
David Olmeda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/245631/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Physiological models for in vivo imaging and targeting the lymphatic system: Nanoparticles and extracellular vesicles. Advanced Drug Delivery Reviews, 2021, 175, 113833.	13.7	15
2	Live imaging of neolymphangiogenesis identifies acute antimetastatic roles of dsRNA mimics. EMBO Molecular Medicine, 2021, 13, e12924.	6.9	1
3	Midkine rewires the melanoma microenvironment toward a tolerogenic and immune-resistant state. Nature Medicine, 2020, 26, 1865-1877.	30.7	62
4	p62/SQSTM1 Fuels Melanoma Progression by Opposing mRNA Decay of a Selective Set of Pro-metastatic Factors. Cancer Cell, 2019, 35, 46-63.e10.	16.8	50
5	Whole-body imaging of lymphovascular niches identifies pre-metastatic roles of midkine. Nature, 2017, 546, 676-680.	27.8	123
6	Systems analysis identifies melanoma-enriched pro-oncogenic networks controlled by the RNA binding protein CELF1. Nature Communications, 2017, 8, 2249.	12.8	22
7	Vesicular trafficking mechanisms in endothelial cells as modulators of the tumor vasculature and targets of antiangiogenic therapies. FEBS Journal, 2016, 283, 25-38.	4.7	22
8	Metastatic risk and resistance to BRAF inhibitors in melanoma defined by selective allelic loss of <i>ATG5</i> . Autophagy, 2016, 12, 1776-1790.	9.1	31
9	UNR/CSDE1 Drives a Post-transcriptional Program to Promote Melanoma Invasion and Metastasis. Cancer Cell, 2016, 30, 694-707.	16.8	131
10	Vegfr3-CreER T2 mouse, a new genetic tool for targeting the lymphatic system. Angiogenesis, 2016, 19, 433-445.	7.2	39
11	The nuclear corepressor 1 and the thyroid hormone receptor Î ² suppress breast tumor lymphangiogenesis. Oncotarget, 2016, 7, 78971-78984.	1.8	15
12	Zeb1 and <scp>S</scp> nail1 engage mi <scp>R</scp> â€200f transcriptional and epigenetic regulation during <scp>EMT</scp> . International Journal of Cancer, 2015, 136, E62-73.	5.1	52
13	RAB7 Controls Melanoma Progression by Exploiting a Lineage-Specific Wiring of the Endolysosomal Pathway. Cancer Cell, 2014, 26, 61-76.	16.8	86
14	In vivo imaging of lymphatic vessels in development, wound healing, inflammation, and tumor metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6223-6228.	7.1	108
15	Blocking ephrinB2 with highly specific antibodies inhibits angiogenesis, lymphangiogenesis, and tumor growth. Blood, 2012, 119, 4565-4576.	1.4	106
16	A Creâ€reporter transgenic mouse expressing the farâ€red fluorescent protein Katushka. Genesis, 2011, 49, 36-45.	1.6	26
17	Hyaluronic Acid/Chitosan-g-Poly(ethylene glycol) Nanoparticles for Gene Therapy: An Application for pDNA and siRNA Delivery. Pharmaceutical Research, 2010, 27, 2544-2555.	3.5	83
18	The morphological and molecular features of the epithelial-to-mesenchymal transition. Nature Protocols, 2009, 4, 1591-1613.	12.0	185

DAVID OLMEDA

#	Article	IF	CITATIONS
19	Snai1 and Snai2 collaborate on tumor growth and metastasis properties of mouse skin carcinoma cell lines. Oncogene, 2008, 27, 4690-4701.	5.9	101
20	SNAI1 Is Required for Tumor Growth and Lymph Node Metastasis of Human Breast Carcinoma MDA-MB-231 Cells. Cancer Research, 2007, 67, 11721-11731.	0.9	184
21	Snail silencing effectively suppresses tumour growth and invasiveness. Oncogene, 2007, 26, 1862-1874.	5.9	239
22	Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?. Nature Reviews Cancer, 2007, 7, 415-428.	28.4	2,796
23	ld-1 is induced in MDCK epithelial cells by activated Erk/MAPK pathway in response to expression of the Snail and E47 transcription factors. Experimental Cell Research, 2007, 313, 2389-2403.	2.6	34
24	A molecular role for lysyl oxidase-like 2 enzyme in Snail regulation and tumor progression. EMBO Journal, 2005, 24, 3446-3458.	7.8	409
25	Upregulation of MMP-9 in MDCK epithelial cell line in response to expression of the Snail transcription factor. Journal of Cell Science, 2005, 118, 3371-3385.	2.0	200
26	Choline Kinase Activation Is a Critical Requirement for the Proliferation of Primary Human Mammary Epithelial Cells and Breast Tumor Progression. Cancer Research, 2004, 64, 6732-6739.	0.9	118
27	β-Catenin Regulation during the Cell Cycle: Implications in G2/M and Apoptosis. Molecular Biology of the Cell, 2003, 14, 2844-2860.	2.1	177