Ana Olivera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2456055/publications.pdf Version: 2024-02-01

ΔΝΙΑ ΟΙ Ινέρα

#	Article	IF	CITATIONS
1	The alliance of sphingosine-1-phosphate and its receptors in immunity. Nature Reviews Immunology, 2008, 8, 753-763.	22.7	570
2	Transactivation of Sphingosine-1–Phosphate Receptors by FcεRI Triggering Is Required for Normal Mast Cell Degranulation and Chemotaxis. Journal of Experimental Medicine, 2004, 199, 959-970.	8.5	312
3	The Sphingosine Kinase-Sphingosine-1-Phosphate Axis Is a Determinant of Mast Cell Function and Anaphylaxis. Immunity, 2007, 26, 287-297.	14.3	200
4	Chapter 3 New Insights on Mast Cell Activation via the High Affinity Receptor for IgE. Advances in Immunology, 2008, 98, 85-120.	2.2	182
5	Mast cells signal their importance in health and disease. Journal of Allergy and Clinical Immunology, 2018, 142, 381-393.	2.9	169
6	Vibratory Urticaria Associated with a Missense Variant in <i>ADGRE2</i> . New England Journal of Medicine, 2016, 374, 656-663.	27.0	157
7	Sphingosine Kinase Type 1 Induces G12/13-mediated Stress Fiber Formation, yet Promotes Growth and Survival Independent of G Protein-coupled Receptors. Journal of Biological Chemistry, 2003, 278, 46452-46460.	3.4	142
8	Preferential Signaling and Induction of Allergy-promoting Lymphokines Upon Weak Stimulation of the High Affinity IgE Receptor on Mast Cells. Journal of Experimental Medicine, 2003, 197, 1453-1465.	8.5	137
9	lgE-dependent Activation of Sphingosine Kinases 1 and 2 and Secretion of Sphingosine 1-Phosphate Requires Fyn Kinase and Contributes to Mast Cell Responses. Journal of Biological Chemistry, 2006, 281, 2515-2525.	3.4	133
10	Sphingolipids and the Balancing of Immune Cell Function: Lessons from the Mast Cell. Journal of Immunology, 2005, 174, 1153-1158.	0.8	115
11	Diminished allergic disease in patients with STAT3 mutations reveals a role for STAT3 signaling in mast cellÂdegranulation. Journal of Allergy and Clinical Immunology, 2013, 132, 1388-1396.e3.	2.9	102
12	Sphingosine kinase 1 and sphingosine-1-phosphate receptor 2 are vital to recovery from anaphylactic shock in mice. Journal of Clinical Investigation, 2010, 120, 1429-1440.	8.2	99
13	Estrogen increases the severity of anaphylaxis in female mice through enhanced endothelial nitric oxide synthase expression and nitric oxide production. Journal of Allergy and Clinical Immunology, 2015, 135, 729-736.e5.	2.9	92
14	IL-6 promotes an increase in human mast cell numbers and reactivity through suppression of suppressor of cytokine signaling 3. Journal of Allergy and Clinical Immunology, 2016, 137, 1863-1871.e6.	2.9	86
15	Impact of naturally forming human α/β-tryptase heterotetramers in the pathogenesis of hereditary α-tryptasemia. Journal of Experimental Medicine, 2019, 216, 2348-2361.	8.5	85
16	Functional Deregulation of KIT. Immunology and Allergy Clinics of North America, 2014, 34, 219-237.	1.9	81
17	Shaping the landscape: Metabolic regulation of S1P gradients. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 193-202.	2.4	79
18	Activated mast cells synthesize and release soluble ST2â€a decoy receptor for ILâ€33. European Journal of Immunology, 2015, 45, 3034-3044.	2.9	72

ANA OLIVERA

#	Article	IF	CITATIONS
19	CD4 T cell sphingosine 1-phosphate receptor (S1PR)1 and S1PR4 and endothelial S1PR2 regulate afferent lymphatic migration. Science Immunology, 2019, 4, .	11.9	70
20	Early Activation of Sphingosine Kinase in Mast Cells and Recruitment to FcεRI Are Mediated by Its Interaction with Lyn Kinase. Molecular and Cellular Biology, 2004, 24, 8765-8777.	2.3	68
21	Diminution of signal transducer and activator of transcription 3 signaling inhibits vascular permeability and anaphylaxis. Journal of Allergy and Clinical Immunology, 2016, 138, 187-199.	2.9	56
22	E-prostanoid 2 receptors dampen mast cell degranulation via cAMP/PKA-mediated suppression of IgE-dependent signaling. Journal of Leukocyte Biology, 2012, 92, 1155-1165.	3.3	47
23	Sphingosine-1-phosphate and other lipid mediators generated by mast cells as critical players in allergy and mast cell function. European Journal of Pharmacology, 2016, 778, 56-67.	3.5	43
24	Mastocytosis-derived extracellular vesicles deliver miR-23a and miR-30a into pre-osteoblasts and prevent osteoblastogenesis and bone formation. Nature Communications, 2021, 12, 2527.	12.8	38
25	Mastocytosis-derived extracellular vesicles exhibit a mast cell signature, transfer KIT to stellate cells, and promote their activation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10692-E10701.	7.1	34
26	Emerging mechanisms contributing to mast cell-mediated pathophysiology with therapeutic implications. , 2021, 220, 107718.		32
27	Distinct transcriptome profiles differentiate nonsteroidal anti-inflammatory drug–dependent from nonsteroidal anti-inflammatory drug–independent food-induced anaphylaxis. Journal of Allergy and Clinical Immunology, 2016, 137, 137-146.	2.9	31
28	Unraveling the complexities of sphingosine-1-phosphate function: The mast cell model. Prostaglandins and Other Lipid Mediators, 2008, 86, 1-11.	1.9	28
29	An optimized protocol for the generation and functional analysis of human mast cells from CD34 + enriched cell populations. Journal of Immunological Methods, 2017, 448, 105-111.	1.4	28
30	Oncogenic D816V-KIT signaling in mast cells causes persistent IL-6 production. Haematologica, 2020, 105, 124-135.	3.5	26
31	Interrogation of sphingosine-1-phosphate receptor 2 function in vivo reveals a prominent role in the recovery from IgE and IgG-mediated anaphylaxis with minimal effect on its onset. Immunology Letters, 2013, 150, 89-96.	2.5	25
32	Sphingosine-kinase 1 and 2 contribute to oral sensitization and effector phase in a mouse model of food allergy. Immunology Letters, 2012, 141, 210-219.	2.5	23
33	Critical Signaling Events in the Mechanoactivation of Human Mast Cells through p.C492Y-ADGRE2. Journal of Investigative Dermatology, 2020, 140, 2210-2220.e5.	0.7	23
34	Usage of Sphingosine Kinase Isoforms in Mast Cells Is Species and/or Cell Type Determined. Journal of Immunology, 2013, 190, 2058-2067.	0.8	18
35	Cutting Edge: Persistence of Increased Mast Cell Numbers in Tissues Links Dermatitis to Enhanced Airway Disease in a Mouse Model of Atopy. Journal of Immunology, 2012, 188, 531-535.	0.8	17
36	S1P4 Regulates Passive Systemic Anaphylaxis in Mice but Is Dispensable for Canonical IgE-Mediated Responses in Mast Cells. International Journal of Molecular Sciences, 2018, 19, 1279.	4.1	12

ANA OLIVERA

#	Article	IF	CITATIONS
37	Paradigm Shifts in Mast Cell and Basophil Biology and Function: An Emerging View of Immune Regulation in Health and Disease. Methods in Molecular Biology, 2014, 1192, 3-31.	0.9	11
38	Sphingosine-1-phosphate can promote mast cell hyper-reactivity through regulation of contactin-4 expression. Journal of Leukocyte Biology, 2013, 94, 1013-1024.	3.3	10
39	MYO1F Regulates IgE and MRGPRX2-Dependent Mast Cell Exocytosis. Journal of Immunology, 2021, 206, 2277-2289.	0.8	10
40	Regulation of Reactive Oxygen Species and the Antioxidant Protein DJ-1 in Mastocytosis. PLoS ONE, 2016, 11, e0162831.	2.5	9
41	Targeting Sphingosine Kinase Isoforms Effectively Reduces Growth and Survival of Neoplastic Mast Cells With D816V-KIT. Frontiers in Immunology, 2018, 9, 631.	4.8	8
42	Interaction of DJ-1 with Lyn is essential for IgE-mediated stimulation of human mast cells. Journal of Allergy and Clinical Immunology, 2018, 142, 195-206.e8.	2.9	7
43	Targeting KIT by frameshifting mRNA transcripts as a therapeutic strategy for aggressive mast cell neoplasms. Molecular Therapy, 2022, 30, 295-310.	8.2	4
44	Aldh2 Attenuates Stem Cell Factor/Kit-Dependent Signaling and Activation in Mast Cells. International Journal of Molecular Sciences, 2019, 20, 6216.	4.1	3
45	Editorial: Innate Cells in the Pathogenesis of Food Allergy. Frontiers in Immunology, 2021, 12, 709991.	4.8	3
46	Paradigm Shifts in Mast Cell and Basophil Biology and Function: An Emerging View of Immune Regulation in Health and Disease. Methods in Molecular Biology, 2020, 2163, 3-31.	0.9	3
47	A Critical Function for the Transcription Factors GLI1 and GLI2 in the Proliferation and Survival of Human Mast Cells. Frontiers in Immunology, 2022, 13, 841045.	4.8	3
48	Reply. Journal of Allergy and Clinical Immunology, 2019, 143, 451-452.	2.9	1
49	Demonstration and implications of IL-3 upregulation of CD25 expression on human mast cells. Journal of Allergy and Clinical Immunology, 2021, , .	2.9	1
50	Reply. Journal of Allergy and Clinical Immunology, 2015, 136, 1426.	2.9	0
51	Overview of Mast Cells in Human Biology. , 2020, , 1-22.		0