamentous Plant Virus-Based Nanoparticles. Methods in Molecular Biology, 2018, 1776, 61-84.	0.9	15
99	Nanomanufacture of Free-Standing, Porous, Janus-Type Films of Polymer–Plant Virus Nanoparticle Arrays. Methods in Molecular Biology, 2018, 1776, 143-157.	0.9	2
100	Interactions Between Plant Viral Nanoparticles (VNPs) and Blood Plasma Proteins, and Their Impact on theÂVNP In Vivo Fates. Methods in Molecular Biology, 2018, 1776, 591-608.	0.9	2
101	Potato virus X, a filamentous plant viral nanoparticle for doxorubicin delivery in cancer therapy. Nanoscale, 2017, 9, 2348-2357.	5.6	108
102	A Bioengineered Positive Control for Rapid Detection of the Ebola Virus by Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP). ACS Biomaterials Science and Engineering, 2017, 3, 452-459.	5.2	9
103	Polymer Structure and Conformation Alter the Antigenicity of Virus-like Particle–Polymer Conjugates. Journal of the American Chemical Society, 2017, 139, 3312-3315.	13.7	70
104	Plant viruses and bacteriophages for drug delivery in medicine and biotechnology. Current Opinion in Chemical Biology, 2017, 38, 108-116.	6.1	90
105	Fluorinated polymer–photosensitizer conjugates enable improved generation of ROS for anticancer photodynamic therapy. Polymer Chemistry, 2017, 8, 3195-3202.	3.9	27
106	Impact of Hydrogen Bonding in the Binding Site between Capsid Protein and MS2 Bacteriophage ssRNA. Journal of Physical Chemistry B, 2017, 121, 6321-6330.	2.6	30
107	Effect of intra-tumoral magnetic nanoparticle hyperthermia and viral nanoparticle immunogenicity on primary and metastatic cancer. Proceedings of SPIE, 2017, 10066, .	0.8	12
108	Hypo-fractionated radiation, magnetic nanoparticle hyperthermia and a viral immunotherapy treatment of spontaneous canine cancer. , 2017, 10066, .		21

#	Article	IF	Citations
109	Delivery of Pesticides to Plant Parasitic Nematodes Using Tobacco Mild Green Mosaic Virus as a Nanocarrier. ACS Nano, 2017, 11, 4719-4730.	14.6	77
110	Electrostatic layer-by-layer construction of fibrous TMV biofilms. Nanoscale, 2017, 9, 1580-1590.	5.6	27
111	Plant viral nanoparticles-based HER2 vaccine: Immune response influenced by differential transport, localization and cellular interactions of particulate carriers. Biomaterials, 2017, 121, 15-27.	11.4	88
112	Cryo-electron tomography investigation of serum albumin-camouflaged tobacco mosaic virus nanoparticles. Nanoscale, 2017, 9, 3408-3415.	5.6	19
113	Optical and Magnetic Resonance Imaging Using Fluorous Colloidal Nanoparticles. Biomacromolecules, 2017, 18, 103-112.	5.4	29
114	Photon Management through Virusâ€Programmed Supramolecular Arrays. Advanced Biology, 2017, 1, 1700088.	3.0	2
115	Dysprosium-Modified Tobacco Mosaic Virus Nanoparticles for Ultra-High-Field Magnetic Resonance and Near-Infrared Fluorescence Imaging of Prostate Cancer. ACS Nano, 2017, 11, 9249-9258.	14.6	90
116	Dual Contrast - Magnetic Resonance Fingerprinting (DC-MRF): A Platform for Simultaneous Quantification of Multiple MRI Contrast Agents. Scientific Reports, 2017, 7, 8431.	3.3	27
117	Elongated Plant Virus-Based Nanoparticles for Enhanced Delivery of Thrombolytic Therapies. Molecular Pharmaceutics, 2017, 14, 3815-3823.	4.6	41
118	Biodegradable Viral Nanoparticle/Polymer Implants Prepared <i>via</i> Melt-Processing. ACS Nano, 2017, 11, 8777-8789.	14.6	47
119	Enter the Nanoman. Nature Nanotechnology, 2017, 12, 928-928.	31.5	0
120	Viral nanoparticles decorated with novel EGFL7 ligands enable intravital imaging of tumor neovasculature. Nanoscale, 2017, 9, 12096-12109.	5.6	23
121	Physalis Mottle Virus-Like Particles as Nanocarriers for Imaging Reagents and Drugs. Biomacromolecules, 2017, 18, 4141-4153.	5.4	63
122	Combination of Plant Virus Nanoparticle-Based in Situ Vaccination with Chemotherapy Potentiates Antitumor Response. Nano Letters, 2017, 17, 4019-4028.	9.1	77
123	Featured Article: Delivery of chemotherapeutic vcMMAE using tobacco mosaic virus nanoparticles. Experimental Biology and Medicine, 2017, 242, 1405-1411.	2.4	25
124	Chemical addressability of potato virus X for its applications in bio/nanotechnology. Journal of Structural Biology, 2017, 200, 360-368.	2.8	28
125	POxylation as an alternative stealth coating for biomedical applications. European Polymer Journal, 2017, 88, 679-688.	5.4	81
126	Characterization of the Shielding Properties of Serum Albumin on a Plant Viral Nanoparticle. Microscopy and Microanalysis, 2016, 22, 1084-1085.	0.4	0

#	Article	IF	CITATIONS
127	The Protein Corona of Plant Virus Nanoparticles Influences their Dispersion Properties, Cellular Interactions, and In Vivo Fates. Small, 2016, 12, 1758-1769.	10.0	72
128	Nanomedicine: The Protein Corona of Plant Virus Nanoparticles Influences their Dispersion Properties, Cellular Interactions, and In Vivo Fates (Small 13/2016). Small, 2016, 12, 1682-1682.	10.0	4
129	Virusâ€based nanoparticles as platform technologies for modern vaccines. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 554-578.	6.1	55
130	Bioengineering of Tobacco Mosaic Virus to Create a Non-Infectious Positive Control for Ebola Diagnostic Assays. Scientific Reports, 2016, 6, 23803.	3.3	20
131	Multiple Administrations of Viral Nanoparticles Alter <i>in Vivo</i> Behaviorâ€"Insights from Intravital Microscopy. ACS Biomaterials Science and Engineering, 2016, 2, 829-837.	5.2	17
132	Serum albumin â€~camouflage' of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics. Biomaterials, 2016, 89, 89-97.	11.4	78
133	Diffusion and Uptake of Tobacco Mosaic Virus as Therapeutic Carrier in Tumor Tissue: Effect of Nanoparticle Aspect Ratio. Journal of Physical Chemistry B, 2016, 120, 6120-6129.	2.6	31
134	Utilizing Viral Nanoparticle/Dendron Hybrid Conjugates in Photodynamic Therapy for Dual Delivery to Macrophages and Cancer Cells. Bioconjugate Chemistry, 2016, 27, 1227-1235.	3.6	53
135	Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chemical Society Reviews, 2016, 45, 4074-4126.	38.1	313
136	Emerging nanotechnologies for cancer immunotherapy. Experimental Biology and Medicine, 2016, 241, 1116-1126.	2.4	26
137	Enhancing the Angular Sensitivity of Plasmonic Sensors Using Hyperbolic Metamaterials. Advanced Optical Materials, 2016, 4, 1767-1772.	7.3	69
138	X-ray characterization of mesophases of human telomeric G-quadruplexes and other DNA analogues. Scientific Reports, 2016, 6, 27079.	3.3	6
139	Implication of the solvent effect, metal ions and topology in the electronic structure and hydrogen bonding of human telomeric G-quadruplex DNA. Physical Chemistry Chemical Physics, 2016, 18, 21573-21585.	2.8	41
140	Charge distribution and hydrogen bonding of a collagen α ₂ hain in vacuum, hydrated, neutral, and charged structural models. International Journal of Quantum Chemistry, 2016, 116, 681-691.	2.0	18
141	Free-Standing, Nanopatterned Janus Membranes of Conducting Polymer–Virus Nanoparticle Arrays. Langmuir, 2016, 32, 6185-6193.	3.5	13
142	Production of Immunoabsorbent Nanoparticles by Displaying Singleâ€Domain Protein A on Potato Virus X. Macromolecular Bioscience, 2016, 16, 231-241.	4.1	32
143	Tobacco Mosaic Virus Delivery of Phenanthriplatin for Cancer therapy. ACS Nano, 2016, 10, 4119-4126.	14.6	145
144	High Aspect Ratio Nanotubes Formed by Tobacco Mosaic Virus for Delivery of Photodynamic Agents Targeting Melanoma. ACS Biomaterials Science and Engineering, 2016, 2, 838-844.	5.2	47

#	Article	IF	CITATIONS
145	Anti-atherogenic effect of trivalent chromium-loaded CPMV nanoparticles in human aortic smooth muscle cells under hyperglycemic conditions in vitro. Nanoscale, 2016, 8, 6542-6554.	5.6	18
146	Tobacco mosaic virus-based protein nanoparticles and nanorods for chemotherapy delivery targeting breast cancer. Journal of Controlled Release, 2016, 231, 103-113.	9.9	67
147	In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nature Nanotechnology, 2016, 11, 295-303.	31.5	392
148	Electronic Structure and Partial Charge Distribution of Doxorubicin in Different Molecular Environments. ChemPhysChem, 2015, 16, 1451-1460.	2.1	26
149	Tropism of CPMV to Professional Antigen Presenting Cells Enables a Platform to Eliminate Chronic Infections. ACS Biomaterials Science and Engineering, 2015, 1, 1050-1054.	5.2	20
150	Suppression of Hyperactive Immune Responses Protects against Nitrogen Mustard Injury. Journal of Investigative Dermatology, 2015, 135, 2971-2981.	0.7	23
151	Plasmonic Nanodiamonds: Targeted Core–Shell Type Nanoparticles for Cancer Cell Thermoablation. Advanced Healthcare Materials, 2015, 4, 460-468.	7.6	39
152	Interface of Physics and Biology: Engineering Virus-Based Nanoparticles for Biophotonics. Bioconjugate Chemistry, 2015, 26, 51-62.	3.6	53
153	Detection and Imaging of Aggressive Cancer Cells Using an Epidermal Growth Factor Receptor (EGFR)-Targeted Filamentous Plant Virus-Based Nanoparticle. Bioconjugate Chemistry, 2015, 26, 262-269.	3.6	50
154	The Impact of Aspect Ratio on the Biodistribution and Tumor Homing of Rigid Softâ€Matter Nanorods. Advanced Healthcare Materials, 2015, 4, 874-882.	7.6	148
155	Shaping bio-inspired nanotechnologies to target thrombosis for dual optical-magnetic resonance imaging. Journal of Materials Chemistry B, 2015, 3, 6037-6045.	5.8	68
156	Optical properties and electronic transitions of DNA oligonucleotides as a function of composition and stacking sequence. Physical Chemistry Chemical Physics, 2015, 17, 4589-4599.	2.8	17
157	To Target or Not to Target: Active vs. Passive Tumor Homing of Filamentous Nanoparticles Based on Potato virus X. Cellular and Molecular Bioengineering, 2015, 8, 433-444.	2.1	34
158	Photonics and plasmonics go viral: self-assembly of hierarchical metamaterials. Rendiconti Lincei, 2015, 26, 129-141.	2.2	12
159	Stealth filaments: Polymer chain length and conformation affect the in vivo fate of PEGylated potato virus X. Acta Biomaterialia, 2015, 19, 166-179.	8.3	79
160	van der Waals Interactions on the Mesoscale: Open-Science Implementation, Anisotropy, Retardation, and Solvent Effects. Langmuir, 2015, 31, 10145-10153.	3.5	17
161	Virusâ€based nanomaterials as positron emission tomography and magnetic resonance contrast agents: from technology development to translational medicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 708-721.	6.1	41
162	Gain-assisted plasmonic metamaterials: mimicking nature to go across scales. Rendiconti Lincei, 2015, 26, 161-174.	2.2	12

#	Article	IF	Citations
163	Virus-Based Nanoparticles as Versatile Nanomachines. Annual Review of Virology, 2015, 2, 379-401.	6.7	136
164	Aqueous synthesis of polyhedral "brick-like―iron oxide nanoparticles for hyperthermia and T ₂ MRI contrast enhancement. Journal of Materials Chemistry B, 2015, 3, 6877-6884.	5.8	15
165	Silica-coated Gd(DOTA)-loaded protein nanoparticles enable magnetic resonance imaging of macrophages. Journal of Materials Chemistry B, 2015, 3, 7503-7510.	5.8	35
166	Nanomanufacturing of Tobacco Mosaic Virus-Based Spherical Biomaterials Using a Continuous Flow Method. ACS Biomaterials Science and Engineering, 2015, 1, 13-18.	5.2	35
167	Determination of the second virial coefficient of bovine serum albumin under varying pH and ionic strength by composition-gradient multi-angle static light scattering. Journal of Biological Physics, 2015, 41, 85-97.	1.5	32
168	Optical Properties and van der Waals-London Dispersion Interactions in Inorganic and Biomolecular Assemblies. Materials Research Society Symposia Proceedings, 2014, 1619, 1.	0.1	0
169	Biodistribution and clearance of a filamentous plant virus in healthy and tumor-bearing mice. Nanomedicine, 2014, 9, 221-235.	3.3	56
170	Genetic Engineering and Chemical Conjugation of Potato Virus X. Methods in Molecular Biology, 2014, 1108, 3-21.	0.9	38
171	Fluorescent Nanodiamonds Embedded in Biocompatible Translucent Shells. Small, 2014, 10, 1106-1115.	10.0	88
172	Biodistribution, pharmacokinetics, and blood compatibility of native and PEGylated tobacco mosaic virus nano-rods and -spheres in mice. Virology, 2014, 449, 163-173.	2.4	165
173	Chemical Modification of the Inner and Outer Surfaces of Tobacco Mosaic Virus (TMV). Methods in Molecular Biology, 2014, 1108, 173-185.	0.9	74
174	Molecular farming of fluorescent virus-based nanoparticles for optical imaging in plants, human cells and mouse models. Biomaterials Science, 2014, 2, 784.	5.4	47
175	The Aspect Ratio of Nanoparticle Assemblies and the Spatial Arrangement of Ligands can be Optimized to Enhance the Targeting of Cancer Cells. Advanced Healthcare Materials, 2014, 3, 1739-1744.	7.6	11
176	Dual-Modal Magnetic Resonance and Fluorescence Imaging of Atherosclerotic Plaques in Vivo Using VCAM-1 Targeted Tobacco Mosaic Virus. Nano Letters, 2014, 14, 1551-1558.	9.1	145
177	Presentation of HER2 epitopes using a filamentous plant virus-based vaccination platform. Journal of Materials Chemistry B, 2014, 2, 6249.	5.8	24
178	Titanium dioxide nanoparticle-induced oxidative stress triggers DNA damage and hepatic injury in mice. Nanomedicine, 2014, 9, 1423-1434.	3.3	132
179	Electronic Structure, Dielectric Response and Surface Charge Distribution of RGD (1FUV) Peptide. Scientific Reports, 2014, 4, 5605.	3.3	33
180	Increased Tumor Homing and Tissue Penetration of the Filamentous Plant Viral Nanoparticle <i>Potato virus X</i> . Molecular Pharmaceutics, 2013, 10, 33-42.	4.6	139

#	Article	IF	Citations
181	Design rules for nanomedical engineering: from physical virology to the applications of virus-based materials in medicine. Journal of Biological Physics, 2013, 39, 301-325.	1.5	53
182	Infusion of imaging and therapeutic molecules into the plant virus-based carrier cowpea mosaic virus: Cargo-loading and delivery. Journal of Controlled Release, 2013, 172, 568-578.	9.9	90
183	Engineering Gd-loaded nanoparticles to enhance MRI sensitivity via <i>T</i> ₁ shortening. Nanotechnology, 2013, 24, 462001.	2.6	69
184	Viral Nanoparticles in Drug Delivery and Imaging. Molecular Pharmaceutics, 2013, 10, 1-2.	4.6	37
185	CPMV-DOX Delivers. Molecular Pharmaceutics, 2013, 10, 3-10.	4.6	139
186	Tobacco mosaic virus rods and spheres as supramolecular high-relaxivity MRI contrast agents. Journal of Materials Chemistry B, 2013, 1, 1482.	5.8	95
187	Shape matters: the diffusion rates of TMV rods and CPMV icosahedrons in a spheroid model of extracellular matrix are distinct. Biomaterials Science, 2013, 1, 581.	5.4	64
188	Viral Nanoparticles for In vivo Tumor Imaging. Journal of Visualized Experiments, 2012, , e4352.	0.3	30
189	Engineering of Brome mosaic virus for biomedical applications. RSC Advances, 2012, 2, 3670.	3.6	49
190	Guiding plant virus particles to integrin-displaying cells. Nanoscale, 2012, 4, 3698.	5.6	50
191	A potential nanobiotechnology platform based on infectious bursal disease subviral particles. RSC Advances, 2012, 2, 1970.	3.6	5
192	Photodynamic activity of viral nanoparticles conjugated with C60. Chemical Communications, 2012, 48, 9044.	4.1	34
193	Interior Engineering of a Viral Nanoparticle and Its Tumor Homing Properties. Biomacromolecules, 2012, 13, 3990-4001.	5.4	94
194	Controlled immobilisation of active enzymes on the cowpea mosaic virus capsid. Nanoscale, 2012, 4, 5640.	5.6	49
195	Development of viral nanoparticles for efficient intracellular delivery. Nanoscale, 2012, 4, 3567.	5.6	57
196	The Art of Engineering Viral Nanoparticles. Molecular Pharmaceutics, 2011, 8, 29-43.	4.6	233
197	Transferrin-mediated targeting of bacteriophage HK97 nanoparticles into tumor cells. Nanomedicine, 2011, 6, 55-68.	3.3	52
198	Applications of viral nanoparticles in medicine. Current Opinion in Biotechnology, 2011, 22, 901-908.	6.6	260

#	Article	IF	CITATIONS
199	Cowpea mosaic virus nanoparticles target surface vimentin on cancer cells. Nanomedicine, 2011, 6, 351-364.	3.3	107
200	Intravital Imaging of Human Prostate Cancer Using Viral Nanoparticles Targeted to Gastrinâ€Releasing Peptide Receptors. Small, 2011, 7, 1664-1672.	10.0	100
201	Viral Nanoparticles: Intravital Imaging of Human Prostate Cancer Using Viral Nanoparticles Targeted to Gastrinâ€Releasing Peptide Receptors (Small 12/2011). Small, 2011, 7, 1602-1602.	10.0	0
202	Two Domains of Vimentin Are Expressed on the Surface of Lymph Node, Bone and Brain Metastatic Prostate Cancer Lines along with the Putative Stem Cell Marker Proteins CD44 and CD133. Cancers, 2011, 3, 2870-2885.	3.7	36
203	Viral nanoparticles as platforms for next-generation therapeutics and imaging devices. Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6, 634-641.	3.3	229
204	Intravital imaging of embryonic and tumor neovasculature using viral nanoparticles. Nature Protocols, 2010, 5, 1406-1417.	12.0	129
205	Potato Virus X as a Novel Platform for Potential Biomedical Applications. Nano Letters, 2010, 10, 305-312.	9.1	99
206	Labeling Live Cells by Copper-Catalyzed Alkyneâ^'Azide Click Chemistry. Bioconjugate Chemistry, 2010, 21, 1912-1916.	3.6	347
207	Hydrazone Ligation Strategy to Assemble Multifunctional Viral Nanoparticles for Cell Imaging and Tumor Targeting. Nano Letters, 2010, 10, 1093-1097.	9.1	144
208	Virus‶emplated Silica Nanoparticles. Small, 2009, 5, 813-816.	10.0	76
209	Structure-Based Engineering of an Icosahedral Virus for Nanomedicine and Nanotechnology. Current Topics in Microbiology and Immunology, 2009, 327, 23-58.	1.1	71
210	PEGylated Viral Nanoparticles for Biomedicine: The Impact of PEG Chain Length on VNP Cell Interactions In Vitro and Ex Vivo. Biomacromolecules, 2009, 10, 784-792.	5.4	128
211	Model-Independent Analysis of QCM Data on Colloidal Particle Adsorption. Langmuir, 2009, 25, 5177-5184.	3.5	133
212	Buckyballs Meet Viral Nanoparticles: Candidates for Biomedicine. Journal of the American Chemical Society, 2009, 131, 17093-17095.	13.7	119
213	Layerâ∈Byâ∈Layer Assembly of Viral Nanoparticles and Polyelectrolytes: The Film Architecture is Different for Spheres Versus Rods. ChemBioChem, 2008, 9, 1662-1670.	2.6	56
214	Siteâ€specific and Spatially Controlled Addressability of a New Viral Nanobuilding Block: <i>Sulfolobus islandicus</i> Rodâ€shaped Virus 2. Advanced Functional Materials, 2008, 18, 3478-3486.	14.9	54
215	Solvation Effects in the Quartz Crystal Microbalance with Dissipation Monitoring Response to Biomolecular Adsorption. A Phenomenological Approach. Analytical Chemistry, 2008, 80, 8880-8890.	6.5	132
216	Assembly of Multilayer Arrays of Viral Nanoparticles via Biospecific Recognition: A Quartz Crystal Microbalance with Dissipation Monitoring Study. Biomacromolecules, 2008, 9, 456-462.	5.4	56

#	Article	IF	CITATIONS
217	Utilisation of plant viruses in bionanotechnology. Organic and Biomolecular Chemistry, 2007, 5, 2891.	2.8	138
218	Membrane-Grafted Hyaluronan Films:Â A Well-Defined Model System of Glycoconjugate Cell Coats. Journal of the American Chemical Society, 2007, 129, 5306-5307.	13.7	70
219	Chemical Introduction of Reactive Thiols Into a Viral Nanoscaffold: A Method that Avoids Virus Aggregation. ChemBioChem, 2007, 8, 1131-1136.	2.6	49
220	Cowpea Mosaic Virus for Material Fabrication:  Addressable Carboxylate Groups on a Programmable Nanoscaffold. Langmuir, 2006, 22, 3488-3490.	3.5	86
221	Plant Viral Capsids as Nanobuilding Blocks:Â Construction of Arrays on Solid Supports. Langmuir, 2006, 22, 10032-10037.	3.5	73
222	Decoration of Cowpea Mosaic Virus with Multiple, Redox-Active, Organometallic Complexes. Small, 2006, 2, 530-533.	10.0	78
223	Plant Viral Capsids as Programmable Nanobuilding Blocks. , 0, , 215-236.		3
224	Recent advancements in single dose slowâ€release devices for prophylactic vaccines. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 0, , .	6.1	0
225	A Singleâ€Dose Qβ VLP Vaccine Against S100A9 Protein Reduces Atherosclerosis in a Preclinical Model. Advanced Therapeutics, 0, , 2200092.	3.2	5